Basis Expansions

With $X \in \mathbb{R}^{p}$ and $Y \in \mathbb{R}$ the function

$$
f(x)=E(Y \mid X=x)
$$

is typically globally a non-linear function. We discuss situations where p is small or moderate, but where the function is complicated.

A basis function expansion of f is an expansion

$$
f(x)=\sum_{m=1}^{M} \beta_{m} h_{m}(x)
$$

with $h_{m}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ for $m=1, \ldots, M$.

The basis functions are chosen and fixed and the parameters β_{m} for $m=1, \ldots, M$ are estimated. This is a linear model in the derived variables $h_{1}(X), \ldots, h_{M}(X)$.

Polynomial Bases

Classical basis functions consists of monomials

$$
h_{m}(x)=x_{1}^{r_{1}} x_{2}^{r_{2}} \ldots x_{p}^{r_{p}}
$$

with $r_{i} \in\{0, \ldots, d\}$ and $r_{1}+\ldots+r_{p} \leq d$. This basis spans the polynomials of degree $\leq d$.

- If the linear models provide first order Taylor approximations of the function, expansions in the degree d polynomials provide order d Taylor approximations.
- However, if $p \geq 2$ the number of basis functions grows exponentially in d.

Indicators

A completely different, non-differentiable idea is to approximate f locally as a constant. Box-type basis functions are

$$
h_{m}(x)=1\left(l_{1} \leq x_{1} \leq r_{1}\right) \ldots 1\left(l_{p} \leq x_{p} \leq r_{p}\right)
$$

with $l_{i} \leq r_{i}$ and $l_{i}, r_{i} \in[-\infty, \infty]$ for $i=1, \ldots, p$.

If the boxes are disjoint, the columns in the \mathbf{X}-matrix for the derived variables are orthogonal:

$$
\mathbf{X}_{i m}=h_{m}\left(x_{i}\right) \in\{0,1\}
$$

We can think of this as dummy variables representing the box. Consequently, with least squares estimation

$$
\hat{\beta}_{m}=\frac{1}{N_{m}} \sum_{i: h_{m}\left(x_{i}\right)=1} y_{i}, \quad N_{m}=\sum_{i=1}^{N} 1\left(h_{m}\left(x_{i}\right)=1\right) .
$$

Basis Strategies

The size of the typical set of basis functions increase rapidly with p. What are feasible strategies for basis selection?

- Restriction: Choose a priori only special basis functions
- Additivity; $h_{m j}: \mathbb{R} \rightarrow \mathbb{R}$

$$
h_{m}(x)=\sum_{j=1}^{p} h_{m j}\left(x_{j}\right)
$$

- Radial basis functions:

$$
h_{m}(x)=D\left(\frac{\left\|x-\xi_{j}\right\|}{\lambda_{m}}\right)
$$

- Selection: As variable selection - implement exhaustive or step-wise inclusions/exclusions of basis functions.
- Retriction: As ridge regression - keep the entire set of basis functions but penalize the size of the parameter vector.

Figure 5.1

Figure 5.2

Splines $-p=1$
Define $h_{1}(x)=1, h_{2}(x)=x$ and

$$
h_{m+2}(x)=\left(x-\xi_{i}\right)_{+} \quad t_{+}=\max \{0, t\}
$$

for ξ_{1}, \ldots, ξ_{K} the knots.

$$
f(x)=\sum_{m=1}^{M+2} \beta_{m} h_{m}(x)
$$

is a piecewise linear, continuous function. One order- R spline basis with knots ξ_{1}, \ldots, ξ_{K} is

$$
h_{1}(x)=1, \ldots, h_{R}(x)=x^{R-1}, \quad h_{R+l}(x)=\left(x-\xi_{l}\right)_{+}^{R-1}, \quad l=1, \ldots, K .
$$

Figure 5.3

Natural Cubic Splines

Splines of order R are polynomials of degree $R-1$ beyond the boundary knots ξ_{1} and ξ_{K}. The natural cubic splines are the splines of order 4 that are linear beyond the two boundary knots. With

$$
f(x)=\beta_{0}+\beta_{1} x+\beta_{2} x^{2}+\beta_{3} x^{3}+\sum_{k=1}^{K} \theta_{k}\left(x-\xi_{k}\right)_{+}^{3}
$$

the restriction is that $\beta_{2}=\beta_{3}=0$ and

$$
\begin{aligned}
& \sum_{k=1}^{K} \theta_{k}=\sum_{k=1}^{K} \theta_{k} \xi_{k}=0 . \\
& N_{1}(x)=1, \quad N_{2}(x)=x
\end{aligned}
$$

and

$$
N_{2+l}(x)=\frac{\left(x-\xi_{l}\right)_{+}^{3}-\left(x-\xi_{K}\right)_{+}^{3}}{\xi_{K}-\xi_{l}}-\frac{\left(x-\xi_{K-1}\right)_{+}^{3}-\left(x-\xi_{K}\right)_{+}^{3}}{\xi_{K}-\xi_{K-1}}
$$

for $l=1, \ldots, K-2$ form a basis.
Obviously $\beta_{2}=\beta_{3}=0$ and then beyond the last knot the second derivative of f is

$$
f^{\prime \prime}(x)=\sum_{k=1}^{K} 6 \theta_{k}\left(x-\xi_{k}\right)=6 x \sum_{k=1}^{K} \theta_{k}-6 \sum_{k=1}^{K} \theta_{k} \xi_{k},
$$

which is zero for all x if and only if the conditions above are fulfilled. For N_{2+l} we see that

$$
\theta_{l}=\frac{1}{\xi_{K}-\xi_{l}}, \theta_{K-1}=-\frac{1}{\xi_{K}-\xi_{K-1}}, \quad \theta_{K}=\frac{1}{\xi_{K}-\xi_{K-1}}-\frac{1}{\xi_{K}-\xi_{l}}
$$

and the condition is easily verified. By evaluating the functions in the knots, say, it is on the other hand easy to see that the K different functions are linearly independent. Therefore they must span the space of natural cubic splines of co-dimension 4 in the set of cubic splines.

B Splines

Yet another basis for the splines ...

Defined by a recursion in R;

$$
B_{k, 1}(x)= \begin{cases}1 & \text { if } \tau_{k} \leq x \leq \tau_{k+1} \\ 0 & \text { otherwise }\end{cases}
$$

with

$$
\tau_{1} \leq \ldots \tau_{R}=\xi_{0}<\tau_{R+1}=\xi_{1}<\ldots<\tau_{R+K}=\xi_{K}<\tau_{R+K+1}=\xi_{K+1} \leq \ldots \leq \tau_{2 R+K}
$$

and

$$
B_{k, r}=\frac{x-\tau_{i}}{\tau_{i+r+1}-\tau_{i}} B_{k, r-1}(x)+\frac{\tau_{i+r}-x}{\tau_{i+r}-\tau_{i}} B_{k+1, r-1}(x)
$$

for $k=1, \ldots, K+2 R-r$.

Figure 5.20 - B-splines

Knot Placing Strategies

How do you determine the knots?

- Fix the number (the complexity parameter), spread them uniformly over the whole range of data.
- Fix the number, spread them according to the emprical distribution.
- Adaptive selection of the number and/or the location - ranging from ad hoc adaptation to a full fledged, complete estimation from data.
- Smoothing algorithms determine automatically their location

Smoothing Splines

Allowing $E(Y \mid X=x)=f(x)$ to be an arbitrary, but twice differentiable functions, define the penalized residual sum of squares

$$
\operatorname{RSS}(f, \lambda)=\sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int_{a}^{b} f^{\prime \prime}(t)^{2} \mathrm{~d} t
$$

If f^{λ} is a minimizer of $\operatorname{RSS}(f, \lambda)$, the natural cubic splines with knots in x_{1}, \ldots, x_{N} have the properties that

- they can interpolate; there is a natural cubic spline f with $f\left(x_{i}\right)=f_{\lambda}\left(x_{i}\right)$
- and among all interpolants f attains the least value of

$$
\int_{a}^{b} f^{\prime \prime}(t)^{2} \mathrm{~d} t
$$

The solution $f^{\lambda}=\sum_{i=1}^{N} \theta_{i} N_{i}(x)$ is a natural cubic spline.
Only requirement above on $a<b$ is that $[a, b]$ contains all the data points. For the interpolation argument we also need that the x_{i} 's are different. See Exercise 5.7 for the second bullet point above.

Smoothing Splines

In vector notation

$$
\mathbf{f}=\mathbf{N} \theta
$$

with $\mathbf{N}_{i j}=N_{j}\left(x_{i}\right)$ and

$$
\begin{aligned}
\operatorname{RSS}(f, \lambda) & =(\mathbf{y}-\mathbf{f})^{T}(\mathbf{y}-\mathbf{f})+\lambda \int_{a}^{b} f^{\prime \prime}(t)^{2} \mathrm{~d} t \\
& =(\mathbf{y}-\mathbf{N} \theta)^{T}(\mathbf{y}-\mathbf{N} \theta)+\lambda \theta^{T} \boldsymbol{\Omega}_{N} \theta
\end{aligned}
$$

with

$$
\boldsymbol{\Omega}_{N, i j}=\int_{a}^{b} N_{i}^{\prime \prime}(t) N_{j}^{\prime \prime}(t) \mathrm{d} t
$$

This generalized ridge regression problem has solution

$$
\hat{\theta}=\left(\mathbf{N}^{T} \mathbf{N}+\lambda \boldsymbol{\Omega}_{N}\right)^{-1} \mathbf{N}^{T} \mathbf{y}
$$

and the fitted values are

$$
\hat{\mathbf{f}}=\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}+\lambda \boldsymbol{\Omega}_{N}\right)^{-1} \mathbf{N}^{T} \mathbf{y}
$$

Degrees Of Freedom

Writing

$$
\mathbf{S}_{\lambda}=\mathbf{N}\left(\mathbf{N}^{T} \mathbf{N}+\lambda \boldsymbol{\Omega}_{N}\right)^{-1} \mathbf{N}^{T}
$$

and by analogy with projection matrices the effective degrees of freedom is

$$
\mathrm{df}_{\lambda}=\operatorname{trace}\left(\mathbf{S}_{\lambda}\right) .
$$

The value of df_{λ} is monotonely decreasing from N to 0 as λ increases from 0 to ∞.

The matrix \mathbf{S}_{λ} is known as a spline smoother and it is common to specify the degrees of freedom instead of λ in practice.

Figure 5.8 - Smoother Matrix

Multidimensional Splines

Two multivariate versions.

- Tensor products. Consider a basis consisting of

$$
B_{i_{1}, R}\left(x_{1}\right) B_{i_{2}, R}\left(x_{2}\right) \ldots B_{i_{p}, R}\left(x_{p}\right)
$$

- compare with the multinomial basis for polynomials.
- Thin plate splines. If $p=2$ consider minimizing

$$
\sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}\right)\right)^{2}+\lambda \int_{A}\left(\partial_{1}^{2} f\right)^{2}+2\left(\partial_{1} \partial_{2} f\right)^{2}+\left(\partial_{2}^{2} f\right)^{2}
$$

The solution is a function

$$
f(x)=\beta_{0}+x^{T} \beta+\sum_{i=1}^{N} \alpha_{i} \eta\left(\left\|x-x_{i}\right\|\right)
$$

with $\eta(z)=z^{2} \log \left(z^{2}\right)-$ thus a radial basis function expansion.

Figure 5.10 - Tensor Products of B-splines

Kernel Density Estimation

If $Y \in\{1, \ldots, K\}$ and g_{k} denotes the density for the conditional distribution of X given $Y=k$ the Bayes classifier is

$$
f(x)=\underset{k}{\operatorname{argmax}} \pi_{k} g_{k}(x)
$$

If \hat{g}_{k} for $k=1, \ldots, K$ are density estimators - non-parametric kernel density estimators, say - then using the plug-in principle

$$
\hat{f}(x)=\underset{k}{\operatorname{argmax}} \hat{\pi}_{k} \hat{g}_{k}(x)
$$

is an estimator of the Bayes classifier.

This is the non-parametric version of LDA.

Naive Bayes

High-dimensional kernel density estimation suffers from the curse of dimensionality.
Assume that the X-coordinates are independent given the Y, then

$$
g_{k}(x)=\prod_{i=1}^{p} g_{k, i}\left(x_{i}\right)
$$

with $g_{k, i}$ univariate densities.

$$
\begin{aligned}
\log \frac{\operatorname{Pr}(Y=k \mid X=x)}{\operatorname{Pr}(Y=K \mid X=x)} & =\log \frac{\pi_{k}}{\pi_{K}}+\log \frac{g_{k}(x)}{g_{K}(x)} \\
& =\log \frac{\pi_{k}}{\pi_{K}}+\sum_{i=1}^{p} \underbrace{\log \frac{g_{k, i}\left(x_{i}\right)}{g_{K, i}\left(x_{i}\right)}}_{h_{k, i}(x)} \\
& =\log \frac{\pi_{k}}{\pi_{K}}+\sum_{i=1}^{p} h_{k, i}(x)
\end{aligned}
$$

Naive Bayes - Continued

The conditional distribution above is an example of a generalized additive model. Estimation of $h_{k, i}$ using univariate (non-parametric) density estimators $\hat{g}_{k, i}$;

$$
\hat{h}_{k, i}=\log \frac{\hat{g}_{k, i}\left(x_{i}\right)}{\hat{g}_{K, i}\left(x_{i}\right)}
$$

is known as naive - or even idiot's - Bayes.

Naive Bayes - Discrete Version

If some or all of the X variables are discrete, univariate kernel density estimation can be replaced by appropriate estimation of point probabilities.

If all X_{i} take values in $\left\{a_{1}, \ldots, a_{n}\right\}$ the extreme implementation of naive Bayes is to estimate

$$
\hat{g}_{k, i}(r)=\frac{1}{N_{k}} \sum_{j: y_{j}=k} 1\left(x_{j i}=a_{r}\right), \quad N_{k}=\sum_{j=1}^{N} 1\left(y_{j}=k\right) .
$$

This is a possible solution procedure for the first asignment.

