
Logistic Regression

We consider K = 2 and encode the y-variable as 0 or 1. The logistic regression model is
given by

Pr(Y = 1 | X = x) =
exp((1, xT )β)

1 + exp((1, xT )β)

Hence

Pr(Y = 0 | X = x) = 1− exp((1, xT )β)
1 + exp((1, xT )β)

=
1

1 + exp((1, xT )β)
.

We saw that the conditional distribution of Y given X in the LDA setup is a logistic
regression model.

Logistic Regression – Notation

Given a dataset (y1, x1), . . . , (yN , xN ) write

p(β) = (pi(β))Ni=1, pi(β) =
exp((1, xTi )β)

1 + exp((1, xTi )β)
.

With h : RN → RN
hi(z) = − log(1 + exp(zi))

and taking coordinatewise logarithm

log p(β) = Xβ + h(Xβ)

and
log(1− p(β)) = h(Xβ)

Logistic Regression – The Minus-Log-Likelihood Function

The (conditional) likelihood function of observing y1, . . . , yN given x1, . . . , xN is

L(β) =
N∏
i=1

pi(β)yi(1− pi(β))1−yi

and the minus-log-likelihood function is

l(β) = −yT (Xβ + h(Xβ))− (1− y)Th(Xβ)
= −yTXβ − 1Th(Xβ)

Observe that Dzh(z) is diagonal with

Dzh(z)ii = − exp(zi)
1 + exp(zi)
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Logistic Regression – The MLE

By differentiation

Dβl(β) = −yTX− 1TDzh(Xβ)X
= −yTX + p(β)TX

= (p(β)T − yT )X

and
D2
βl(β) = Dβp(β)TX = XTW(β)X

with

W(β) = diag(p(β))diag(1− p(β))

=


p1(β)(1− p1(β)) . . . 0

...
. . .

...
0 . . . pN (β)(1− pN (β))



Likelihood Equation

The non-linear likelihood estimation equation reads (after transposition)

XTp(β) = XTy

Since D2
βl(β) = XTW(β)X is positive definite whenever X has full rank p + 1, the minus-

log-likelihood function is strictly convex and a minimum is unique.

There is no solution if the x-values for the two groups can be separated completely by a
hyperplane.

Logistic Regression – Algorithm

A first order Taylor expansion

p(β) ' p(β0) + W(β0)X(β − β0)

around β0 yields the approximating equation

XTW(β0)Xβ = XTW(β0)(Xβ0 + W(β0)−1(y − p(β0))︸ ︷︷ ︸
adjusted response=z0

).

The solution is precisely the solutions of the weighted least squares problem

argmin
β

(z0 −Xβ)TW(β0)(z0 −Xβ)

Iteration yielding a sequence βn, n ≥ 0, is known as the iterative reweighted least squares
algorithm – or IRLS – using the adjusted response

zn = Xβn + W(βn)−1(y − p(βn))

in the (n+ 1)’th iteration. The algorithm is equivalent to the Newton-Raphson algorithm.
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Figure 4.12 – South African Heart Disease Data

A typical use of logistic regression. The response variable is Myocardial Infarction. The two
cases (0/1) are color coded in the plot.

The plot reveals pair-wise – and marginal – effects of the 7 observed variables on MI.

And clear correlations between obesity and sbp (systolic blood pressure), say.

Multinomial Regression and LDA

It is possible to formulate a multinomial version of the binary logistic regression model.

The algorithm for estimation becomes more complicated.

LDA implements the plug-in principle using MLE for the full parameter. Logistic/multinomial
regression implements the conditional plug-in principle using MLE in the conditional distri-
bution.

Logistic regression makes fewer distributional assumptions. Deviations from normality could
affect LDA in the negative direction.

If the distributional assumptions of LDA are fulfilled LDA is a little more efficient.
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