Logistic Regression

We consider K = 2 and encode the y-variable as 0 or 1. The logistic regression model is
given by
exp((1,z7)3)
PrY =1| X =2) =
O = = (@)

Hence
B exp((1,27)3) _ 1
1+exp((1,27)3) ~ 1+exp((1,27)3)

PrY =0|X=2)=1

We saw that the conditional distribution of Y given X in the LDA setup is a logistic
regression model.

Logistic Regression — Notation

Given a dataset (y1,21),. .., (yn,zN) write

v ep((1aT)B)
p(ﬁ) - (pz(ﬂ))zzla pz(ﬁ) 1+ eXp((szﬂ)ﬁ)-

With A : RY — RN
hi(z) = —log(1 + exp(z;))

and taking coordinatewise logarithm

log p(B) = X3 + h(Xp)

and

log(1 —p(B)) = h(Xp)

Logistic Regression — The Minus-Log-Likelihood Function

The (conditional) likelihood function of observing y1,...,yn given z1,...,zx is

N
£(8) = [T m(B)" (1 = pi(B)*
=1

and the minus-log-likelihood function is

18) = —y"(XB+NnXB))—(1-y) h(XP)
= —y'XB-1Th(Xp)
Observe that D,h(z) is diagonal with

exp(z;)

Dzh(z)ii = —71 n eXp(Zi)



Logistic Regression — The MLE
By differentiation

Dsl(B) = —y"'X-1"D.n(Xp3)X
= —y"X+p(p)X
(p(B)" —y")X
and
D3I(B) = Dgp(8)"X = X" W(B)X
with

W(3) = diag(p(f))diag(l — p(B))
pi(B)(1—=pi(B)) ... 0

0 . pn(B)(1— px(B))

Likelihood Equation
The non-linear likelihood estimation equation reads (after transposition)
XTp(p) = X"y

Since D31(3) = XTW ()X is positive definite whenever X has full rank p + 1, the minus-
log-likelihood function is strictly convex and a minimum is unique.

There is no solution if the x-values for the two groups can be separated completely by a
hyperplane.

Logistic Regression — Algorithm
A first order Taylor expansion

P(3) ~ p(Bo) + W (B0)X(B — o)
around [y yields the approximating equation

XTW (80)X3 = XTW(3) (X80 + W(B) " (y — P(0)))-

adjusted response=zg

The solution is precisely the solutions of the weighted least squares problem

argénin (2o — XB)TW(B0)(zo — X3)

Iteration yielding a sequence (3,, n > 0, is known as the iterative reweighted least squares
algorithm — or IRLS — using the adjusted response

zZn, = X[, + W(Bn)_l(y - p(ﬂn))

in the (n + 1)’th iteration. The algorithm is equivalent to the Newton-Raphson algorithm.



Figure 4.12 — South African Heart Disease Data

A typical use of logistic regression. The response variable is Myocardial Infarction. The two
cases (0/1) are color coded in the plot.

The plot reveals pair-wise — and marginal — effects of the 7 observed variables on MI.

And clear correlations between obesity and sbp (systolic blood pressure), say.

Multinomial Regression and LDA

It is possible to formulate a multinomial version of the binary logistic regression model.

The algorithm for estimation becomes more complicated.

LDA implements the plug-in principle using MLE for the full parameter. Logistic/multinomial
regression implements the conditional plug-in principle using MLE in the conditional distri-
bution.

Logistic regression makes fewer distributional assumptions. Deviations from normality could
affect LDA in the negative direction.

If the distributional assumptions of LDA are fulfilled LDA is a little more efficient.



