
Linear Regression

For (X ,Y ) a pair of random variables with values in Rp × R we assume
that

E (Y |X ) = β0 +

p∑
j=1

Xjβj = (1,XT )β

with β ∈ Rp+1.

This “model” of the conditional expectation is linear in the parameters.

The predictor function for a given β is

fβ(x) = (1, xT )β.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning April 27, 2009 1 / 16



Least Squares

With X the N × (p + 1) data matrix including the column 1 the column of
predicted values for given β is Xβ.

The residual sum of squares is

RSS(β) =
N∑

i=1

(yi − (1, xT
i )β)2 = ||y − Xβ||2.

The least squares estimate of β is

β̂ = argmin
β

RSS(β).
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Figure 3.1 – Geometry

The linear regression seeks a
p-dimensional, affine representation – a
hyperplane – of the p + 1-dimensional
variable (X ,Y ).

The direction of the Y -variable plays a
distinctive role – the error of the
approximating hyperplane is measured
parallel to this axis.
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The Solution – the Calculus Way

Since RSS(β) = (y − Xβ)T (y − Xβ)

DβRSS(β) = −2(y − Xβ)T X

The derivative is a 1× p dimensional matrix – a row vector. The gradient
is ∇βRSS(β) = DβRSS(β)T .

D2
βRSS(β) = 2XT X.

If X has rank p + 1, D2
βRSS(β) is (globally) positive definite and there is a

unique minimizer found by solving DβRSS(β) = 0. The solution is

β̂ = (XT X)−1XT y.
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The Solution – the Geometric Way (Figure 3.2)

With V = {Xβ | β ∈ Rp} the column space of X the quantity

RSS(β) = ||y − Xβ||2

is minimized whenever Xβ is the orthogonal projection of y onto V . The
column space projection equals

P = X(XT X)−1XT

whenever X has full rank p + 1.

In this case Xβ = Py has the unique solution

β̂ = (XT X)−1XT y.
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Distributional Results – Conditionally on X

εi = Yi − (1,Xi )
Tβ

Assumption 1: ε1, . . . , εN conditionally on X1, . . . ,XN are uncorrelated
with mean value 0 and same variance σ2.

σ̂2 =
1

N − p − 1

N∑
i=1

(Yi − Xβ̂)2 =
1

N − p − 1
||Y − Xβ̂||2 =

RSS(β̂)

N − p − 1

Then V (Y|X) = σ2IN

E (β̂|X) = (XT X)−1XT Xβ = β

V (β̂|X) = (XT X)−1XTσ2INX(XT X)−1 = σ2(XT X)−1

E (σ̂2|X) = σ2
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Distributional Results – Conditionally on X
Assumption 2: ε1, . . . , εN conditionally on X1, . . . ,XN are i.i.d. N(0, σ2).

β̂ ∼ N(β, σ2(XT X)−1)

(N − p − 1)σ̂2 ∼ σ2χ2
N−p−1.

The standardized Z -score

Zj =
β̂j − βj

σ̂
√

(XT X)−1
jj

∼ tN−p−1.

Or more generally for any a ∈ Rp+1

aT β̂ − aTβ

σ̂
√

aT (XT X)−1a
∼ tN−p−1.
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Minimal Variance, Unbiased Estimators
Does there exist a minimal variance, unbiased estimator of β? We consider
linear estimators only

β̃ = CT Y

for some N × p matrix C requiring that

β = CT Xβ

for all β. That is, CT X = Ip+1 = XTC . Under Assumption 1

V (β̃|X) = σ2CTC ,

and we have

V (β̂ − β̃|X) = V (((XT X)−1XT − CT )Y |X)

= σ2((XT X)−1XT − CT )((XT X)−1XT − CT )T

= σ2(CTC − (XT X)−1)

The matrix CTC − (XT X)−1 is positive semidefinite, i.e. for any a ∈ Rp+1

aT (XT X)−1a ≤ aTCTCa
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Gauss-Markov’s Theorem

Theorem

Under Assumption 1 the least squares estimator of β has minimal variance
among all linear, unbiased estimators of β.

This means that for any a ∈ Rp, aT β̂ has minimal variance among all
estimators of aTβ of the form aT β̃ where β̃ is a linear, unbiased estimator.

It also means that V (β̃)− (XT X)−1 is positive semidefinite – or in the
partial ordering on positive semidefinite matrices

V (β̃) � (XT X)−1.

Why look any further – we have found the optimal estimator....?
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Biased Estimators

The mean squared error is

MSEβ(β̃) = Eβ(||β̃ − β||2).

By Gauss-Markov’s Theorem β̂ is optimal for all β among the linear,
unbiased estimators.

Allowing for biased – possibly linear – estimators we can achieve
improvements of the MSE for some β – perhaps at the expense of some
other β.

The Stein estimator is a non-linear, biased estimator, which under
Assumption 2 has uniformly smaller MSE than β̂ whenever p ≥ 3.
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Shrinkage Estimators

If β̃ = CTY is some, biased, linear estimator of β we define the estimator

β̃γ = γβ̂ + (1− γ)β̃, γ ∈ [0, 1].

It is biased. The mean squared error is a quadratic function in γ, and the
optimal shrinkage parameter γ(β) can be found – it depends upon β!
Using the plug-in principle we get an estimator

β̃γ(β̂) = γ(β̂)β̂ + (1− γ(β̂))β̃.

It could be uniformly better – but the point is that for β where β̃ is not
too biased it can be a substantial improvement over β̂.

Take home message: Bias is a way to introduce soft model restrictions
with a locally – not globally – favorable bias-variance tradeoff.
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Regression in practice

How does the computer do multiple linear regression? Does it compute
the matrix (XT X)−1X?

NO!

If the columns x1, . . . , xp are orthogonal the solution is

β̂i =
< y, xi >

||xi ||2

Here either 1 is included and orthogonal to the other xi ’s or all variables
have first been centered.
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Orthogonalization

If x1, . . . , xp are not orthogonal the Gram-Schmidt orthogonalization
produces an orthogonal basis z1, . . . , zp spanning the same column space
(Algorithm 3.1). Thus ŷ = XT β̂ = ZT β̄ with

β̄i =
< y, zi >

||zi ||2
.

By Gram-Schmidt

span{x1, . . . , xi} = span{z1, . . . , zi}, hence zp ⊥ x1, . . . , xp−1

xp = zp + w with w ⊥ zp.

Hence
β̂p = zT

p xpβ̂j = zT
p XT β̂ = zT

p ZT β̄ = β̄p.
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Figure 3.4 – Gram-Schmidt

By Gram-Schmidt the multiple
regression coefficient β̂p equals the
coefficient for zp.

If ||zp||2 is small the variance

V (β̂p) =
σ2

||zp||2

is large and the estimate is uncertain.

For observational xi ’s this problem
occurs for highly correlated observables.
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The QR-decomposition

The matrix version of Gram-Schmidt is the decomposition

X = ZΓ

where the columns in Z are orthogonal and the matrix Γ is upper
triangular. If

D = diag(||z1||, . . . , ||zp||)

X = ZD−1︸ ︷︷ ︸
Q

DΓ︸︷︷︸
R

= QR

This is the QR-decomposition with Q an orthogonal matrix and R upper
triangular.
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Using the QR-decomposition for Estimation

If X = QR is the QR-decomposition we get that

β̂ = (RT QT QR)−1RT QT y

= R−1(RT )−1RT QT y

= R−1QT y.

Or we can write that β̂ is the solution of

Rβ̂ = QT y,

which is easy to solve as R is upper triangular.

We also get
ŷ = Xβ̂ = QQT y.
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