More on Splines

Recall the basis

$$
N_{1}(x)=1, \quad N_{2}(x)=x
$$

and

$$
N_{2+\prime}(x)=\frac{\left(x-\xi_{l}\right)_{+}^{3}-\left(x-\xi_{K}\right)_{+}^{3}}{\xi_{K}-\xi_{l}}-\frac{\left(x-\xi_{K-1}\right)_{+}^{3}-\left(x-\xi_{K}\right)_{+}^{3}}{\xi_{K}-\xi_{K-1}}
$$

for $I=1, \ldots, K-2$ for natural cubic splines. Observe that $N_{1}^{\prime \prime}(x)=N_{2}^{\prime \prime}(x)=0$ and

$$
N_{2+I}^{\prime \prime}(x)= \begin{cases}6 \frac{x-\xi_{1}}{\xi_{K}-\xi_{l}} & x \in\left(\xi_{l}, \xi_{K-1}\right] \\ 6 \frac{\left(\xi_{K-1}-\xi_{1}\right)\left(\xi_{K}-x\right)}{\left(\xi_{K}-\xi_{l}\right)\left(\xi_{K}-\xi_{K-1}\right)} & x \in\left(\xi_{K-1}, \xi_{K}\right) \\ 0 & x \leq \xi_{I} \text { and } x \geq \xi_{K}\end{cases}
$$

Assuming that $\xi_{1}<\ldots<\xi_{K}$ the functions $N_{3}^{\prime \prime}, \ldots, N_{K}^{\prime \prime}$ are linearly independent.

Regularity of the Spline Smoother

If x_{1}, \ldots, x_{N} are all different, N_{1}, \ldots, N_{N} is the basis for the n.c.s. with knots x_{1}, \ldots, x_{N} and $f=\sum_{i=1}^{N} \theta_{i} N_{i}$ we have

$$
\theta^{T} \Omega_{N} \theta=\int_{a}^{b}\left(f^{\prime \prime}(x)\right)^{2} \mathrm{~d} x=0
$$

if and only if $f^{\prime \prime}(x)=0$ for all $x \in[a, b]$. Hence

$$
\theta_{3}=\ldots=\theta_{N}=0 .
$$

If also $\theta^{T} \mathbf{N}^{T} \mathbf{N} \theta=0$ then

$$
\left(\begin{array}{ll}
\theta_{1} & \theta_{2}
\end{array}\right)\left(\begin{array}{cc}
N & \sum_{i} x_{i} \\
\sum_{i} x_{i} & \sum_{i} x_{i}^{2}
\end{array}\right)\binom{\theta_{1}}{\theta_{2}}=0
$$

which implies that $\theta_{1}=\theta_{2}=0$ if $N \geq 2$. The in general positive semidefinite matrix

$$
\mathbf{N}^{T} \mathbf{N}+\lambda \Omega_{N}
$$

is thus positive definite for $\lambda>0$.

The Reinsch Form

Let

$$
\mathbf{S}_{\lambda}=\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}+\lambda \Omega_{N}\right)^{-1} \mathbf{N}^{T}
$$

be the spline smoother and $\mathbf{N}=U D V^{\top}$ the singular value decomposition of \mathbf{N}. Since \mathbf{N} is square $N \times N, U$ is orthogonal hence invertible with $U^{-1}=U^{T}$, and D is invertible since \mathbf{N} has full rank N. Then

$$
\begin{aligned}
\mathbf{S}_{\lambda} & =U D V^{T}\left(V D^{2} V^{T}+\lambda \Omega_{N}\right)^{-1} V D U^{T} \\
& =U\left(D^{-1} V^{T} V D^{2} V^{T} V D^{-1}+\lambda D^{-1} V^{T} \Omega_{N} V D^{-1}\right)^{-1} U^{T} \\
& =U\left(I+\lambda D^{-1} V^{T} \Omega_{N} V D^{-1}\right)^{-1} U^{T} \\
& =\left(U^{T} U+\lambda U^{T} D^{-1} V^{T} \Omega_{N} V D^{-1} U\right)^{-1} \\
& =(I+\lambda \underbrace{U^{T} D^{-1} V^{T} \Omega_{N} V D^{-1} U}_{\mathbf{K}})^{-1} \\
& =(I+\lambda \mathbf{K})^{-1}
\end{aligned}
$$

The Demmler-Reinsch Basis

The matrix \mathbf{K} is positive semidefinite and we write

$$
\mathbf{K}=\bar{U} D \bar{U}^{T}
$$

where $D=\operatorname{diag}\left(d_{1}, \ldots, d_{N}\right)$ with $0=d_{1}=d_{2}<d_{3} \leq \ldots \leq d_{N}$ and \bar{U} is orthogonal.

The columns in \bar{U}, denoted $\bar{u}_{1}, \ldots, \bar{u}_{N}$, are known as the Demmler-Reinsch basis.

The Demmler-Reinsch basis is a (the) orthonormal basis of \mathbb{R}^{N} with the property that the smoother \mathbf{S}_{λ} is diagonal in this basis:

$$
\mathbf{S}_{\lambda}=\bar{U}(I+\lambda D)^{-1} \bar{U}^{T}
$$

The eigenvalues are in decreasing order

$$
\rho_{k}(\lambda)=\frac{1}{1+\lambda d_{k}}
$$

for $k=1, \ldots, N-$ and $\rho_{1}(\lambda)=\rho_{2}(\lambda)=1$.

The Demmler-Reinsch Basis

We may also observe that

$$
\mathbf{S}_{\lambda} \bar{u}_{k}=\rho_{k}(\lambda) \bar{u}_{k} .
$$

We think of and visualize \bar{u}_{k} as a function evaluated in the points x_{1}, \ldots, x_{N}.

One important consequence of these derivations is that the Demmler-Reinsch basis does not depend upon λ and we can clearly see the effect of λ through the eigenvalues $\rho_{k}(\lambda)$ that work as shrinkage coefficients multiplied on the basis vectors.

A Bias-Variance Decomposition

Assume that conditionally on \mathbf{X} the Y_{i} 's are uncorrelated with common variance σ^{2}. Then with $\mathbf{f}=E(\mathbf{Y} \mid \mathbf{X})=E\left(\mathbf{Y}^{\text {new }} \mid \mathbf{X}\right)$ and $\mathbf{Y}^{\text {new }}$ independent of \mathbf{Y}

$$
\begin{aligned}
E\left(\left\|\mathbf{Y}^{\text {new }}-\hat{\mathbf{f}}\right\|^{2} \mid \mathbf{X}\right)= & E\left(\left\|\mathbf{Y}^{\text {new }}-\mathbf{S}_{\lambda} \mathbf{Y}\right\|^{2} \mid \mathbf{X}\right) \\
= & E\left(\left\|\mathbf{Y}^{\text {new }}-\mathbf{f}\right\|^{2} \mid \mathbf{X}\right)+\left\|\mathbf{f}-\mathbf{S}_{\lambda} \mathbf{f}\right\|^{2} \\
& +E\left(\left\|\mathbf{S}_{\lambda}(\mathbf{f}-\mathbf{Y})\right\|^{2} \mid \mathbf{X}\right) \\
= & N \sigma^{2}+\underbrace{\left\|\left(I-\mathbf{S}_{\lambda}\right) \mathbf{f}\right\|^{2}}_{\operatorname{Bias}(\lambda)^{2}}+\sigma^{2} \operatorname{trace}\left(\mathbf{S}_{\lambda}^{2}\right) \\
= & \sigma^{2}\left(N+\operatorname{trace}\left(\mathbf{S}_{\lambda}^{2}\right)\right)+\operatorname{Bias}(\lambda)^{2}
\end{aligned}
$$

where we use that $E(\hat{\mathbf{f}} \mid \mathbf{X})=E\left(\mathbf{S}_{\lambda} \mathbf{Y} \mid \mathbf{X}\right)=\mathbf{S}_{\lambda} \mathbf{f}$. We can also write

$$
\operatorname{Bias}(\lambda)^{2}=\operatorname{trace}\left(\left(I-\mathbf{S}_{\lambda}\right)^{2} \mathbf{f f ^ { T }}\right)
$$

Estimation of σ^{2} using low bias estimates

It seems that

$$
\operatorname{RSS}(\hat{\mathbf{f}})=\sum_{i=1}^{N}\left(y_{i}-\hat{\mathbf{f}}_{i}\right)^{2}
$$

is a natural estimator of $E\left(\|\mathbf{Y}-\hat{\mathbf{f}}\|^{2} \mid \mathbf{X}\right)$, and its mean is computed as

$$
\sigma^{2}\left(N-\left(\operatorname{trace}\left(2 \mathbf{S}_{\lambda}-\mathbf{S}_{\lambda}^{2}\right)\right)+\operatorname{Bias}(\lambda)^{2}\right.
$$

Choosing a low-bias - that is small λ - model we expect $\operatorname{Bias}(\lambda)^{2}$ to be negligible and we estimate σ^{2} as

$$
\hat{\sigma}^{2}=\frac{1}{N-\operatorname{trace}\left(2 \mathbf{S}_{\lambda}-\mathbf{S}_{\lambda}^{2}\right)} \operatorname{RSS}(\hat{\mathbf{f}})
$$

From this point of view it seems that

$$
\operatorname{trace}\left(2 \mathbf{S}_{\lambda}-\mathbf{S}_{\lambda}^{2}\right)
$$

can also be justified as the effective degrees of freedom.

Reproducing Kernel Hilbert Spaces

On any space Ω, not necessarily a subset of \mathbb{R}^{p}, a kernel is a function

$$
K: \Omega \times \Omega \rightarrow \mathbb{R}
$$

with the property that if $x_{1}, \ldots, x_{N} \in \Omega$ then the $N \times N$ matrix

$$
\mathbf{K}=\left\{K\left(x_{i}, x_{j}\right)\right\}_{i, j}
$$

is positive semidefinite. We will only kernels that are positive definite.

The inner product space

$$
\mathcal{H}_{K}^{\text {pre }}=\left\{\sum_{m} \alpha_{m} K\left(\cdot, y_{m}\right)\right\}
$$

with inner product

$$
\left\langle\sum_{m} \alpha_{m} K\left(\cdot, y_{m}\right), \sum_{n} \alpha_{n}^{\prime} K\left(\cdot, y_{n}^{\prime}\right)\right\rangle=\sum_{m, n} \alpha_{n}^{\prime} \alpha_{m} K\left(y_{n}^{\prime}, y_{m}\right)
$$

can be abstractly completed.

Reproducing Kernel Hilbert Spaces

The existence of the completion \mathcal{H}_{K}, which is a Hilbert space with reproducing kernel K is known as the Moore-Aronszajn theorem. If $f \in \mathcal{H}_{K}$ then

$$
\langle f, K(\cdot, x)\rangle=f(x)
$$

If $\Omega \subseteq \mathbb{R}^{p}$ then under additional regularity conditions there are orthogonal functions ϕ_{i} such that

$$
K(x, y)=\sum_{i} \gamma_{i} \phi_{i}(x) \phi_{i}(y)
$$

where $\gamma_{i} \geq 0$ and $\sum_{i} \gamma_{i}^{2}<\infty$. This is known as Mercer's theorem. Then \mathcal{H}_{K} becomes concrete as

$$
f=\sum_{i} c_{i} \phi_{i}
$$

with $\sum_{i} \frac{c_{i}^{2}}{\gamma_{i}}<\infty$.

The Finite-Dimensional Optimization Problem

Considering the abstract problem

$$
\min _{f \in \mathcal{H}_{K}} \sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda\|f\|_{K}^{2}
$$

a solution is then of the form $\sum_{i=1}^{N} \alpha_{i} K\left(\cdot, x_{i}\right)$. We need to solve

$$
\min _{\alpha \in \mathbb{R}^{N}}(\mathbf{y}-\mathbf{K} \alpha)^{T}(\mathbf{y}-\mathbf{K} \alpha)+\lambda \alpha^{T} \mathbf{K} \alpha
$$

The solution (unique when \mathbf{K} is positive definite) is

$$
\hat{\alpha}=(\mathbf{K}+\lambda I)^{-1} \mathbf{y}
$$

and the predicted values are

$$
\begin{aligned}
\hat{\mathbf{f}} & =\mathbf{K} \hat{\alpha} \\
& =\mathbf{K}(\mathbf{K}+\lambda I)^{-1} \mathbf{y} \\
& =\left(I+\lambda \mathbf{K}^{-1}\right)^{-1} \mathbf{y}
\end{aligned}
$$

Data acquisition - and interpretations

In this course we consider observational data. Roughly we have

- Observational data; Both X and Y are sampled from an (imaginary) population.
- Non-observational; e.g. a designed experiment where we fix X by the design and sample Y.
For observational data how should we interpret $Y \mid X$?

Example

In toxicology we are interested in measuring the effect of a (toxic) compound on the plant, say.

Consider a naturally occurring compound A and a plant Z .

- Full observational study: On N randomly selected fields we measure $Y=$ the amount of plant Z and $X=$ the amount of compound A.
- Semi-observational study: On each of N randomly selected fields we plant R plants Z. After T days we measure $Y=$ the amount of plant Z and $X=$ the amount of compound A.
- Designed experiment: On each of N identical fields we plant R plants Z. We add according to a design scheme the amount X_{i} of compound A to field i. After T days we measure $Y=$ the amount of plant Z.

Causality

In toxicology - as in most parts of science - the basic question is causal relations.

Is the compound A toxic? Does it actually kill plant Z?

The pragmatic farmer; Can I grow plant Z on my soil?

The former question can only be answered by the designed experiment. The latter may be answered by prediction of the yield based on a measurement of compound A .

The latter prediction is not justified by causality - only by correlation.

Probability Models and Causality

Probability theory is completely blind to causation!

From a technical point of view the regression of Y on X is carried out precisely in the same manner whether the data are observational or from a designed experiment. The probability conditional model is the same.

For the ideal designed experiment we control X and all systematic variation in Y can only be ascribed to X.

For the observational study we observed the pair (X, Y) Systematic variations in Y can be due to X but there is no evidence of causality.

Interventions

Many, many studies are observational and many, many conclusions are causal.

- If the children in Gentofte get higher grades compared to Copenhagen, should I put my child in one of their schools?
- If the children in large schools get higher grades compared to children in small schools, should we build larger schools?
- If people on night-shifts get more ill than those with a regular job, is it then dangerous to take night-shifts? Should I not take a night-shift job?
- If smokers more frequently get lung cancer is that because they smoke? Should I stop smoking?

All four final questions are phrased as interventions. Data from an observational study does not alone provide information on the result of an intervention.

What if $Y \mid X$ then?

For observational data we must think of $Y \mid X$ as an observational conditional distribution meaning that (X, Y) must be sampled exactly the same way as $\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{1}\right)$ were.

Then if $X=x$ but Y has not been disclosed to us, $Y \mid X=x$ is a sensible conditional distribution of Y.

If we remember to gather data using the same principles as when we later want to use $Y \mid X$ for predictions, we can expect that $Y \mid X$ is useful for predictions - even if there is no alternative evidence of causation.

Violations of a consistent sampling scheme is the Achilles heel of predictions based on observational data. And we can not trust predictions if we make interventions.

