Linear Regression

For (X, Y) a pair of random variables with values in RP x R we assume
that

1%
E(YIX)= 5o+ Y XiB=(1,XT)8
j=1

with 3 € RPFL,

This “model” of the conditional expectation is linear in the parameters.

The predictor function for a given (3 is

fa(x) = (1,XT)ﬁ.
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Least Squares

With X the N x (p+ 1) data matrix including the column 1 the column of
predicted values for given § is X3.

The residual sum of squares is

N

RSS(B) = Z(YI —(1,x7)8)% = Ily — Xg| >

i=1

The least squares estimate of (3 is

N

(3 = argmin RSS(3).
B
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Figure 3.1 — Geometry

The linear regression seeks a
p-dimensional, affine representation — a
hyperplane — of the p + 1-dimensional
variable (X, Y).

The direction of the Y-variable plays a
distinctive role — the error of the
approximating hyperplane is measured
parallel to this axis.
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The Solution — the Calculus Way

Since RSS(B) = (y — XB) " (y — X3)
DsRSS(5) = —2(y — X)X

The derivative is a 1 X p dimensional matrix — a row vector. The gradient

is V3RSS(3) = DgRSS(B)7.
D3RSS(B) = 2XTX.

If X has rank p+1, DéRSS(ﬂ) is (globally) positive definite and there is a
unique minimizer found by solving D3RSS(3) = 0. The solution is

5= (XTX)"'xTy.
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The Solution — the Geometric Way (Figure 3.2)
With V = {X3 | 5 € RP} the column space of X the quantity
RSS(8) = lly — XglI?

is minimized whenever X[ is the orthogonal projection of y onto V. The
column space projection equals

P =X(X"X)"1xT
whenever X has full rank p + 1.
In this case X3 = Py has the unique solution
g=(XTX)"IxTy.
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Distributional Results — Conditionally on X

€ = K - (]-JXI.)Tﬂ

Assumption 1: €1,..., ey conditionally on Xi, ..., Xy are uncorrelated
with mean value 0 and same variance ¢

N ~
. 1 5 1 , RSS(3)

Then V(Y|X) = o2l

EQPIX) = (XTX)'XTX3=p
V(BIX) = (XTX)IXTo2IyX(XTX)™t = o?2(XTX)!
E(5%X) = o2
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Distributional Results — Conditionally on X

Assumption 2: ¢, ..., ey conditionally on Xi,..., Xy are i.i.d. N(0,0?).

B~ N(B,0*(XTX)7)

(N=p—1)8 ~0*XN_p_1-

The standardized Z-score

Zj — 7 ~ tN—p—l-
&/ (XTX); 1

Or more generally for any a € RPH1

aTBA — aTﬁ
~ ~ IN-—p-1-
y/al (XTX)"1a

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning April 27, 2009

716



Minimal Variance, Unbiased Estimators

Does there exist a minimal variance, unbiased estimator of 37 We consider
linear estimators only

f=CTY
for some N x p matrix C requiring that
B=CTXp

for all 3. Thatis, CTX = los1 = XTC. Under Assumption 1
V(BIX) = o2CTC,
and we have
V(B-B1X) = V(((XTX)'XT - CT)Y|X)
= 2(XTX)IXT — cT)((XTX)IXT — cT)T

a2(CTC—(X™X)™

The matrix CTC — (XTX)™1 is positive semidefinite, i.e. for any a € RP+1
a’(X™X)ta<a’C™Ca

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning April 27, 2009 8 /16



Gauss-Markov's Theorem

Theorem

Under Assumption 1 the least squares estimator of 3 has minimal variance
among all linear, unbiased estimators of (3.

This means that for any a € RP, a” 4 has minimal variance among all
estimators of a’ 3 of the form a” 3 where (3 is a linear, unbiased estimator.

It also means that V() — (X7 X)~! is positive semidefinite — or in the
partial ordering on positive semidefinite matrices

V(B) = (XTX)™".

Why look any further — we have found the optimal estimator....”?
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Biased Estimators

The mean squared error is
MSEs(5) = Es(18 — BI).

By Gauss-Markov's Theorem Bis optimal for all 8 among the linear,
unbiased estimators.

Allowing for biased — possibly linear — estimators we can achieve
improvements of the MSE for some 3 — perhaps at the expense of some

other .

The Stein estimator is a non-linear, biased estimator, which under
Assumption 2 has uniformly smaller MSE than 3 whenever p > 3.
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Shrinkage Estimators
If 3= CTY is some, biased, linear estimator of 3 we define the estimator

By=78+1-7)3, ~velo,1].

It is biased. The mean squared error is a quadratic function in =, and the
optimal shrinkage parameter () can be found — it depends upon !
Using the plug-in principle we get an estimator

Bz =1(B)B + (1 =~(5))B.

It could be uniformly better — but the point is that for 3 where 3 is not
too biased it can be a substantial improvement over [3.

Take home message: Bias is a way to introduce soft model restrictions
with a locally — not globally — favorable bias-variance tradeoff.
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Regression in practice

How does the computer do multiple linear regression? Does it compute
the matrix (X7 X)~1X?

NO!
If the columns x1,...,x, are orthogonal the solution is
N <Y,Xj >
Bi=—2" "
o xill?

Here either 1 is included and orthogonal to the other x;'s or all variables
have first been centered.
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Orthogonalization

If x1,...,X%p are not orthogonal the Gram-Schmidt orthogonalization

produces an orthogonal basis z;, ..., 2, spanning the same column space

(Algorithm 3.1). Thus y = X7 3 = Z7 3 with

2 <Yy,z; >
i ke
||i?
By Gram-Schmidt
@ span{xy,...,X;} =span{zi,...,z;}, hence z, L x1,...,Xp_1

® Xp =12z, +wwithw L z,.

Hence o
Bp=2]x0; =2, XT3 =2]Z7 3 = j,.
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Figure 3.4 — Gram-Schmidt

By Gram-Schmidt the multiple
regression coefficient 3, equals the
coefficient for z,.

If ||z||? is small the variance

is large and the estimate is uncertain.

For observational x;'s this problem
occurs for highly correlated observables.
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The QR-decomposition

The matrix version of Gram-Schmidt is the decomposition
X=12Zr

where the columns in Z are orthogonal and the matrix I is upper
triangular. If

D = diag([|zal,- -, [zpl])

D! Dr
R

X =

5

Q
R

I
o

This is the QR-decomposition with Q an orthogonal matrix and R upper
triangular.
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Using the QR-decomposition for Estimation
If X = QR is the QR-decomposition we get that
B — (RTQTQR)—IRTQTy
— R—l(RT)—lRTQTy
= R_lQTy.

Or we can write that B is the solution of
R3=Qy,
which is easy to solve as R is upper triangular.

We also get A
§=X3=QQTy.
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