Linear Regression

For (X, Y) a pair of random variables with values in $\mathbb{R}^{p} \times \mathbb{R}$ we assume that

$$
E(Y \mid X)=\beta_{0}+\sum_{j=1}^{p} X_{j} \beta_{j}=\left(1, X^{\top}\right) \beta
$$

with $\beta \in \mathbb{R}^{p+1}$.

This "model" of the conditional expectation is linear in the parameters.

The predictor function for a given β is

$$
f_{\beta}(x)=\left(1, x^{\top}\right) \beta
$$

Least Squares

With \mathbf{X} the $N \times(p+1)$ data matrix including the column $\mathbf{1}$ the column of predicted values for given β is $\mathbf{X} \beta$.

The residual sum of squares is

$$
\operatorname{RSS}(\beta)=\sum_{i=1}^{N}\left(y_{i}-\left(1, x_{i}^{T}\right) \beta\right)^{2}=\|\mathbf{y}-\mathbf{X} \beta\|^{2}
$$

The least squares estimate of β is

$$
\hat{\beta}=\underset{\beta}{\operatorname{argmin}} \operatorname{RSS}(\beta) .
$$

Figure 3.1 - Geometry

> The linear regression seeks a p-dimensional, affine representation - a hyperplane - of the $p+1$-dimensional variable (X, Y).

The direction of the Y-variable plays a distinctive role - the error of the approximating hyperplane is measured parallel to this axis.

The Solution - the Calculus Way

Since $\operatorname{RSS}(\beta)=(\mathbf{y}-\mathbf{X} \beta)^{T}(\mathbf{y}-\mathbf{X} \beta)$

$$
D_{\beta} \mathrm{RSS}(\beta)=-2(\mathbf{y}-\mathbf{X} \beta)^{T} \mathbf{X}
$$

The derivative is a $1 \times p$ dimensional matrix - a row vector. The gradient is $\nabla_{\beta} \operatorname{RSS}(\beta)=D_{\beta} \operatorname{RSS}(\beta)^{T}$.

$$
D_{\beta}^{2} \mathrm{RSS}(\beta)=2 \mathbf{X}^{\top} \mathbf{X} .
$$

If \mathbf{X} has rank $p+1, D_{\beta}^{2} \operatorname{RSS}(\beta)$ is (globally) positive definite and there is a unique minimizer found by solving $D_{\beta} \operatorname{RSS}(\beta)=0$. The solution is

$$
\hat{\beta}=\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1} \mathbf{X}^{\top} \mathbf{y}
$$

The Solution - the Geometric Way (Figure 3.2)

With $V=\left\{\mathbf{X} \beta \mid \beta \in \mathbb{R}^{p}\right\}$ the column space of \mathbf{X} the quantity

$$
\operatorname{RSS}(\beta)=\|\mathbf{y}-\mathbf{X} \beta\|^{2}
$$

is minimized whenever $\mathbf{X} \beta$ is the orthogonal projection of \mathbf{y} onto V. The column space projection equals

$$
P=\mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}
$$

whenever \mathbf{X} has full rank $p+1$.
In this case $\mathbf{X} \beta=P \mathbf{y}$ has the unique solution

$$
\hat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{y}
$$

Distributional Results - Conditionally on X

$$
\epsilon_{i}=Y_{i}-\left(1, X_{i}\right)^{T} \beta
$$

Assumption 1: $\epsilon_{1}, \ldots, \epsilon_{N}$ conditionally on X_{1}, \ldots, X_{N} are uncorrelated with mean value 0 and same variance σ^{2}.

$$
\hat{\sigma}^{2}=\frac{1}{N-p-1} \sum_{i=1}^{N}\left(Y_{i}-\mathbf{X} \hat{\beta}\right)^{2}=\frac{1}{N-p-1}\|\mathbf{Y}-\mathbf{X} \hat{\beta}\|^{2}=\frac{\operatorname{RSS}(\hat{\beta})}{N-p-1}
$$

Then $V(\mathbf{Y} \mid \mathbf{X})=\sigma^{2} I_{N}$

$$
\begin{aligned}
E(\hat{\beta} \mid \mathbf{X}) & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{X} \beta=\beta \\
V(\hat{\beta} \mid \mathbf{X}) & =\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \sigma^{2} I_{N} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \\
E\left(\hat{\sigma}^{2} \mid \mathbf{X}\right) & =\sigma^{2}
\end{aligned}
$$

Distributional Results - Conditionally on \mathbf{X}

Assumption 2: $\epsilon_{1}, \ldots, \epsilon_{N}$ conditionally on X_{1}, \ldots, X_{N} are i.i.d. $N\left(0, \sigma^{2}\right)$.

$$
\begin{gathered}
\hat{\beta} \sim N\left(\beta, \sigma^{2}\left(\mathbf{X}^{\top} \mathbf{X}\right)^{-1}\right) \\
(N-p-1) \hat{\sigma}^{2} \sim \sigma^{2} \chi_{N-p-1}^{2} .
\end{gathered}
$$

The standardized Z-score

$$
Z_{j}=\frac{\hat{\beta}_{j}-\beta_{j}}{\hat{\sigma} \sqrt{\left(\mathbf{X}^{T} \mathbf{X}\right)_{j j}^{-1}}} \sim t_{N-p-1}
$$

Or more generally for any $a \in \mathbb{R}^{p+1}$

$$
\frac{a^{T} \hat{\beta}-a^{T} \beta}{\hat{\sigma} \sqrt{a^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} a}} \sim t_{N-p-1} .
$$

Minimal Variance, Unbiased Estimators

Does there exist a minimal variance, unbiased estimator of β ? We consider linear estimators only

$$
\tilde{\beta}=C^{T} \mathbf{Y}
$$

for some $N \times p$ matrix C requiring that

$$
\beta=C^{T} \mathbf{X} \beta
$$

for all β. That is, $C^{T} \mathbf{X}=I_{p+1}=\mathbf{X}^{T} C$. Under Assumption 1

$$
V(\tilde{\beta} \mid \mathbf{X})=\sigma^{2} C^{T} C
$$

and we have

$$
\begin{aligned}
V(\hat{\beta}-\tilde{\beta} \mid \mathbf{X}) & =V\left(\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}-C^{T}\right) Y \mid \mathbf{X}\right) \\
& =\sigma^{2}\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}-C^{T}\right)\left(\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T}-C^{T}\right)^{T} \\
& =\sigma^{2}\left(C^{T} C-\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}\right)
\end{aligned}
$$

The matrix $C^{T} C-\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ is positive semidefinite, i.e. for any $a \in \mathbb{R}^{p+1}$

$$
a^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} a \leq a^{T} C^{T} C a
$$

Gauss-Markov's Theorem

Theorem

Under Assumption 1 the least squares estimator of β has minimal variance among all linear, unbiased estimators of β.

This means that for any $a \in \mathbb{R}^{p}, a^{T} \hat{\beta}$ has minimal variance among all estimators of $a^{T} \beta$ of the form $a^{T} \tilde{\beta}$ where $\tilde{\beta}$ is a linear, unbiased estimator.

It also means that $V(\tilde{\beta})-\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}$ is positive semidefinite - or in the partial ordering on positive semidefinite matrices

$$
V(\tilde{\beta}) \succeq\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}
$$

Why look any further - we have found the optimal estimator....?

Biased Estimators

The mean squared error is

$$
\operatorname{MSE}_{\beta}(\tilde{\beta})=E_{\beta}\left(\|\tilde{\beta}-\beta\|^{2}\right)
$$

By Gauss-Markov's Theorem $\hat{\beta}$ is optimal for all β among the linear, unbiased estimators.

Allowing for biased - possibly linear - estimators we can achieve improvements of the MSE for some β - perhaps at the expense of some other β.

The Stein estimator is a non-linear, biased estimator, which under Assumption 2 has uniformly smaller MSE than $\hat{\beta}$ whenever $p \geq 3$.

Shrinkage Estimators

If $\tilde{\beta}=C^{T} Y$ is some, biased, linear estimator of β we define the estimator

$$
\tilde{\beta}_{\gamma}=\gamma \hat{\beta}+(1-\gamma) \tilde{\beta}, \quad \gamma \in[0,1] .
$$

It is biased. The mean squared error is a quadratic function in γ, and the optimal shrinkage parameter $\gamma(\beta)$ can be found - it depends upon β ! Using the plug-in principle we get an estimator

$$
\tilde{\beta}_{\gamma(\hat{\beta})}=\gamma(\hat{\beta}) \hat{\beta}+(1-\gamma(\hat{\beta})) \tilde{\beta}
$$

It could be uniformly better - but the point is that for β where $\tilde{\beta}$ is not too biased it can be a substantial improvement over $\hat{\beta}$.

Take home message: Bias is a way to introduce soft model restrictions with a locally - not globally - favorable bias-variance tradeoff.

Regression in practice

How does the computer do multiple linear regression? Does it compute the matrix $\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}$?

NO!

If the columns $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$ are orthogonal the solution is

$$
\hat{\beta}_{i}=\frac{\left\langle\mathbf{y}, \mathbf{x}_{i}\right\rangle}{\left\|\mathbf{x}_{i}\right\|^{2}}
$$

Here either $\mathbf{1}$ is included and orthogonal to the other \mathbf{x}_{i} 's or all variables have first been centered.

Orthogonalization

If $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$ are not orthogonal the Gram-Schmidt orthogonalization produces an orthogonal basis $\mathbf{z}_{1}, \ldots, \mathbf{z}_{p}$ spanning the same column space (Algorithm 3.1). Thus $\hat{\mathbf{y}}=\mathbf{X}^{T} \hat{\beta}=\mathbf{Z}^{T} \bar{\beta}$ with

$$
\bar{\beta}_{i}=\frac{\left\langle\mathbf{y}, \mathbf{z}_{i}\right\rangle}{\left\|\mathbf{z}_{i}\right\|^{2}}
$$

By Gram-Schmidt

- $\operatorname{span}\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{i}\right\}=\operatorname{span}\left\{\mathbf{z}_{1}, \ldots, \mathbf{z}_{i}\right\}$, hence $\mathbf{z}_{p} \perp \mathbf{x}_{1}, \ldots, \mathbf{x}_{p-1}$
- $\mathbf{x}_{p}=\mathbf{z}_{p}+\mathbf{w}$ with $\mathbf{w} \perp \mathbf{z}_{p}$.

Hence

$$
\hat{\beta}_{p}=\mathbf{z}_{p}^{T} \mathbf{x}_{p} \hat{\beta}_{j}=\mathbf{z}_{p}^{T} \mathbf{X}^{T} \hat{\beta}=\mathbf{z}_{p}^{T} \mathbf{Z}^{T} \bar{\beta}=\bar{\beta}_{p}
$$

Figure 3.4 - Gram-Schmidt

By Gram-Schmidt the multiple regression coefficient $\hat{\beta}_{p}$ equals the coefficient for \mathbf{z}_{p}.

If $\left\|z_{p}\right\|^{2}$ is small the variance

$$
V\left(\widehat{\beta}_{p}\right)=\frac{\sigma^{2}}{\left\|\mathbf{z}_{p}\right\|^{2}}
$$

is large and the estimate is uncertain.

For observational \mathbf{x}_{i} 's this problem occurs for highly correlated observables.

The QR-decomposition

The matrix version of Gram-Schmidt is the decomposition

$$
\mathbf{X}=\mathbf{Z \Gamma}
$$

where the columns in \mathbf{Z} are orthogonal and the matrix $\boldsymbol{\Gamma}$ is upper triangular. If

$$
\begin{aligned}
& \mathbf{D}=\operatorname{diag}\left(\left\|\mathbf{z}_{1}\right\|, \ldots,\left\|\mathbf{z}_{p}\right\|\right) \\
& \mathbf{X}=\underbrace{\mathbf{Z D}^{-1}}_{\mathbf{Q}} \underbrace{\mathbf{D \Gamma}}_{\mathbf{R}} \\
&=\mathbf{Q R}
\end{aligned}
$$

This is the QR-decomposition with \mathbf{Q} an orthogonal matrix and \mathbf{R} upper triangular.

Using the QR-decomposition for Estimation

If $\mathbf{X}=\mathbf{Q R}$ is the QR -decomposition we get that

$$
\begin{aligned}
\hat{\beta} & =\left(\mathbf{R}^{T} \mathbf{Q}^{T} \mathbf{Q} \mathbf{R}\right)^{-1} \mathbf{R}^{T} \mathbf{Q}^{T} \mathbf{y} \\
& =\mathbf{R}^{-1}\left(\mathbf{R}^{T}\right)^{-1} \mathbf{R}^{T} \mathbf{Q}^{T} \mathbf{y} \\
& =\mathbf{R}^{-1} \mathbf{Q}^{T} \mathbf{y}
\end{aligned}
$$

Or we can write that $\hat{\beta}$ is the solution of

$$
\mathbf{R} \hat{\beta}=\mathbf{Q}^{T} \mathbf{y}
$$

which is easy to solve as \mathbf{R} is upper triangular.

We also get

$$
\hat{\mathbf{y}}=\mathbf{X} \hat{\beta}=\mathbf{Q Q}^{T} \mathbf{y}
$$

