Best Subset

For each $k \in \{0, \ldots, p\}$ there are

different models with k predictors excluding the intercept, and p - k parameters = 0.

There are in total

$$\sum_{k=0}^{p} \binom{p}{k} = 2^{p}$$

different models. For the prostate dataset with $2^8 = 256$ possible models we can go through all models in a split second. With $2^{40} = 1.099.511.627.776$ we approach the boundary.

Subset Selection – A Constraint Optimization Problem

Let L_r^k for $r = 1, ..., {p \choose k}$ denote all k-dimensional subspaces of the form $L_r^k = \{\beta \mid p - k \text{ coordinates in } \beta = 0\}.$ $\hat{\beta}^k = \underset{\beta \in \cup_r L_r^k}{\operatorname{argmin}} \operatorname{RSS}(\beta)$

The set $\cup_r L_r^k$ is not convex – local optimality does not imply global optimality.

We can essentially only solve this problem by solving all the $\binom{p}{k}$ subproblems, which are convex optimization problems.

Conclusion: Subset selection scales computationally badly with the dimension *p*. Branch-and-bound algorithms can help a little ...

Figure 3.5 - Best Subset Selection

The residual sum of squares $RSS(\hat{\beta}^k)$ is a monotonely decreasing function in k.

The selected models are in general not nested.

One can not use $RSS(\hat{\beta}^k)$ to select the appropriate subset size only the best model of subset size k for each k.

Model selection criterias such as AIC and Cross-Validation can be used – these are major topics later in the course.

Test Based Selection

Set

$$\hat{eta}^{k,r} = \operatorname*{argmin}_{eta \in L^k_r} \mathsf{RSS}(eta)$$

and fix $L_s^I \subseteq L_r^k$ with I < k.

$$F = \frac{(N-k)[\text{RSS}(\hat{\beta}^{l,s}) - \text{RSS}(\hat{\beta}^{k,r})]}{(k-l)\text{RSS}(\hat{\beta}^{k,r})}$$

follows under Assumption 2 an F-distribution with (k - l, N - k) degrees of freedom if $\beta \in L_s^l$.

 L_r^k is preferred over L_s^l if $Pr(. > F) \le 0.05$, say – the deviance from L_s^l is unlikely to be explained by randomness alone.

Niels Richard Hansen (Univ. Copenhagen)

Test Based Selection – Pros and Cons

Plusses

- We can control the type I error for two a priori specified, nested models.
- We can control the total type I error for sequentially testing a sequence of a priori specified, nested models.

Minusses

- Non-nested models are in-comparable.
- We do not understand the distributions of multiple a priori non-nested tests.
- $\bullet\,$ We don't control the power, only the type I error $\ldots\,$
- ... and tests are by nature asymmetric, a complex model is accepted over a simple model when the simple model is ?clearly? inadequate.

Take home message: Test statistics are useful for quantifying if a simple model is inadequate compared to a complex, but there is no theoretical foundation for general test based model selection strategies.

Strategies for Approximating Best Subset Solutions

If we can't go through all possible models we need approximations.

- Forward stepwise selection.
 - Initiate using only the intercept
 - In the k'th step include the variable among the p k remaining that improves RSS the most.
- Backward stepwise selection.
 - Initiate by fitting the full model requires $N \ge p$
 - In the k'th step exclude the variable among the k remaining that increases RSS the least.
- Mixed stepwise strategies.
 - For instance, initiate by fitting the full model.
 - In the *r*'th step include or exclude a variable according to a tradeoff criteria between the best improvement or least increase in RSS.

Penalized Regression

If $J : \mathbb{R}^{p} \to [0, \infty)$ is any function we replace the least squares estimate by the penalized least squares estimate

$$\hat{\beta}^{\lambda J} = \operatorname*{argmin}_{\beta} \mathsf{RSS}(\beta) + \lambda J(\beta).$$

The optimization problem is nicest if J is convex. The parameter $\lambda \ge 0$ determines the tradeoff between the measure of fit to data, RSS, and the penalty on the parameter, J.

The function J implements an a priori preference of some parameters over other. It is the frequentists version of a Bayesian incorporation of prior beliefs.

To a Bayesian we are computing the posterior mode when we use the prior

$$c(\lambda/2\sigma^2)^{-1}\exp\left(-\frac{\lambda}{2\sigma^2}J(\beta)\right), \quad c(\lambda)=\int \exp(-\lambda J(\beta))\mathrm{d}\beta$$

on the mean value parameter β .

Niels Richard Hansen (Univ. Copenhagen)

Ridge Regression

If $J(\beta) = \beta^T \beta = ||\beta||^2$ the penalized estimation method is known as ridge regression.

We need to optimize

$$(\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^T \beta.$$

The function J is strictly convex with $J(\beta) \to \infty$ for $||\beta|| \to \infty$. There is always a unique minimum $\hat{\beta}^{\text{ridge}}$ when $\lambda > 0$.

Niels Richard Hansen (Univ. Copenhagen)

Ridge Regression – The Solution

Observe that by augmenting **y** with *p* trailing zero's and **X** with a trailing $p \times p$ matrix $\sqrt{\lambda}I_p$ we get

$$\left(\begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix} - \begin{bmatrix} \mathbf{X} \\ \sqrt{\lambda}I_{p} \end{bmatrix} \beta \right)^{T} \left(\begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix} - \begin{bmatrix} \mathbf{X} \\ \sqrt{\lambda}I_{p} \end{bmatrix} \beta \right) = (\mathbf{y} - \mathbf{X}\beta)^{T} (\mathbf{y} - \mathbf{X}\beta) + \lambda\beta^{T}\beta.$$

The minimization is an ordinary least squares problem with solution

$$\hat{\beta}^{\mathsf{ridge}} = \left(\begin{bmatrix} \mathbf{X} \\ \sqrt{\lambda} I_p \end{bmatrix}^T \begin{bmatrix} \mathbf{X} \\ \sqrt{\lambda} I_p \end{bmatrix} \right)^{-1} \begin{bmatrix} \mathbf{X} \\ \sqrt{\lambda} I_p \end{bmatrix}^T \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix}$$
$$= (\mathbf{X}^T \mathbf{X} + \lambda I_p)^{-1} \mathbf{X}^T \mathbf{y}$$

Niels Richard Hansen (Univ. Copenhagen)

Lasso

If $J(\beta) = \sum_{i=1}^{p} |\beta_i| = ||\beta||_1$ the penalized estimation method is known as lasso = least absolute shrinkage and selection operator.

We need to optimize

$$(\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda \sum_{k=1}^p |\beta_k|.$$

The function J is convex with $J(\beta) \to \infty$ for $||\beta|| \to \infty$. If there is a unique least squares solution there is a unique minimum $\hat{\beta}^{\text{lasso}}$.

This is a convex, but non-differentiable optimization problem.

Niels Richard Hansen (Univ. Copenhagen)

Restricted Estimation

If $C \subseteq \mathbb{R}^{p}$ the restricted estimator is the estimator

$$\hat{eta}^{\mathcal{C}} = \operatorname*{argmin}_{eta \in \mathcal{C}} (\mathbf{y} - \mathbf{X}eta)^{\mathcal{T}} (\mathbf{y} - \mathbf{X}eta).$$

The optimization problem is nicest if C is convex. A well known situation is when C is a subspace parameterized as

$$C = \{A\delta \mid \delta \in \mathbb{R}^q\}$$

where A is a $p \times q$ rank q matrix. The solution is

$$\hat{\beta}^{C} = (A^{T} \mathbf{X}^{T} \mathbf{X} A)^{-1} A^{T} \mathbf{X}^{T} \mathbf{y}.$$

Duality

If $J: \mathbf{R}^p
ightarrow [0,\infty)$ is a function we can define the sub-level sets

$$C_J(s) = \{\beta \mid J(\beta) \leq s\}.$$

If J is convex then $C_J(s)$ is convex for all s. The function

$$\lambda \to s(\lambda) := J(\hat{\beta}^{\lambda J})$$

is typically a continuous, strictly decreasing function with $s(\lambda) \rightarrow 0$ for $\lambda \rightarrow \infty$ mapping $[0, \infty)$ onto (0, s(0)].

$$\hat{\beta}^{\lambda J} = \hat{\beta}^{C_J(s(\lambda))}$$

This gives a dual viewpoint on the penalized estimator as a restricted estimator and vice versa for level set restrictions.

Figure 3.11 – Ridge and Lasso as Restricted Estimators

Ridge regression (right) is a constraint optimization problem over a set with a smooth boundary. Lasso (left) is a constraint optimization problem over a set where the boundary has corners. The corners give lasso the selection ability.

Duality

Penalization can be viewed as an implicit model restriction – but in a data dependent way through $s(\lambda)$.

The parameterized family of solutions $(\hat{\beta}^{C_J(s)})_{s \in (0,s(0)]}$ is identical to the family $(\hat{\beta}^{\lambda J})_{\lambda \geq 0}$.

For lasso, optimization of

$$(\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta)$$

subject to $||\beta||_1 \leq s$ is a quadratic optimization problem subject to linear constraints, which is a classical numerical problem.

Bridge Regression and The Elastic Net

Generalizations include

• Bridge regression

$$J(eta) = \sum_{i=1}^p |eta|^q$$

for $q \in (0,\infty)$

- q = 2 is ridge regression
- q = 1 is lasso
- q < 1 is non-convex
- $q \rightarrow 0$ is best subset selection
- The elastic net

$$J(\beta) = \alpha \beta^T \beta + (1 - \alpha) \sum_{i=1}^{p} |\beta|$$

for $\alpha \in [0, 1]$.

Figure 3.12 – Bridge and Elastic Net

For $q \leq 1$ gives corners and has the selection property. For q < 1 we have a non-convex problem, $q \rightarrow 0$ results in best subset selection. With q = 1we get selection as well as convexity. The elastic net has selection but more convexity.

Figure 3.10 – Lasso Profiles and LARS

The recent algorithm lar = least angle regression, or rather lars = lar with lasso modification, computes in one run all lasso estimates.

The path $\hat{\beta}^{\text{lasso},s}$ for s varying is piecewise linear – here s is scaled by s(0)so $s \in (0, 1]$.

Derived Input Methods

A third idea is to derive a new set of predictors $z_1, \ldots, z_M \in \mathbb{R}^N$ for $M \leq p$ from **X**, replace **X** by

$$\mathbf{Z} = [\mathbf{z}_1 \dots \mathbf{z}_M]$$

and regress using these derived input.

- Principal components regression (PCR). With X = UDV^T the singular value decomposition take z_i = u_i.
- Partial least squares (PLS). Popular in chemometrics. Includes **y** in the selection of the directions as opposed to PCR.

PCR chooses the directions disregarding \mathbf{y} . We close our eyes and hope these directions matter.

Neither PCR nor PLS are invariant to scaling. Either the measurements should be standardized or measured on a common scale.

Niels Richard Hansen (Univ. Copenhagen)

Figure 3.16 – Comparisons

The forward stepwise algorithm is greedy and achieves rapid improvement of the MSE for the parameter β .

LAR and lasso catches up later and ultimately outperforms forward stepwise.

Figure 3.18 – Comparisons

For a 2 dimensional parameter we can illustrate how the chosen parameters behave for different methods and different choices of selection/regularization.

Note that only ridge and lasso provide estimates on the entire curve plottet. The other three methods provide only one alternative to the least squares estimate (4,2).