
Basis Expansions

With X ∈ Rp and Y ∈ R the function

f(x) = E(Y |X = x)

is typically globally a non-linear function. We discuss situations where p is small or moderate,
but where the function is complicated.

A basis function expansion of f is an expansion

f(x) =
M∑
m=1

βmhm(x)

with hm : Rp → R for m = 1, . . . ,M .

The basis functions are chosen and fixed and the parameters βm for m = 1, . . . ,M are
estimated. This is a linear model in the derived variables h1(X), . . . , hM (X).

Polynomial Bases

Classical basis functions consists of monomials

hm(x) = xr11 x
r2
2 . . . xrp

p

with ri ∈ {0, . . . , d} and r1 + . . .+ rp ≤ d. This basis spans the polynomials of degree ≤ d.

• If the linear models provide first order Taylor approximations of the function, expan-
sions in the degree d polynomials provide order d Taylor approximations.

• However, if p ≥ 2 the number of basis functions grows exponentially in d.

Indicators

A completely different, non-differentiable idea is to approximate f locally as a constant.
Box-type basis functions are

hm(x) = 1(l1 ≤ x1 ≤ r1) . . . 1(lp ≤ xp ≤ rp)

with li ≤ ri and li, ri ∈ [−∞,∞] for i = 1, . . . , p.

If the boxes are disjoint, the columns in the X-matrix for the derived variables are orthogonal:

Xim = hm(xi) ∈ {0, 1}

We can think of this as dummy variables representing the box. Consequently, with least
squares estimation

β̂m =
1
Nm

∑
i:hm(xi)=1

yi, Nm =
N∑
i=1

1(hm(xi) = 1).
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Basis Strategies

The size of the typical set of basis functions increase rapidly with p. What are feasible
strategies for basis selection?

• Restriction: Choose a priori only special basis functions

– Additivity; hmj : R→ R

hm(x) =
p∑
j=1

hmj(xj)

– Radial basis functions:

hm(x) = D

(
||x− ξj ||
λm

)
• Selection: As variable selection – implement exhaustive or step-wise inclusions/exclusions

of basis functions.

• Retriction: As ridge regression – keep the entire set of basis functions but penalize the
size of the parameter vector.

Figure 5.1

Figure 5.2

Splines – p = 1

Define h1(x) = 1, h2(x) = x and

hm+2(x) = (x− ξi)+ t+ = max{0, t}

for ξ1, . . . , ξK the knots.

f(x) =
M+2∑
m=1

βmhm(x)

is a piecewise linear, continuous function. One order-R spline basis with knots ξ1, . . . , ξK is

h1(x) = 1, . . . , hR(x) = xR−1, hR+l(x) = (x− ξl)R−1
+ , l = 1, . . . ,K.

Figure 5.3
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Natural Cubic Splines

Splines of order R are polynomials of degree R − 1 beyond the boundary knots ξ1 and ξK .
The natural cubic splines are the splines of order 4 that are linear beyond the two boundary
knots. With

f(x) = β0 + β1x+ β2x
2 + β3x

3 +
K∑
k=1

θk(x− ξk)3+

the restriction is that β2 = β3 = 0 and

K∑
k=1

θk =
K∑
k=1

θkξk = 0.

N1(x) = 1, N2(x) = x

and

N2+l(x) =
(x− ξl)3+ − (x− ξK)3+

ξK − ξl
−

(x− ξK−1)3+ − (x− ξK)3+
ξK − ξK−1

for l = 1, . . . ,K − 2 form a basis.

Obviously β2 = β3 = 0 and then beyond the last knot the second derivative of f is

f ′′(x) =
K∑
k=1

6θk(x− ξk) = 6x
K∑
k=1

θk − 6
K∑
k=1

θkξk,

which is zero for all x if and only if the conditions above are fulfilled. For N2+l we see that

θl =
1

ξK − ξl
, θK−1 = − 1

ξK − ξK−1
, θK =

1
ξK − ξK−1

− 1
ξK − ξl

and the condition is easily verified. By evaluating the functions in the knots, say, it is on the
other hand easy to see that the K different functions are linearly independent. Therefore
they must span the space of natural cubic splines of co-dimension 4 in the set of cubic
splines.

B Splines

Yet another basis for the splines ...

Defined by a recursion in R;

Bk,1(x) =
{

1 if τk ≤ x ≤ τk+1

0 otherwise

with
τ1 ≤ . . . τR = ξ0 < τR+1 = ξ1 < . . . < τR+K = ξK < τR+K+1 = ξK+1 ≤ . . . ≤ τ2R+K

and
Bk,r =

x− τi
τi+r+1 − τi

Bk,r−1(x) +
τi+r − x
τi+r − τi

Bk+1,r−1(x)

for k = 1, . . . ,K + 2R− r.
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Figure 5.20 – B-splines

Knot Placing Strategies

How do you determine the knots?

• Fix the number (the complexity parameter), spread them uniformly over the whole
range of data.

• Fix the number, spread them according to the emprical distribution.

• Adaptive selection of the number and/or the location – ranging from ad hoc adaptation
to a full fledged, complete estimation from data.

• Smoothing algorithms determine automatically their location

Smoothing Splines

Allowing E(Y |X = x) = f(x) to be an arbitrary, but twice differentiable functions, define
the penalized residual sum of squares

RSS(f, λ) =
N∑
i=1

(yi − f(xi))2 + λ

∫ b

a

f ′′(t)2dt

If fλ is a minimizer of RSS(f, λ), the natural cubic splines with knots in x1, . . . , xN have
the properties that

• they can interpolate; there is a natural cubic spline f with f(xi) = fλ(xi)

• and among all interpolants f attains the least value of∫ b

a

f ′′(t)2dt.

The solution fλ =
∑N
i=1 θiNi(x) is a natural cubic spline.

Only requirement above on a < b is that [a, b] contains all the data points. For the inter-
polation argument we also need that the xi’s are different. See Exercise 5.7 for the second
bullet point above.

Smoothing Splines

In vector notation
f = Nθ

with Nij = Nj(xi) and

RSS(f, λ) = (y − f)T (y − f) + λ

∫ b

a

f ′′(t)2dt

= (y −Nθ)T (y −Nθ) + λθTΩNθ
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with

ΩN,ij =
∫ b

a

N ′′i (t)N ′′j (t)dt.

This generalized ridge regression problem has solution

θ̂ = (NTN + λΩN )−1NTy

and the fitted values are
f̂ = N(NTN + λΩN )−1NTy

Degrees Of Freedom

Writing
Sλ = N(NTN + λΩN )−1NT

and by analogy with projection matrices the effective degrees of freedom is

dfλ = trace(Sλ).

The value of dfλ is monotonely decreasing from N to 0 as λ increases from 0 to ∞.

The matrix Sλ is known as a spline smoother and it is common to specify the degrees of
freedom instead of λ in practice.

Figure 5.8 – Smoother Matrix

5



Multidimensional Splines

Two multivariate versions.

• Tensor products. Consider a basis consisting of

Bi1,R(x1)Bi2,R(x2) . . . Bip,R(xp)

– compare with the multinomial basis for polynomials.

• Thin plate splines. If p = 2 consider minimizing

N∑
i=1

(yi − f(xi))2 + λ

∫
A

(∂2
1f)2 + 2(∂1∂2f)2 + (∂2

2f)2.

The solution is a function

f(x) = β0 + xTβ +
N∑
i=1

αiη(||x− xi||)

with η(z) = z2 log(z2) – thus a radial basis function expansion.

Figure 5.10 – Tensor Products of B-splines

Kernel Density Estimation

If Y ∈ {1, . . . ,K} and gk denotes the density for the conditional distribution of X given
Y = k the Bayes classifier is

f(x) = argmax
k

πkgk(x)

If ĝk for k = 1, . . . ,K are density estimators – non-parametric kernel density estimators, say
– then using the plug-in principle

f̂(x) = argmax
k

π̂kĝk(x)

is an estimator of the Bayes classifier.

This is the non-parametric version of LDA.

Naive Bayes

High-dimensional kernel density estimation suffers from the curse of dimensionality.

Assume that the X-coordinates are independent given the Y , then

gk(x) =
p∏
i=1

gk,i(xi)
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with gk,i univariate densities.

log
Pr(Y = k|X = x)
Pr(Y = K|X = x)

= log
πk
πK

+ log
gk(x)
gK(x)

= log
πk
πK

+
p∑
i=1

log
gk,i(xi)
gK,i(xi)︸ ︷︷ ︸
hk,i(x)

= log
πk
πK

+
p∑
i=1

hk,i(x)

Naive Bayes – Continued

The conditional distribution above is an example of a generalized additive model. Estimation
of hk,i using univariate (non-parametric) density estimators ĝk,i;

ĥk,i = log
ĝk,i(xi)
ĝK,i(xi)

is known as naive – or even idiot’s – Bayes.

Naive Bayes – Discrete Version

If some or all of the X variables are discrete, univariate kernel density estimation can be
replaced by appropriate estimation of point probabilities.

If all Xi take values in {a1, . . . , an} the extreme implementation of naive Bayes is to estimate

ĝk,i(r) =
1
Nk

∑
j:yj=k

1(xji = ar), Nk =
N∑
j=1

1(yj = k).

This is a possible solution procedure for the first asignment.
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