
Logistic Regression

We consider K = 2 and encode the y -variable as 0 or 1. The logistic
regression model is given by

Pr(Y = 1 | X = x) =
exp((1, xT )β)

1 + exp((1, xT )β)

Hence

Pr(Y = 0 | X = x) = 1− exp((1, xT )β)

1 + exp((1, xT )β)
=

1

1 + exp((1, xT )β)
.

We saw that the conditional distribution of Y given X in the LDA setup is
a logistic regression model.
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Logistic Regression – Notation

Given a dataset (y1, x1), . . . , (yN , xN) write

p(β) = (pi (β))N
i=1, pi (β) =

exp((1, xT
i )β)

1 + exp((1, xT
i )β)

.

With h : RN → RN

hi (z) = − log(1 + exp(zi ))

and taking coordinatewise logarithm

log p(β) = Xβ + h(Xβ)

and
log(1− p(β)) = h(Xβ)
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Logistic Regression – The Minus-Log-Likelihood Function

The (conditional) likelihood function of observing y1, . . . , yN given
x1, . . . , xN is

L(β) =
N∏

i=1

pi (β)yi (1− pi (β))1−yi

and the minus-log-likelihood function is

l(β) = −yT (Xβ + h(Xβ))− (1− y)Th(Xβ)

= −yTXβ − 1Th(Xβ)

Observe that Dzh(z) is diagonal with

Dzh(z)ii = − exp(zi )

1 + exp(zi )
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Logistic Regression – The MLE

By differentiation

Dβ l(β) = −yTX− 1TDzh(Xβ)X

= −yTX + p(β)TX

= (p(β)T − yT )X

and
D2

β l(β) = Dβp(β)TX = XTW(β)X

with

W(β) = diag(p(β))diag(1− p(β))

=


p1(β)(1− p1(β)) . . . 0

...
. . .

...
0 . . . pN(β)(1− pN(β))


Niels Richard Hansen (Univ. Copenhagen) Statistics Learning April 28, 2009 4 / 8



Likelihood Equation

The non-linear likelihood estimation equation reads (after transposition)

XTp(β) = XTy

Since D2
β l(β) = XTW(β)X is positive definite whenever X has full rank

p + 1, the minus-log-likelihood function is strictly convex and a minimum
is unique.

There is no solution if the x-values for the two groups can be separated
completely by a hyperplane.
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Logistic Regression – Algorithm
A first order Taylor expansion

p(β) ' p(β0) + W(β0)X(β − β0)

around β0 yields the approximating equation

XTW(β0)Xβ = XTW(β0)(Xβ0 + W(β0)−1(y − p(β0))︸ ︷︷ ︸
adjusted response=z0

).

The solution is precisely the solutions of the weighted least squares
problem

argmin
β

(z0 − Xβ)TW(β0)(z0 − Xβ)

Iteration yielding a sequence βn, n ≥ 0, is known as the iterative
reweighted least squares algorithm – or IRLS – using the adjusted response

zn = Xβn + W(βn)−1(y − p(βn))

in the (n + 1)’th iteration. The algorithm is equivalent to the
Newton-Raphson algorithm.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning April 28, 2009 6 / 8



Figure 4.12 – South African Heart Disease Data

A typical use of logistic
regression. The response variable
is Myocardial Infarction. The two
cases (0/1) are color coded in the
plot.

The plot reveals pair-wise – and
marginal – effects of the 7
observed variables on MI.

And clear correlations between
obesity and sbp (systolic blood
pressure), say.
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Multinomial Regression and LDA

It is possible to formulate a multinomial version of the binary logistic
regression model.

The algorithm for estimation becomes more complicated.

LDA implements the plug-in principle using MLE for the full parameter.
Logistic/multinomial regression implements the conditional plug-in
principle using MLE in the conditional distribution.

Logistic regression makes fewer distributional assumptions. Deviations
from normality could affect LDA in the negative direction.

If the distributional assumptions of LDA are fulfilled LDA is a little more
efficient.
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