
Best Subset

For each k ∈ {0, . . . , p} there are (
p

k

)
different models with k predictors excluding the intercept,and p − k
parameters = 0.

There are in total
p∑

k=0

(
p

k

)
= 2p

different models. For the prostate dataset with 28 = 256 possible models
we can go through all models in a split second. With
240 = 1.099.511.627.776 we approach the boundary.
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Subset Selection – A Constraint Optimization Problem

Let Lk
r for r = 1, . . . ,

(p
k

)
denote all k-dimensional subspaces of the form

Lk
r = {β | p − k coordinates in β = 0}.

β̂k = argmin
β∈∪rLk

r

RSS(β)

The set ∪rL
k
r is not convex – local optimality does not imply global

optimality.

We can essentially only solve this problem by solving all the
(p
k

)
subproblems, which are convex optimization problems.

Conclusion: Subset selection scales computationally badly with the
dimension p. Branch-and-bound algorithms can help a little ...
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Figure 3.5 – Best Subset Selection

The residual sum of squares RSS(β̂k) is
a monotonely decreasing function in k .

The selected models are in general not
nested.

One can not use RSS(β̂k) to select the
appropriate subset size only the best
model of subset size k for each k .

Model selection criterias such as AIC and
Cross-Validation can be used – these are
major topics later in the course.
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Test Based Selection

Set
β̂k,r = argmin

β∈Lk
r

RSS(β)

and fix Ll
s ⊆ Lk

r with l < k.

F =
(N − k)[RSS(β̂l ,s)− RSS(β̂k,r )]

(k − l)RSS(β̂k,r )

follows under Assumption 2 an F-distribution with (k − l ,N − k) degrees
of freedom if β ∈ Ll

s .

Lk
r is preferred over Ll

s if Pr(. > F ) ≤ 0.05, say – the deviance from Ll
s is

unlikely to be explained by randomness alone.
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Test Based Selection – Pros and Cons

Plusses

We can control the type I error for two a priori specified, nested models.
We can control the total type I error for sequentially testing a sequence
of a priori specified, nested models.

Minusses

Non-nested models are in-comparable.
We do not understand the distributions of multiple a priori non-nested
tests.
We don’t control the power, only the type I error ...
... and tests are by nature asymmetric, a complex model is accepted
over a simple model when the simple model is ?clearly? inadequate.

Take home message: Test statistics are useful for quantifying if a simple
model is inadequate compared to a complex, but there is no theoretical
foundation for general test based model selection strategies.
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Strategies for Approximating Best Subset Solutions

If we can’t go through all possible models we need approximations.

Forward stepwise selection.

Initiate using only the intercept
In the k ’th step include the variable among the p − k remaining that
improves RSS the most.

Backward stepwise selection.

Initiate by fitting the full model – requires N ≥ p
In the k ’th step exclude the variable among the k remaining that
increases RSS the least.

Mixed stepwise strategies.

For instance, initiate by fitting the full model.
In the r ’th step include or exclude a variable according to a tradeoff
criteria between the best improvement or least increase in RSS.
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Penalized Regression
If J : Rp → [0,∞) is any function we replace the least squares estimate by
the penalized least squares estimate

β̂λJ = argmin
β

RSS(β) + λJ(β).

The optimization problem is nicest if J is convex. The parameter λ ≥ 0
determines the tradeoff between the measure of fit to data, RSS, and the
penalty on the parameter, J.

The function J implements an a priori preference of some parameters over
other. It is the frequentists version of a Bayesian incorporation of prior
beliefs.

To a Bayesian we are computing the posterior mode when we use the prior

c(λ/2σ2)−1 exp

(
− λ

2σ2
J(β)

)
, c(λ) =

∫
exp(−λJ(β))dβ

on the mean value parameter β.
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Ridge Regression

If J(β) = βTβ = ||β||2 the penalized estimation method is known as ridge
regression.

We need to optimize

(y − Xβ)T (y − Xβ) + λβTβ.

The function J is strictly convex with J(β)→∞ for ||β|| → ∞. There is
always a unique minimum β̂ridge when λ > 0.
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Ridge Regression – The Solution

Observe that by augmenting y with p trailing zero’s and X with a trailing
p × p matrix

√
λIp we get

„»
y
0

–
−

»
X√
λIp

–
β

«T „»
y
0

–
−

»
X√
λIp

–
β

«
= (y − Xβ)T (y − Xβ) + λβTβ.

The minimization is an ordinary least squares problem with solution

β̂ridge =

([
X√
λIp

]T [
X√
λIp

])−1 [
X√
λIp

]T [
y
0

]
= (XTX + λIp)−1XTy
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Lasso

If J(β) =
∑p

i=1 |βi | = ||β||1 the penalized estimation method is known as
lasso = least absolute shrinkage and selection operator.

We need to optimize

(y − Xβ)T (y − Xβ) + λ

p∑
k=1

|βk |.

The function J is convex with J(β)→∞ for ||β|| → ∞. If there is a
unique least squares solution there is a unique minimum β̂lasso.

This is a convex, but non-differentiable optimization problem.
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Restricted Estimation

If C ⊆ Rp the restricted estimator is the estimator

β̂C = argmin
β∈C

(y − Xβ)T (y − Xβ).

The optimization problem is nicest if C is convex. A well known situation
is when C is a subspace parameterized as

C = {Aδ | δ ∈ Rq}

where A is a p × q rank q matrix. The solution is

β̂C = (ATXTXA)−1ATXTy.
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Duality

If J : Rp → [0,∞) is a function we can define the sub-level sets

CJ(s) = {β | J(β) ≤ s}.

If J is convex then CJ(s) is convex for all s. The function

λ→ s(λ) := J(β̂λJ)

is typically a continuous, strictly decreasing function with s(λ)→ 0 for
λ→∞ mapping [0,∞) onto (0, s(0)].

β̂λJ = β̂CJ(s(λ))

This gives a dual viewpoint on the penalized estimator as a restricted
estimator and vice versa for level set restrictions.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning April 29, 2009 12 / 20



Figure 3.11 – Ridge and Lasso as Restricted Estimators

Ridge regression (right) is a constraint optimization problem over a set
with a smooth boundary. Lasso (left) is a constraint optimization problem
over a set where the boundary has corners. The corners give lasso the
selection ability.
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Duality

Penalization can be viewed as an implicit model restriction – but in a data
dependent way through s(λ).

The parameterized family of solutions (β̂CJ(s))s∈(0,s(0)] is identical to the

family (β̂λJ)λ≥0.

For lasso, optimization of

(y − Xβ)T (y − Xβ)

subject to ||β||1 ≤ s is a quadratic optimization problem subject to linear
constraints, which is a classical numerical problem.
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Bridge Regression and The Elastic Net

Generalizations include

Bridge regression

J(β) =

p∑
i=1

|β|q

for q ∈ (0,∞)

q = 2 is ridge regression
q = 1 is lasso
q < 1 is non-convex
q → 0 is best subset selection

The elastic net

J(β) = αβTβ + (1− α)

p∑
i=1

|β|

for α ∈ [0, 1].
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Figure 3.12 – Bridge and Elastic Net

For q ≤ 1 gives corners and has the selection property. For q < 1 we have
a non-convex problem, q → 0 results in best subset selection. With q = 1
we get selection as well as convexity. The elastic net has selection but
more convexity.
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Figure 3.10 – Lasso Profiles and LARS

The recent algorithm lar = least angle
regression, or rather lars = lar with lasso
modification, computes in one run all
lasso estimates.

The path β̂lasso,s for s varying is
piecewise linear – here s is scaled by s(0)
so s ∈ (0, 1].
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Derived Input Methods

A third idea is to derive a new set of predictors z1, . . . , zM ∈ RN for
M ≤ p from X, replace X by

Z = [z1 . . . zM ]

and regress using these derived input.

Principal components regression (PCR). With X = UDVT the
singular value decomposition take zi = ui .

Partial least squares (PLS). Popular in chemometrics. Includes y in
the selection of the directions as opposed to PCR.

PCR chooses the directions disregarding y. We close our eyes and hope
these directions matter.

Neither PCR nor PLS are invariant to scaling. Either the measurements
should be standardized or measured on a common scale.
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Figure 3.16 – Comparisons

The forward stepwise algorithm is greedy
and achieves rapid improvement of the
MSE for the parameter β.

LAR and lasso catches up later and
ultimately outperforms forward stepwise.
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Figure 3.18 – Comparisons

For a 2 dimensional parameter we can
illustrate how the chosen parameters
behave for different methods and
different choices of
selection/regularization.

Note that only ridge and lasso provide
estimates on the entire curve plottet.
The other three methods provide only
one alternative to the least squares
estimate (4,2).
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