
Best Subset

For each k ∈ {0, . . . , p} there are (
p

k

)
different models with k predictors excluding the intercept,and p− k parameters = 0.

There are in total
p∑
k=0

(
p

k

)
= 2p

different models. For the prostate dataset with 28 = 256 possible models we can go through
all models in a split second. With 240 = 1.099.511.627.776 we approach the boundary.

Subset Selection – A Constraint Optimization Problem

Let Lkr for r = 1, . . . ,
(
p
k

)
denote all k-dimensional subspaces of the form

Lkr = {β | p− k coordinates in β = 0}.

β̂k = argmin
β∈∪rLk

r

RSS(β)

The set ∪rLkr is not convex – local optimality does not imply global optimality.

We can essentially only solve this problem by solving all the
(
p
k

)
subproblems, which are

convex optimization problems.

Conclusion: Subset selection scales computationally badly with the dimension p. Branch-
and-bound algorithms can help a little ...

Figure 3.5 – Best Subset Selection

The residual sum of squares RSS(β̂k) is a monotonely decreasing function in k.

The selected models are in general not nested.

One can not use RSS(β̂k) to select the appropriate subset size only the best model of subset
size k for each k.

Model selection criterias such as AIC and Cross-Validation can be used – these are major
topics later in the course.
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Test Based Selection

Set
β̂k,r = argmin

β∈Lk
r

RSS(β)

and fix Lls ⊆ Lkr with l < k.

F =
(N − k)[RSS(β̂l,s)− RSS(β̂k,r)]

(k − l)RSS(β̂k,r)

follows under Assumption 2 an F-distribution with (k−l, N−k) degrees of freedom if β ∈ Lls.

Lkr is preferred over Lls if Pr(. > F ) ≤ 0.05, say – the deviance from Lls is unlikely to be
explained by randomness alone.

Test Based Selection – Pros and Cons

• Plusses

– We can control the type I error for two a priori specified, nested models.

– We can control the total type I error for sequentially testing a sequence of a priori
specified, nested models.

• Minusses

– Non-nested models are in-comparable.

– We do not understand the distributions of multiple a priori non-nested tests.

– We don’t control the power, only the type I error ...

– ... and tests are by nature asymmetric, a complex model is accepted over a simple
model when the simple model is ?clearly? inadequate.

Take home message: Test statistics are useful for quantifying if a simple model is inadequate
compared to a complex, but there is no theoretical foundation for general test based model
selection strategies.

We write ?clearly? because how clear it is depends upon the level chosen for the test. At
level α = 0.05 it is perhaps an exaggeration to say clearly. Using level 0.05 we might say that
there is some but not overwhelming evidence that the simple model is inadequate. However,
we typically compute a p-value, which we regard as a quantification of how inadequate the
simple model is. In reality, many tests are then rejected with p-values that are very small,
in which case we can say that there is clear evidence. If the p-value is close to 0.05, we must
draw our conclusions with caution.

The formal statistical tests belong most naturally in the world of confirmatory statistical
analysis where we want to confirm a specific, a priori given hypothesis – for instance the
effect or superiority of a given drug. The theory of hypothesis testing is not really developed
for model selection.
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Strategies for Approximating Best Subset Solutions

If we can’t go through all possible models we need approximations.

• Forward stepwise selection.

– Initiate using only the intercept

– In the k’th step include the variable among the p − k remaining that improves
RSS the most.

• Backward stepwise selection.

– Initiate by fitting the full model – requires N ≥ p
– In the k’th step exclude the variable among the k remaining that increases RSS

the least.

• Mixed stepwise strategies.

– For instance, initiate by fitting the full model.

– In the r’th step include or exclude a variable according to a tradeoff criteria
between the best improvement or least increase in RSS.

Penalized Regression

If J : Rp → [0,∞) is any function we replace the least squares estimate by the penalized
least squares estimate

β̂λJ = argmin
β

RSS(β) + λJ(β).

The optimization problem is nicest if J is convex. The parameter λ ≥ 0 determines the
tradeoff between the measure of fit to data, RSS, and the penalty on the parameter, J .

The function J implements an a priori preference of some parameters over other. It is the
frequentists version of a Bayesian incorporation of prior beliefs.

To a Bayesian we are computing the posterior mode when we use the prior

c(λ/2σ2)−1 exp
(
− λ

2σ2
J(β)

)
, c(λ) =

∫
exp(−λJ(β))dβ

on the mean value parameter β.

Of course, we need c(λ) < ∞ for the Bayesian interpretation – otherwise we don’t have a
proper prior. But in this case we see that the minimizer β̃ is the minimizer of minus-log-
posterior, and since the minus-log function is monotonely decreasing β̂J is the actually the
mode of the posterior

1
c(λ/2σ2)

√
2πσ2

exp
(
− 1

2σ2

[
(y −Xβ)T (y −Xβ) + λJ(β)

])
.
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Ridge Regression

If J(β) = βTβ = ||β||2 the penalized estimation method is known as ridge regression.

We need to optimize
(y −Xβ)T (y −Xβ) + λβTβ.

The function J is strictly convex with J(β) → ∞ for ||β|| → ∞. There is always a unique
minimum β̂ridge when λ > 0.

Ridge Regression – The Solution
Observe that by augmenting y with p trailing zero’s and X with a trailing p × p matrix√
λIp we get

„»
y
0

–
−

»
X√
λIp

–
β

«T „»
y
0

–
−

»
X√
λIp

–
β

«
= (y −Xβ)

T
(y −Xβ) + λβ

T
β.

The minimization is an ordinary least squares problem with solution

β̂ridge =

([
X√
λIp

]T [ X√
λIp

])−1 [
X√
λIp

]T [
y
0

]
= (XTX + λIp)−1XTy

The solution above is the solution based on Exercise 3.12. It is also possible to derive the
solution by straight forward differentiation. The above solution does, however, provide the
possibility to compute the ridge regression estimate whenever you have access to ordinary
least squares regression by augmentation of the dataset.

Lasso

If J(β) =
∑p
i=1 |βi| = ||β||1 the penalized estimation method is known as lasso = least

absolute shrinkage and selection operator.

We need to optimize

(y −Xβ)T (y −Xβ) + λ

p∑
k=1

|βk|.

The function J is convex with J(β) → ∞ for ||β|| → ∞. If there is a unique least squares
solution there is a unique minimum β̂lasso.

This is a convex, but non-differentiable optimization problem.

Restricted Estimation

If C ⊆ Rp the restricted estimator is the estimator

β̂C = argmin
β∈C

(y −Xβ)T (y −Xβ).
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The optimization problem is nicest if C is convex. A well known situation is when C is a
subspace parameterized as

C = {Aδ | δ ∈ Rq}

where A is a p× q rank q matrix. The solution is

β̂C = (ATXTXA)−1ATXTy.

Duality

If J : Rp → [0,∞) is a function we can define the sub-level sets

CJ(s) = {β | J(β) ≤ s}.

If J is convex then CJ(s) is convex for all s. The function

λ→ s(λ) := J(β̂λJ)

is typically a continuous, strictly decreasing function with s(λ) → 0 for λ → ∞ mapping
[0,∞) onto (0, s(0)].

β̂λJ = β̂CJ (s(λ))

This gives a dual viewpoint on the penalized estimator as a restricted estimator and vice
versa for level set restrictions.

For the ridge regression the exercise Theo.2 deals with showing the above result based on
the explicit representation of the ridge regression estimator. A similar result can be shown
for lasso, but it is more difficult as we have no explicit representation. In general, the result
belongs to the theory of constraint optimization. However, one has to be extremely careful
here as we do not want to assume differentiability of J since this rules out lasso. Anyway,
this author is not sufficiently familiar with the theory of constraint optimization to formulate
the correct mathematically rigorous version of the vague formulation above. Hence we keep
a “typical” here and do some verification in a case by case manner. Unless the reader is quite
familiar with the concepts of Lagrange multipliers etc. the introduction of such concepts
does not seem to clarify much at this point.

Figure 3.11 – Ridge and Lasso as Restricted Estimators

Ridge regression (right) is a constraint optimization problem over a set with a smooth
boundary. Lasso (left) is a constraint optimization problem over a set where the boundary
has corners. The corners give lasso the selection ability.
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Duality

Penalization can be viewed as an implicit model restriction – but in a data dependent way
through s(λ).

The parameterized family of solutions (β̂CJ (s))s∈(0,s(0)] is identical to the family (β̂λJ)λ≥0.

For lasso, optimization of
(y −Xβ)T (y −Xβ)

subject to ||β||1 ≤ s is a quadratic optimization problem subject to linear constraints, which
is a classical numerical problem.

Bridge Regression and The Elastic Net

Generalizations include

• Bridge regression

J(β) =
p∑
i=1

|β|q

for q ∈ (0,∞)

– q = 2 is ridge regression
– q = 1 is lasso
– q < 1 is non-convex
– q → 0 is best subset selection

• The elastic net

J(β) = αβTβ + (1− α)
p∑
i=1

|β|

for α ∈ [0, 1].

Figure 3.12 – Bridge and Elastic Net

For q ≤ 1 gives corners and has the selection property. For q < 1 we have a non-convex
problem, q → 0 results in best subset selection. With q = 1 we get selection as well as
convexity. The elastic net has selection but more convexity.

Figure 3.10 – Lasso Profiles and LARS

The recent algorithm lar = least angle regression, or rather lars = lar with lasso modification,
computes in one run all lasso estimates.

The path β̂lasso,s for s varying is piecewise linear – here s is scaled by s(0) so s ∈ (0, 1].

Even though the relation between the restricted optimization problem and the penalized
optimization problem is data dependent, their entire paths coincide and would both be
piecewise linear. All that would change from the penalized version to the restricted version
is a monotone transformation of the 1st axis on the path plot.
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Derived Input Methods

A third idea is to derive a new set of predictors z1, . . . , zM ∈ RN for M ≤ p from X, replace
X by

Z = [z1 . . . zM ]

and regress using these derived input.

• Principal components regression (PCR). With X = UDVT the singular value decom-
position take zi = ui.

• Partial least squares (PLS). Popular in chemometrics. Includes y in the selection of
the directions as opposed to PCR.

PCR chooses the directions disregarding y. We close our eyes and hope these directions
matter.

Neither PCR nor PLS are invariant to scaling. Either the measurements should be stan-
dardized or measured on a common scale.

In Theo.1 it is shown that the first principal component is the direction where we get the
least uncertain estimate of the regression estimate measured in terms of variance. However,
variance comparison across different parameters make little sense if the parameters are not
on a common scale. The variance measured in meters is bound to be smaller than the
variance measured in centimeters.

Figure 3.16 – Comparisons

The forward stepwise algorithm is greedy and achieves rapid improvement of the MSE for
the parameter β.

LAR and lasso catches up later and ultimately outperforms forward stepwise.

Figure 3.18 – Comparisons

For a 2 dimensional parameter we can illustrate how the chosen parameters behave for
different methods and different choices of selection/regularization.

Note that only ridge and lasso provide estimates on the entire curve plottet. The other three
methods provide only one alternative to the least squares estimate (4,2).
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