
Linear Regression

For (X,Y ) a pair of random variables with values in Rp × R we assume that

E(Y |X) = β0 +
p∑
j=1

Xjβj = (1, XT )β

with β ∈ Rp+1.

This “model” of the conditional expectation is linear in the parameters.

The predictor function for a given β is

fβ(x) = (1, xT )β.

A more practical and relaxed attitude towards linear regression is to say that

E(Y |X) ' β0 +
p∑
j=1

Xjβj = (1, XT )β

where the precision of the approximation of the conditional mean by a linear function is
swept under the carpet. All mathematical derivations rely on assuming that the conditional
mean is exactly linear, but in reality we will almost always regard linear regression as an
approximation. Linearity is for differentiable functions a good local approximation and it
may extend reasonably to the convex hull of the xi’s. But we must make an attempt to
check that by some sort of model control. Having done so, interpolation – prediction for
a new x in the convex hull of the observed xi’s – is usually OK, whereas extrapolation is
always dangerous. Extrapolation is strongly model dependent and we do not have data to
justify that the model is adequate for extrapolation.

Least Squares

With X the N × (p+ 1) data matrix including the column 1 the column of predicted values
for given β is Xβ.

The residual sum of squares is

RSS(β) =
N∑
i=1

(yi − (1, xTi )β)2 = ||y −Xβ||2.

The least squares estimate of β is

β̂ = argmin
β

RSS(β).
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Figure 3.1 – Geometry

The linear regression seeks a p-dimensional, affine representation – a hyperplane – of the
p+ 1-dimensional variable (X,Y ).

The direction of the Y -variable plays a distinctive role – the error of the approximating
hyperplane is measured parallel to this axis.

The Solution – the Calculus Way

Since RSS(β) = (y −Xβ)T (y −Xβ)

DβRSS(β) = −2(y −Xβ)TX

The derivative is a 1 × p dimensional matrix – a row vector. The gradient is ∇βRSS(β) =
DβRSS(β)T .

D2
βRSS(β) = 2XTX.

If X has rank p+1, D2
βRSS(β) is (globally) positive definite and there is a unique minimizer

found by solving DβRSS(β) = 0. The solution is

β̂ = (XTX)−1XTy.

For the differentiation it may be useful to think of RSS as a composition of the function
a(β) = (y − Xβ) from Rp to RN with derivative Dβa(β) = −X and then the function
b(z) = ||z||2 = zT z from RN to R with derivative Dzb(z) = 2zT . Then by the chain rule

DβRSS(β) = Dzb(a(β)))Dβa(β) = −2(y −Xβ)TX

The Solution – the Geometric Way (Figure 3.2)

With V = {Xβ | β ∈ Rp} the column space of X the quantity

RSS(β) = ||y −Xβ||2

is minimized whenever Xβ is the orthogonal projection of y onto V . The column space
projection equals

P = X(XTX)−1XT

whenever X has full rank p+ 1.

In this case Xβ = Py has the unique solution

β̂ = (XTX)−1XTy.

One verifies that P is in fact the projection by verifying three characterizing properties:

PV = V

P 2 = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT = P

PT = (X(XTX)−1XT )T = X(XTX)−1XT = P
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If X does not have full rank p the projection is still well defined and can be written as

P = X(XTX)−XT

where (XTX)− denotes a generalized inverse. A generalized inverse of a matrix A is a matrix
A− with the property that

AA−A = A

and using this property one easily verifies the same three conditions for the projection. In
this case, however, there is not a unique solution to Xβ = Py.

Distributional Results – Conditionally on X

εi = Yi − (1, Xi)Tβ

Assumption 1: ε1, . . . , εN conditionally on X1, . . . , XN are uncorrelated with mean value
0 and same variance σ2.

σ̂2 =
1

N − p− 1

N∑
i=1

(Yi −Xβ̂)2 =
1

N − p− 1
||Y −Xβ̂||2 =

RSS(β̂)
N − p− 1

Then V (Y|X) = σ2IN

E(β̂|X) = (XTX)−1XTXβ = β

V (β̂|X) = (XTX)−1XTσ2INX(XTX)−1 = σ2(XTX)−1

E(σ̂2|X) = σ2

Distributional Results – Conditionally on X

Assumption 2: ε1, . . . , εN conditionally on X1, . . . , XN are i.i.d. N(0, σ2).

β̂ ∼ N(β, σ2(XTX)−1)

(N − p− 1)σ̂2 ∼ σ2χ2
N−p−1.

The standardized Z-score

Zj =
β̂j − βj

σ̂
√

(XTX)−1
jj

∼ tN−p−1.

Or more generally for any a ∈ Rp+1

aT β̂ − aTβ
σ̂
√
aT (XTX)−1a

∼ tN−p−1.
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Minimal Variance, Unbiased Estimators

Does there exist a minimal variance, unbiased estimator of β? We consider linear estimators
only

β̃ = CTY

for some N × p matrix C requiring that

β = CTXβ

for all β. That is, CTX = Ip+1 = XTC. Under Assumption 1

V (β̃|X) = σ2CTC,

and we have

V (β̂ − β̃|X) = V (((XTX)−1XT − CT )Y |X)
= σ2((XTX)−1XT − CT )((XTX)−1XT − CT )T

= σ2(CTC − (XTX)−1)

The matrix CTC − (XTX)−1 is positive semidefinite, i.e. for any a ∈ Rp+1

aT (XTX)−1a ≤ aTCTCa

Gauss-Markov’s Theorem

Theorem 1. Under Assumption 1 the least squares estimator of β has minimal variance
among all linear, unbiased estimators of β.

This means that for any a ∈ Rp, aT β̂ has minimal variance among all estimators of aTβ of
the form aT β̃ where β̃ is a linear, unbiased estimator.

It also means that V (β̃)− (XTX)−1 is positive semidefinite – or in the partial ordering on
positive semidefinite matrices

V (β̃) � (XTX)−1.

Why look any further – we have found the optimal estimator....?

Biased Estimators

The mean squared error is
MSEβ(β̃) = Eβ(||β̃ − β||2).

By Gauss-Markov’s Theorem β̂ is optimal for all β among the linear, unbiased estimators.

Allowing for biased – possibly linear – estimators we can achieve improvements of the MSE
for some β – perhaps at the expense of some other β.

The Stein estimator is a non-linear, biased estimator, which under Assumption 2 has uni-
formly smaller MSE than β̂ whenever p ≥ 3.
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You can find more information on the Stein estimator, discovered by James Stein, in the
Wikipedia article. The result was not the expectation of the time. In the Gaussian case it
can be hard to imagine that there is an estimator that in terms of MSE performs uniformly
better than β̂. Digging into the result it turns out to be a consequence of the geometry in
Rp in dimensions greater than 3. In terms of MSE the estimator β̂ is inadmissible.

The consequences that people have drawn of the result has somewhat divided the statisti-
cians. Some has seen it as the ultimate argument for the non-sense estimators we can get
as optimal or at least admissible estimators. If β̂ – the MLE in the Gaussian setup – is not
admissible there is something wrong with the concept of admissibility. Another reaction is
that the Stein estimator illustrates that MLE (and perhaps unbiasedness) is problematic
for small sample sizes. To get better performing estimators we should consider biased es-
timators. However, there are some rather arbitrary choices in the formulation of the Stein
estimator, which makes it hard to accept it as an estimator we would use in practice.

We will in the course consider a number of biased estimators. However, the reason is not so
much due to the Stein result. The reason is much more a consequence of a favorable bias-
variance tradeoff when p is large compared to N , which can improve prediction accuracy.

Shrinkage Estimators

If β̃ = CTY is some, biased, linear estimator of β we define the estimator

β̃γ = γβ̂ + (1− γ)β̃, γ ∈ [0, 1].

It is biased. The mean squared error is a quadratic function in γ, and the optimal shrinkage
parameter γ(β) can be found – it depends upon β! Using the plug-in principle we get an
estimator

β̃γ(β̂) = γ(β̂)β̂ + (1− γ(β̂))β̃.

It could be uniformly better – but the point is that for β where β̃ is not too biased it can be
a substantial improvement over β̂.

Take home message: Bias is a way to introduce soft model restrictions with a locally – not
globally – favorable bias-variance tradeoff.

There are other methods than the plug-in principle, which can be useful. It depends on the
concrete biased estimator whether we can fit a useful, closed form expression for γ(β) or
whether we will need some additional estimation techniques.

Regression in practice

How does the computer do multiple linear regression? Does it compute the matrix (XTX)−1X?

NO!

If the columns x1, . . . ,xp are orthogonal the solution is

β̂i =
< y,xi >
||xi||2

Here either 1 is included and orthogonal to the other xi’s or all variables have first been
centered.
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We use here the inner product notation < y,xi > as the book, which in terms of matrix
multiplication could just be written yTxi. The norm is also given in terms of the inner
product, ||xi||2 =< xi,xi >= xTi xi.

Orthogonalization

If x1, . . . ,xp are not orthogonal the Gram-Schmidt orthogonalization produces an orthogonal
basis z1, . . . , zp spanning the same column space (Algorithm 3.1). Thus ŷ = XT β̂ = ZT β̄
with

β̄i =
< y, zi >
||zi||2

.

By Gram-Schmidt

• span{x1, . . . ,xi} = span{z1, . . . , zi}, hence zp ⊥ x1, . . . ,xp−1

• xp = zp + w with w ⊥ zp.

Hence
β̂p = zTp xpβ̂j = zTp XT β̂ = zTp ZT β̄ = β̄p.

It is assumed above that the p column vectors are linearly independent and thus span a
space of dimension p. Equivalently the matrix X has rank p, which in particular requires
that p ≤ N . If we have centered the variables first we need p ≤ N+1. Since we can permute
the columns into any order prior to this argument, the conclusion is not special to β̂p. Any
of the coefficients can be seen as the residual effect of xi when we correct for all the other
variables.

Figure 3.4 – Gram-Schmidt

By Gram-Schmidt the multiple regression coefficient β̂p equals the coefficient for zp.

If ||zp||2 is small the variance

V (β̂p) =
σ2

||zp||2

is large and the estimate is uncertain.

For observational xi’s this problem occurs for highly correlated observables.

The QR-decomposition

The matrix version of Gram-Schmidt is the decomposition

X = ZΓ

where the columns in Z are orthogonal and the matrix Γ is upper triangular. If

D = diag(||z1||, . . . , ||zp||)
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X = ZD−1︸ ︷︷ ︸
Q

DΓ︸︷︷︸
R

= QR

This is the QR-decomposition with Q an orthogonal matrix and R upper triangular.

Using the QR-decomposition for Estimation

If X = QR is the QR-decomposition we get that

β̂ = (RTQTQR)−1RTQTy

= R−1(RT )−1RTQTy

= R−1QTy.

Or we can write that β̂ is the solution of

Rβ̂ = QTy,

which is easy to solve as R is upper triangular.

We also get
ŷ = Xβ̂ = QQTy.
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