Basis Expansions
With X € RP and Y € R the function

f(x)=E(Y|X =x)

is typically globally a non-linear function. We discuss situations where p is
small or moderate, but where the function is complicated.

A basis function expansion of f is an expansion

M
F(x) = Bmhm(x)
m=1
with hy, :RP - Rform=1,..., M.

The basis functions are chosen and fixed and the parameters (3., for
m=1,..., M are estimated. This is a linear model in the derived variables
m(X), .., bu(X).
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Polynomial Bases

Classical basis functions consists of monomials
hm(x) = X' ... x
with r; € {0,...,d} and 1 + ... + r, < d. This basis spans the

polynomials of degree < d.

o If the linear models provide first order Taylor approximations of the
function, expansions in the degree d polynomials provide order d
Taylor approximations.

@ However, if p > 2 the number of basis functions grows exponentially
in d.
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Indicators

A completely different, non-differentiable idea is to approximate f locally

as a constant. Box-type basis functions are
hm(x) =1(h <x1 <n)...1lpb < xp, < rp)

with /; <rj and [;,r; € [-00,00] for i =1,...,p.

If the boxes are disjoint, the columns in the X-matrix for the derived
variables are orthogonal:

Xim = hm(Xi) € {0’ 1}

We can think of this as dummy variables representing the box.
Consequently, with least squares estimation

N
— > Vi Np =D 1(An(x) =1).

ithm(x;)=1 i=1
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Basis Strategies

The size of the typical set of basis functions increase rapidly with p. What
are feasible strategies for basis selection?

@ Restriction: Choose a priori only special basis functions
o Additivity; hymj : R = R

x) = Z hmj (X))

o Radial basis functions:

pot) =0 (12250

@ Selection: As variable selection — implement exhaustive or step-wise
inclusions/exclusions of basis functions.

@ Retriction: As ridge regression — keep the entire set of basis functions
but penalize the size of the parameter vector.
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Figure 5.1
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Figure 5.2
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Splines—-p=1
Define hi(x) =1, ha(x) = x and
hmi2(x) = (x = &)+t = max{0, t}

for &1,..., &k the knots.

M+2

f(x) = Z Bmhm(x)
m=1

is a piecewise linear, continuous function. One order-R spline basis with
knots &£1,...,&k is

h(x) =1,...,hr(x) = xF7 hry(x) = (x=&)F 7t 1=1,... K.
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Figure 5.3
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Natural Cubic Splines

Splines of order R are polynomials of degree R — 1 beyond the boundary
knots &3 and £k. The natural cubic splines are the splines of order 4 that

are linear beyond the two boundary knots. With

K
f(x) = Bo + Bux + Box® + PB3x> + Z O(x — &)3

k=1
the restriction is that 8> = 3 = 0 and

K K
Zek = Zekfk =0.
k=1 k=1

Nl(X) = 17 NZ(X) =X
and

N1 (x) = (x —&)3 — (x —&k)3

(x = &k-1)3 — (x —&k)}

Ek — &
for/=1,...,K— 2 form a basis.
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B Splines

Yet another basis for the splines ...

Defined by a recursion in R;

o 1 if Tk <x< Tk+1
Bralx) = { 0 otherwise

with

<. TR=8 <Try1 =61 < ... <TrRyk =&k < TRik+1 =Ekt1 < - .- S TRyK
and

X —T; Tivr — X
Bk,r = 7l8k,r—1(x) + LBk—l—l,r—l(X)
i i Titr — Ti
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Figure 5.20 — B-splines
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Knot Placing Strategies

How do you determine the knots?

@ Fix the number (the complexity parameter), spread them uniformly
over the whole range of data.

@ Fix the number, spread them according to the emprical distribution.

e Adaptive selection of the number and/or the location — ranging from
ad hoc adaptation to a full fledged, complete estimation from data.

@ Smoothing algorithms determine automatically their location
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Smoothing Splines

Allowing E(Y|X = x) = f(x) to be an arbitrary, but twice differentiable
functions, define the penalized residual sum of squares

N

RSS(F,A) = (vi — f(xi))* + A / ’ F(t)%dt

i=1
If £ is a minimizer of RSS(f, \), the natural cubic splines with knots in
X1, ..., Xy have the properties that

@ they can interpolate; there is a natural cubic spline f with
fF(xi) = £u(xi)

@ and among all interpolants f attains the least value of

b
/ f(t)%dt.
a

The solution f* = Z,N:1 0;N;(x) is a natural cubic spline.
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Smoothing Splines

In vector notation
f=N6
with N,‘j = Nj(X,') and
b
RSS(f,\) = (y—f)T(y—f)+)\/ f(t)2dt

= (y—NO)T(y—NO)+0"Qnb
with .
Qnjj = / N;' (£)N (t)dt.
This generalized ridge regression ;roblem has solution
f=(N"N+2Q2y) "INy
and the fitted values are

f=N(N"N+X2y) !Ny
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Degrees Of Freedom

Writing
Sy =N(N"N+ Q) 'NT

and by analogy with projection matrices the effective degrees of freedom is

dfy = trace(S,).

The value of df) is monotonely decreasing from N to 0 as A increases
from 0 to co.

The matrix Sy is known as a spline smoother and it is common to specify
the degrees of freedom instead of A in practice.
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Figure 5.8 — Smoother Matrix
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Multidimensional Splines
Two multivariate versions.

@ Tensor products. Consider a basis consisting of

Bil,R(Xl)Biz,R(XZ) e Bip,R(Xp)
— compare with the multinomial basis for polynomials.
@ Thin plate splines. If p = 2 consider minimizing

N
0= 02+ A [ (@B + 200100 + (@3

i=1

The solution is a function
N
F(x) = Bo+x"B+ > am(|lx —xl|)
i=1

with n(z) = z%log(z?) - thus a radial basis function expansion.
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Figure 5.10 — Tensor Products of B-splines
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Kernel Density Estimation

If Y € {1,...,K} and gx denotes the density for the conditional
distribution of X given Y = k the Bayes classifier is

f(x) = argmax gk (x)
k

If g« for k=1,..., K are density estimators — non-parametric kernel
density estimators, say — then using the plug-in principle

f(x) = argmax 78k (x)
k
is an estimator of the Bayes classifier.

This is the non-parametric version of LDA.
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Naive Bayes

High-dimensional kernel density estimation suffers from the curse of
dimensionality.

Assume that the X-coordinates are independent given the Y, then

8k(x) = [ [ gw.i(x)
i1

with g ; univariate densities.

log PrlY = kX =x) _ Tk gk(x)
Pr(Y = K|X = x)
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Naive Bayes — Continued

The conditional distribution above is an example of a generalized additive

model. Estimation of hy ; using univariate (non-parametric) density
estimators gy ;;

;‘_' |Og gk I(XI)
gK I(XI)

is known as naive — or even idiot's — Bayes.
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Naive Bayes — Discrete Version

If some or all of the X variables are discrete, univariate kernel density
estimation can be replaced by appropriate estimation of point probabilities.

If all X; take values in {a1,...,an} the extreme implementation of naive
Bayes is to estimate

1 N

B = Y g a) M= Y10y )

Jiyi=k Jj=1

This is a possible solution procedure for the first asignment.
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