
Generic Setup

Data: (x1, y1), . . . , (xN , yN) with xi ∈ Rp.

Categorical variables are coded using dummy variables.

We collect the x-values in a big matrix

X =


xT

1

xT
2
...

xT
N

 =


x1,1 . . . x1,p

x2,1 . . . x2,p
...

...
xN,1 . . . xN,p


with dimensions N × p.
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Figure 14.22 – Threes

In this example the resulting data matrix X is 130× 256.
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Linear Algebra - the Mean Value
Matrix computations and decompositions is the key to many theoretical
results, and practical success relies heavily on efficient matrix
computations.

With 1 the N-dimensional vector with one’s at all positions, the column
means can be computed as

x̄T =
1

N
1TX

The projection in RN onto 1 and the orthogonal complement 1⊥ are given
by the matrices

P =
1

N
11T , IN − P = IN −

1

N
11T ,

respectively.
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Linear Algebra - the Covariance Matrix

The empirical covariance matrix is

(N − 1)Σ̂ = (X− 1x̄T )T (X− 1x̄T )

= (X− PX)T (X− PX)

= ((IN − P)X)T (IN − P)X

= XT (IN − P)X

since (IN − P)2 = IN − P.

Often we will use the augmented matrix {1 X} and often we will assume
that X has then been orthogonalized with 1. This means that X has been
replaced with (IN − P)X = X− 1x̄T . This does not change the column
space of {1 X} .
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Singular Value Decomposition

Theorem

If X is an N × p matrix there exists an N × p matrix U, a p × p matrix V
and a diagonal matrix

D =


d1 . . . 0
...

. . .
...

0 . . . dp


such that UTU = Ip, V TV = Ip, d1 ≥ . . . ≥ dp ≥ 0 and

X = UDV T .

We call d1, . . . , dp the singular values. V is an orthogonal matrix with
V−1 = V T . The columns in U with corresponding di > 0 form an
orthonormal basis for the column space of X.
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Figure 14.20 – Dimension Reduction

A one dimensional representation of 2D
data points is sought.

The natural idea is to minimize the sum
of squared distances from the line to the
data points perpendicular to the line.

This differs from linear regression where
we consider the sum of distances parallel
to the 2nd coordinate axis.
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Dimension Reduction and Projections

How can we visualize the data in X? What is a good low-dimensional
projection P : Rp → Rp with rank 1, 2 or 3?

With
V = {Vq Vp−q}

where Vq is p × q, the projection onto the columns of Vq is

Pq = VqV
T
q .

Then Pq minimizes among all rank q projections the reconstruction error

N∑
i=1

||xi − Pqxi ||2 = trace((X− XPq)(X− XPq)T )
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Figure 14.21 – Dimension Reduction and PC

The coordinates for the Pq projections of
the data points in the Vq basis are called
the q first principal components.

The coordinates are

XVq = UDV TVq

= UDdiag(1, . . . , 1, 0, . . . , 0)

= UqDq

with Uq and Dq the matrices with the q
first columns from U and D, respectively.
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Figure 14.23 – Two First Principal Components for Threes

The first principal component shows primarily the variation in how wide
the hand written threes are. The second shows primarily the variation in
how thick the drawn line is.
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Figure 14.23 – Two First Principal Components for Threes

All pixel values are measured on the same scale so we would only
centralize – not scale – the columns.
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One-dimensional Normal Variables

Let X be real valued and X |Y = k be N(µk , σ
2) for k = 1, 2. If

Pr(Y = k) = πk the Bayes classifier is

f (x) =

{
1 if π1f1(x) ≥ π2f2(x)
2 if π1f1(x) < π2f2(x)

Or

f (x) =

{
1 if log(f1(x)/f2(x)) ≥ log(π2/π1)
2 if log(f1(x)/f2(x)) < log(π2/π1)

Or

f (x) =

{
1 if 2x(µ1 − µ2) ≥ 2σ2 log(π2/π1)− µ2

2 + µ2
1

2 if 2x(µ1 − µ2) < 2σ2 log(π2/π1)− µ2
2 + µ2

1
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Linear Discriminant Analysis

Let Y take values in {1, . . . ,K} with

Pr(Y = k) = πk

with π1 + . . .+ πK = 1, and let the conditional distribution of X |Y = k be
N(µk ,Σ) on Rp with Σ regular. That is, the density for X |Y = k is

gk(x) =
1√

2πdet(Σ)
p e−

1
2

(x−µk )T Σ−1(x−µk ).

The conditional probability of Y = k|X = x is

Pr(Y = k |X = x) =
πkgk(x)

π1g1(x) + . . .+ πkg1(x)
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The Bayes Classifier

log
Pr(Y = k |X = x)

Pr(Y = l |X = x)
= log

πk

πl
+ log

gk(x)

gl(x)

= log
πk

πl
+

1

2
(x − µl)

T Σ−1(x − µl)−
1

2
(x − µk)T Σ−1(x − µk)

= log
πk

πl
+

1

2
µT

l Σ−1µl −
1

2
µT

k Σ−1µk + xT Σ−1(µk − µl)

The boundary – the x ’s where Pr(Y = k|X = x) = Pr(Y = l |X = x) – is
a hyperplane. We call this a linear classifier as we can determine the
classification by the computation of the finite number of linear functions
xT Σ−1(µk − µl), k, l = 1, . . . ,K .
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Linear Discriminant Functions

Introducing

δk(x) = xT Σ−1µk −
1

2
µT

k ΣTµk + log πk

we see that

log
Pr(Y = k |X = x)

Pr(Y = l |X = x)
= δk(x)− δl(x)

The decision boundaries are the solutions to the linear equations

δk(x) = δl(x)

and the Bayes classifier is

f (x) = argmaxkδk(x).
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Figure 4.5 – Linear Discrimination
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Estimation

We use the the plug-in principle for estimation. That is, maximum
likelihood estimation of all the parameters in the full model for (X ,Y )

π̂k =
Nk

N
, Nk =

N∑
i=1

1(yi = k)

µ̂k =
1

Nk

∑
i :yi =k

xi

Σ̂ =
1

N − K

K∑
k=1

∑
i :yi =k

(xi − µ̂k)2

– with the usual centralized estimate of the covariance matrix.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 11, 2009 16 / 27



Estimation

If A is the N × K design matrix, the projection onto its column space is
P = A(ATA)−1AT and we can write

µ̂T = (ATA)−1ATX

Σ̂ =
1

N − K
(X− PX)T (X− PX)

=
1

N − K
XT (IN − P)X
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Parameter Functions
Fixing the last group K as a reference group we have for k = 1, . . . ,K − 1
that

log
Pr(Y = k |X = x)

Pr(Y = K |X = x)
= log

πk

πK
+

1

2
µT

K Σ−1µK −
1

2
µT

k Σ−1µk︸ ︷︷ ︸
βk0

+xT Σ−1(µk − µK )︸ ︷︷ ︸
βk

Thus

Pr(Y = k |X = x) =
exp(βk0 + xTβk)

1 +
∑K−1

l=1 exp(βl0 + xTβl)

for k = 1, . . . ,K − 1. The conditional distribution depends upon
π1, . . . , πK−1, µ1, . . . , µk ,Σ through the parameter function

τ : RK−1 × RKp × PDp → RK−1 × R(K−1)p

τ(π1, . . . , πK−1, µ1, . . . , µK ,Σ) = (β10, . . . , β(K−1)0, β1, . . . , βK−1).
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Quadratic Discriminant Analysis

What if Σ1 6= Σ2 (K = 2)?

log
Pr(Y = k |X = x)

Pr(Y = l |X = x)
= δ̄k(x)− δ̄l(x)

where

δ̄k(x) = −1

2
log detΣk −

1

2
(x − µk)T Σ−1

k (x − µk) + log(πk).

is a quadratic function. The decision boundaries are the solutions to the
quadratic equations δ̄k(x) = δ̄l(x) and the Bayes classifier is

f (x) = argmaxk δ̄k(x).
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Figure 4.6 – Quadratic Discrimination

To get quadratic boundaries one can either do QDA (right) or one can
transform the bivariate variable X = (X1,X2)T to the five dimensional
variable X ′ = (X1,X2,X

2
1 ,X1X2,X

2
2 ) and do LDA in R5 (left). The linear

boundary in R5 shows up as a quadratic boundary in R2.
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Regularized Estimation

Can we estimate Σ – or Σk – to the needed precision? What if p is large?

Regularization or shrinkage estimation may be a solution.

αΣ̂k + (1− α)Σ̂

for α ∈ [0, 1] when we do QDA.

γΣ̂ + (1− γ)diag(σ̂2
1, . . . , σ̂

2
p)

for γ ∈ [0, 1] when we do LDA.
Or even

γΣ̂ + (1− γ)σ̂2Ip

for γ ∈ [0, 1].
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Bias-Variance Tradeoff

For the vowel data we try the use of
different convex combinations of the
estimated covariance matrices Σ̂k and
the common estimated covariance matrix
Σ̂.
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Figure 4.4 – Dimension Reduction

Linear discriminant analysis provides a
direct dimension reduction to the
K -dimensional space. The above figure
shows a further reduction to a 2D
projection chosen to maximize the
spread of the group means.
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Figure 4.9 – Discrimination and Dimension Reduction

How to project to maximize the spread of group means? The usual inner
product in Euclidean space is not optimal – we should use the inner
product given by Σ−1
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Change of Basis Point of View

If Σ = cVD2V T with D a diagonal matrix with strictly positive entries and
c > 0 we let x̃ = D−1V T x and µ̃k = D−1V Tµk . This is a change of basis
given by the matrix D−1V T . With R a constant not depending on k we
have

log Pr(Y = k |X = x) = log πk −
1

2c
(x − µk)TVD−2V T (x − µk) + R

= log πk −
||x̃ − µ̃k ||2

2c
+ R.

Hence

argmaxkPr(Y = k |X = x) = argmin
k
||x̃ − µ̃k ||2 − 2c log πk .
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LDA as Dimension Reduction Technique
If X− PX = UDV T is the singular value decomposition we get that the
estimated covariance matrix is

Σ̂ =
1

N − K
VD2V T

Choosing a change of basis given by the matrix D−1V T the resulting data
matrix will have empirical covariance matrix 1

N−K I .

In the changed basis we let

(PX− 1x̄T )VD−1 = U∗D∗V ∗T

denote the singular value decomposition. The minimal rank q
reconstruction error – measured using the usual Euclidean norm – for the
deviations of the group means to the total mean is spanned by the first q
columns in V ∗. Then the columns of VD−1V ∗ are the canonical
coordinates.
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Figure 4.8 – Dimension Reduction

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning May 11, 2009 27 / 27


