Basis Expansions
With X € RP and Y € R the function

f(z) = E(Y[X =)
is typically globally a non-linear function. We discuss situations where p is small or moderate,

but where the function is complicated.

A basis function expansion of f is an expansion

M
f@) =Y Buhm()
m=1
with A, : RP > Rform=1,..., M.

The basis functions are chosen and fixed and the parameters (3, for m = 1,..., M are
estimated. This is a linear model in the derived variables hy(X), ..., ha(X).

Polynomial Bases
Classical basis functions consists of monomials
T T '
b () = 2y 29? . P

with r; € {0,...,d} and 7 + ... + 7, < d. This basis spans the polynomials of degree < d.

e If the linear models provide first order Taylor approximations of the function, expan-
sions in the degree d polynomials provide order d Taylor approximations.

e However, if p > 2 the number of basis functions grows exponentially in d.

Indicators

A completely different, non-differentiable idea is to approximate f locally as a constant.
Box-type basis functions are

h(z) =1(0 <21 <) 1l < ap < 1)

with I; <r; and l;,7; € [—o0,00] fori=1,...,p.

If the boxes are disjoint, the columns in the X-matrix for the derived variables are orthogonal:
Xim = h’m(xi) € {07 1}

We can think of this as dummy variables representing the box. Consequently, with least
squares estimation

m tthp, (25)=1 =1



Basis Strategies

The size of the typical set of basis functions increase rapidly with p. What are feasible
strategies for basis selection?

o Restriction: Choose a priori only special basis functions
— Additivity; hp; : R = R
(@) = o (25)

j=1

i) = (1254

o Selection: As variable selection —implement exhaustive or step-wise inclusions/exclusions
of basis functions.

— Radial basis functions:

e Retriction: As ridge regression — keep the entire set of basis functions but penalize the
size of the parameter vector.

Figure 5.1
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Splines — p=1
Define hy(z) =1, ho(z) = z and

himya(2) = (= &)+t = max{0,t}

for &1,...,&k the knots.

M+2
flz) = Z Bmhom ()
m=1
is a piecewise linear, continuous function. One order-R spline basis with knots &1, ..., &k is

hi(z) =1,...,hg(@) = 27", hpu(e) =@ -, 1=1,... K.

Figure 5.3



Natural Cubic Splines

Splines of order R are polynomials of degree R — 1 beyond the boundary knots &; and k.
The natural cubic splines are the splines of order 4 that are linear beyond the two boundary
knots. With

K
f(x) = Bo + Biz + Box® + Baz® + Zek(ﬂv —&)3
k=1
the restriction is that 85 = 83 = 0 and

K K
Z9k = Zakfk =0.
k=1 k=1

Ni@) =1, No(@)=uz

and
-8t - (-l @&k - (@)
Nai(@) = Ex — & §r — €K1

forl=1,..., K — 2 form a basis.

Obviously B2 = 83 = 0 and then beyond the last knot the second derivative of f is

K K K
f'(x) = 60k(x— &) =62 Y O — 6 Oy,
=1 h=1 k=1

which is zero for all z if and only if the conditions above are fulfilled. For Ny y; we see that

_ v b — 1 1
Ttk —& KT Ttk —€k % tk—€xk1 Ek—&

and the condition is easily verified. By evaluating the functions in the knots, say, it is on the
other hand easy to see that the K different functions are linearly independent. Therefore
they must span the space of natural cubic splines of co-dimension 4 in the set of cubic
splines.

0

B Splines

Yet another basis for the splines ...

Defined by a recursion in R;

. 1 ifm, < <7y
By (x) = { 0 otherwise

with
T1<...TR =8 < ThR+1 =81 < ... < TRtk =&k < TR+k+1 =Ek+1 < ... < T2R+K
and
X T Titr — X
Bk,r - Bk,r—l(x) + Bk—‘—l,r—l(z)
Titr+1 — Ti Titr — Ti

fork=1,..., K4+2R —r.



Figure 5.20 — B-splines

Knot Placing Strategies

How do you determine the knots?

Fix the number (the complexity parameter), spread them uniformly over the whole
range of data.

Fix the number, spread them according to the emprical distribution.

Adaptive selection of the number and/or the location — ranging from ad hoc adaptation
to a full fledged, complete estimation from data.

Smoothing algorithms determine automatically their location

Smoothing Splines

Allowing E(Y|X = z) = f(x) to be an arbitrary, but twice differentiable functions, define
the penalized residual sum of squares

N

b
RSS(/.N) = Y (s~ e 42 [ 10

i=1
If f* is a minimizer of RSS(f, \), the natural cubic splines with knots in xq,...,zy have
the properties that

e they can interpolate; there is a natural cubic spline f with f(z;) = fa(z:)

e and among all interpolants f attains the least value of
b
/ £ (t)3de.
a

The solution fA = Zfil 0;N;(x) is a natural cubic spline.

Only requirement above on a < b is that [a, ] contains all the data points. For the inter-
polation argument we also need that the z;’s are different. See Exercise 5.7 for the second
bullet point above.

Smoothing Splines

In vector notation
f =N0

with Nij = Nj(itz) and

b
RSN = =07y -0)+A [ 0P

= (y—NOT(y — NO) +107Qn0



with .
QN,Z»J:/ N{'(t)N] (t)dt.
a
This generalized ridge regression problem has solution
6= (NTN+Qy) !Ny

and the fitted values are .
f=N(N'N+Qy) 'NTy

Degrees Of Freedom

Writing
Sy = N(NTN + \Qy) 'NT

and by analogy with projection matrices the effective degrees of freedom is
dfy = trace(Sy).
The value of df is monotonely decreasing from N to 0 as A increases from 0 to oo.

The matrix Sy is known as a spline smoother and it is common to specify the degrees of
freedom instead of A in practice.

Figure 5.8 — Smoother Matrix



Multidimensional Splines

Two multivariate versions.

e Tensor products. Consider a basis consisting of

Bil’R@Cl)Bi%R(xQ) I Bip,R(ZL’p)
— compare with the multinomial basis for polynomials.
e Thin plate splines. If p = 2 consider minimizing
N
S = )+ ) [ (G0 + 200001 + B
i=1
The solution is a function
N
f@)=po+2"8+ am(llz — i)
i=1

with 1(z) = 2%log(2?) — thus a radial basis function expansion.

Figure 5.10 — Tensor Products of B-splines

Kernel Density Estimation

IfY € {1,...,K} and gx denotes the density for the conditional distribution of X given
Y = k the Bayes classifier is

flx) = arginax Tegk(T)

If g for k =1,..., K are density estimators — non-parametric kernel density estimators, say
— then using the plug-in principle

flx) = argznax Tegr ()

is an estimator of the Bayes classifier.
This is the non-parametric version of LDA.

Naive Bayes

High-dimensional kernel density estimation suffers from the curse of dimensionality.

Assume that the X-coordinates are independent given the Y, then

gk(x) = H gk,i(iﬂi)



with g ; univariate densities.

Pr(Y = k| X =) Tk gx ()
= log £ 41
Pr(Y = K|X = ) 8 e T8 @)

p
Tk gki(xi)
= log— + E log —/————=
TK =1 gK,z‘(JUi)
T N——

hk,l(x)

P
Tk
= log — + hii(x
L ;:1 ki ()

log

Naive Bayes — Continued
The conditional distribution above is an example of a generalized additive model. Estimation
of hy; using univariate (non-parametric) density estimators ki

flk,z‘ = log gk,i(l’qz)

IK,i (xz)

is known as naive — or even idiot’s — Bayes.

Naive Bayes — Discrete Version

If some or all of the X variables are discrete, univariate kernel density estimation can be
replaced by appropriate estimation of point probabilities.

If all X; take values in {ay,...,a,} the extreme implementation of naive Bayes is to estimate

N
Jr,i(r) = Ni Z Wz =a,), Np= Zl(yj =k).

k .
Jy=k

This is a possible solution procedure for the first asignment.



