
More on Splines

Recall the basis
N1(x) = 1, N2(x) = x

and

N2+l(x) =
(x− ξl)3+ − (x− ξK)3+

ξK − ξl
−

(x− ξK−1)3+ − (x− ξK)3+
ξK − ξK−1

for l = 1, . . . ,K − 2 for natural cubic splines. Observe that N ′′1 (x) = N ′′2 (x) = 0 and

N ′′2+l(x) =


6 x−ξl

ξK−ξl
x ∈ (ξl, ξK−1]

6 (ξK−1−ξl)(ξK−x)
(ξK−ξl)(ξK−ξK−1)

x ∈ (ξK−1, ξK)
0 x ≤ ξl and x ≥ ξK

Assuming that ξ1 < . . . < ξK the functions N ′′3 , . . . , N
′′
K are linearly independent.

For the differentiation above the second derivative of (x− ξl)3+ equals 6(x− ξl)+. Therefore,
for x ≤ ξl all terms in the second derivative are 0 and for x ≥ ξK the x’s in each of the
fractions cancel each other and then both fractions are seen to be equal to 1, thus the
difference is 0.

Regularity of the Spline Smoother

If x1, . . . , xN are all different, N1, . . . , NN is the basis for the n.c.s. with knots x1, . . . , xN
and f =

∑N
i=1 θiNi we have

θTΩNθ =
∫ b

a

(f ′′(x))2dx = 0

if and only if f ′′(x) = 0 for all x ∈ [a, b]. Hence

θ3 = . . . = θN = 0.

If also θTNTNθ = 0 then

(θ1 θ2)
(

N
∑
i xi∑

i xi
∑
i x

2
i

)(
θ1
θ2

)
= 0,

which implies that θ1 = θ2 = 0 if N ≥ 2. The in general positive semidefinite matrix

NTN + λΩN

is thus positive definite for λ > 0.

The result above can also be proved simply by proving directly that N has full rank N
whenever x1, . . . , xN are all different. Then NTN is positive definite. It is actually straight
forward to see that it has rank at least N −1. The (N −1)× (N −1) upper left block matrix
is lower triangular with non-zero numbers in the diagonal, which implies that the last N −1
columns must be linearly independent. However, it is not a priory crystal clear that the first
column – the column of ones – is also always linearly independent of the others. Anyway
there is a good point in observing that ΩN in itself is only positive semidefinite, and in such
a way that the two paremeters corresponding to a linear fit are not penalized.

To understand the question of whether N has full rank it is useful to take a slightly more
abstract point of view. The function space of natural cubic splines with knots ξ1 < . . . < ξK
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is a K dimensional vector space. If we take any basis ϕ1, . . . , ϕK of functions we know
that the K functions are linearly independent – as functions. A recurring problem we
have discussed a number of times in class is whether the vectors ϕ1(x), . . . , ϕK(x) where
ϕi(x) = (ϕi(x1), . . . , ϕK(xN ))T are also linearly independent as N dimensional vectors if
x = (x1, . . . , xN )T is an N -vector with at least K different coordinates. If we take these
points to be precisely the K knots, this is equivalent to asking if the vectors span a K
dimensional space, which means that for any y1, . . . , yK there are β1, . . . , βK such that

K∑
i=1

βiϕi(ξj) = yj

for j = 1, . . . ,K. Since
∑K
i=1 βiϕi is a natural cubic spline and ϕ1, . . . , ϕK span the space

of natural cubic splines with knots ξ1 < . . . ξK we are actually asking whether there is a
natural cubic spline that interpolates the points (ξ1, y1), . . . , (ξK , yK). This interpolation
property is a well established property of splines (for K ≥ 2), and we provide a reference
below.

Due to the interpolation property of natural cubic splines we conclude that for any ba-
sis ϕ1, . . . , ϕK of the space of natural cubic splines with knots ξ1 < . . . < ξK the vectors
ϕ1(ξ), . . . , ϕK(ξ) are linearly independent. This holds in particular for the previously con-
sidered specific basis, which implies that N always has full rank N if the xi’s are all different.

A splendid reference for many more details on splines is Nonparametric Regression and
Generalized Linear Models by Green and Silverman. Here you can also find details on fast,
linear algebra algorithms for computing with splines and spline bases. Theorem 2.2 gives
the interpolation property of natural cubic splines.

The Reinsch Form

Let
Sλ = N(NTN + λΩN )−1NT

be the spline smoother and N = UDV T the singular value decomposition of N. Since N is
square N × N , U is orthogonal hence invertible with U−1 = UT , and D is invertible since
N has full rank N . Then

Sλ = UDV T (V D2V T + λΩN )−1V DUT

= U(D−1V TV D2V TV D−1 + λD−1V TΩNV D−1)−1UT

= U(I + λD−1V TΩNV D−1)−1UT

= (UTU + λUTD−1V TΩNV D−1U)−1

= (I + λUTD−1V TΩNV D−1U︸ ︷︷ ︸
K

)−1

= (I + λK)−1

The Demmler-Reinsch Basis

The matrix K is positive semidefinite and we write

K = ŪDŪT

2



where D = diag(d1, . . . , dN ) with 0 = d1 = d2 < d3 ≤ . . . ≤ dN and Ū is orthogonal.

The columns in Ū , denoted ū1, . . . , ūN , are known as the Demmler-Reinsch basis.

The Demmler-Reinsch basis is a (the) orthonormal basis of RN with the property that the
smoother Sλ is diagonal in this basis:

Sλ = Ū(I + λD)−1ŪT

The eigenvalues are in decreasing order

ρk(λ) =
1

1 + λdk

for k = 1, . . . , N – and ρ1(λ) = ρ2(λ) = 1.

The Demmler-Reinsch Basis

We may also observe that
Sλūk = ρk(λ)ūk.

We think of and visualize ūk as a function evaluated in the points x1, . . . , xN .

One important consequence of these derivations is that the Demmler-Reinsch basis does not
depend upon λ and we can clearly see the effect of λ through the eigenvalues ρk(λ) that
work as shrinkage coefficients multiplied on the basis vectors.

A Bias-Variance Decomposition

Assume that conditionally on X the Yi’s are uncorrelated with common variance σ2. Then
with f = E(Y|X) = E(Ynew|X) and Ynew independent of Y

E(||Ynew − f̂ ||2|X) = E(||Ynew − SλY||2|X)
= E(||Ynew − f ||2|X) + ||f − Sλf ||2

+E(||Sλ(f −Y)||2|X)
= Nσ2 + ||(I − Sλ)f ||2︸ ︷︷ ︸

Bias(λ)2

+σ2trace(S2
λ)

= σ2(N + trace(S2
λ)) + Bias(λ)2

where we use that E(f̂ |X) = E(SλY|X) = Sλf . We can also write

Bias(λ)2 = trace((I − Sλ)2ffT ).

In the derivation above we have used the following decomposition valid for any Ynew:

||Ynew − f̂ ||2 = ||(Ynew − f) + (f − Sλf) + (Sλf − f̂)||2

= ||Ynew − f ||2 + ||f − Sλf ||2 + ||Sλf − f̂)||2

+ 2(Ynew − f)T (f − Sλf)

+ 2(Ynew − f)T (Sλf − f̂)

+ 2(f − Sλf)T (Sλf − f̂)
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The first and third cross-products have zero mean because f is the mean of Ynew and f̂ has
mean Sλf . If Ynew ⊥ Y the mean of ths second cross-product factorizes and is also zero. If
we take instaed Ynew = Y the mean of the second cross-product becomes

2E(Y − f)T (Sλf − SλY)|X) = −2E(Y − f)TSλ(Y − f)|X)
= −2E(trace(Sλ(Y − f)(Y − f)T )|X)
= −2trace(SλE((Y − f)(Y − f)T |X)︸ ︷︷ ︸

=σ2I

)

= −2σ2trace(Sλ)

Estimation of σ2 using low bias estimates

It seems that

RSS(f̂) =
N∑
i=1

(yi − f̂i)2

is a natural estimator of E(||Y − f̂ ||2|X), and its mean is computed as

σ2(N − (trace(2Sλ − S2
λ)) + Bias(λ)2.

Choosing a low-bias – that is small λ – model we expect Bias(λ)2 to be negligible and we
estimate σ2 as

σ̂2 =
1

N − trace(2Sλ − S2
λ)

RSS(f̂).

From this point of view it seems that

trace(2Sλ − S2
λ)

can also be justified as the effective degrees of freedom.

Note that for a projection P we have P 2 = P and hence

trace(2P − P 2) = trace(P 2) = trace(P ) = dim(image(P )).

There exists a discussion in the literature on what the most suitable generalization of the
degrees of freedom is. One reference is the book Generalized Additive Models by Hastie
and Tibshirani. In the context above trace(2Sλ − S2

λ) turned out to play the same role as
the degrees of freedom does in the usual variance estimator in a regression setup. In other
contexts we will see that trace(Sλ) pops out as the relevant replacement of the degrees of
freedom. Historically at least the computation of the trace of Sλ was faster and therefore
preferred. One should perhaps simply remember not to put too must interpretation into the
value of the “effective degrees of freedom” but simply view the number as an alternative
specification of the value of λ.

Reproducing Kernel Hilbert Spaces

On any space Ω, not necessarily a subset of Rp, a kernel is a function

K : Ω× Ω→ R

with the property that if x1, . . . , xN ∈ Ω then the N ×N matrix

K = {K(xi, xj)}i,j
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is positive semidefinite. We will only kernels that are positive definite.

The inner product space

Hpre
K =

{∑
m

αmK(·, ym)

}
with inner product〈∑

m

αmK(·, ym),
∑
n

α′nK(·, y′n)

〉
=
∑
m,n

α′nαmK(y′n, ym)

can be abstractly completed.

Reproducing Kernel Hilbert Spaces

The existence of the completion HK , which is a Hilbert space with reproducing kernel K is
known as the Moore-Aronszajn theorem. If f ∈ HK then

〈f,K(·, x)〉 = f(x).

If Ω ⊆ Rp then under additional regularity conditions there are orthogonal functions ϕi such
that

K(x, y) =
∑
i

γiϕi(x)ϕi(y)

where γi ≥ 0 and
∑
i γ

2
i < ∞. This is known as Mercer’s theorem. Then HK becomes

concrete as
f =

∑
i

ciϕi

with
∑
i
c2i
γi
<∞.

The Finite-Dimensional Optimization Problem

Considering the abstract problem

min
f∈HK

N∑
i=1

(yi − f(xi))2 + λ||f ||2K

a solution is then of the form
∑N
i=1 αiK(·, xi). We need to solve

min
α∈RN

(y −Kα)T (y −Kα) + λαTKα.

The solution (unique when K is positive definite) is

α̂ = (K + λI)−1y

and the predicted values are

f̂ = Kα̂

= K(K + λI)−1y

= (I + λK−1)−1y
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Data acquisition – and interpretations

In this course we consider observational data. Roughly we have

• Observational data; Both X and Y are sampled from an (imaginary) population.

• Non-observational; e.g. a designed experiment where we fix X by the design and
sample Y .

For observational data how should we interpret Y |X?

Example

In toxicology we are interested in measuring the effect of a (toxic) compound on the plant,
say.

Consider a naturally occurring compound A and a plant Z.

• Full observational study: On N randomly selected fields we measure Y = the amount
of plant Z and X = the amount of compound A.

• Semi-observational study: On each of N randomly selected fields we plant R plants
Z. After T days we measure Y = the amount of plant Z and X = the amount of
compound A.

• Designed experiment: On each of N identical fields we plant R plants Z. We add
according to a design scheme the amount Xi of compound A to field i. After T days
we measure Y = the amount of plant Z.

Causality

In toxicology – as in most parts of science – the basic question is causal relations.

Is the compound A toxic? Does it actually kill plant Z?

The pragmatic farmer; Can I grow plant Z on my soil?

The former question can only be answered by the designed experiment. The latter may be
answered by prediction of the yield based on a measurement of compound A.

The latter prediction is not justified by causality – only by correlation.

Probability Models and Causality

Probability theory is completely blind to causation!

From a technical point of view the regression of Y on X is carried out precisely in the same
manner whether the data are observational or from a designed experiment. The probability
conditional model is the same.
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For the ideal designed experiment we control X and all systematic variation in Y can only
be ascribed to X.

For the observational study we observed the pair (X,Y ) Systematic variations in Y can be
due to X but there is no evidence of causality.

Interventions

Many, many studies are observational and many, many conclusions are causal.

• If the children in Gentofte get higher grades compared to Copenhagen, should I put
my child in one of their schools?

• If the children in large schools get higher grades compared to children in small schools,
should we build larger schools?

• If people on night-shifts get more ill than those with a regular job, is it then dangerous
to take night-shifts? Should I not take a night-shift job?

• If smokers more frequently get lung cancer is that because they smoke? Should I stop
smoking?

All four final questions are phrased as interventions. Data from an observational study does
not alone provide information on the result of an intervention.

What if Y |X then?

For observational data we must think of Y |X as an observational conditional distribution
meaning that (X,Y ) must be sampled exactly the same way as (x1, y1), . . . , (xN , y1) were.

Then if X = x but Y has not been disclosed to us, Y |X = x is a sensible conditional
distribution of Y .

If we remember to gather data using the same principles as when we later want to use
Y |X for predictions, we can expect that Y |X is useful for predictions – even if there is no
alternative evidence of causation.

Violations of a consistent sampling scheme is the Achilles heel of predictions based on ob-
servational data. And we can not trust predictions if we make interventions.
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