
Generic Setup

Data: (x1, y1), . . . , (xN , yN ) with xi ∈ Rp.

Categorical variables are coded using dummy variables.

We collect the x-values in a big matrix

X =


xT1
xT2
...
xTN

 =


x1,1 . . . x1,p

x2,1 . . . x2,p

...
...

xN,1 . . . xN,p


with dimensions N × p.
If a we need to work with a categorical x-coordinate that can occur on K different levels
we can encode the variable as a K-dimensional vector of zero’s and one’s containing just a
single one. This coding is known as dummy variables. If K = 2 there are the two possible
outcomes (1, 0) and (0, 1).

Figure 14.22 – Threes

In this example the resulting data matrix X is 130× 256.

Linear Algebra - the Mean Value

Matrix computations and decompositions is the key to many theoretical results, and practical
success relies heavily on efficient matrix computations.

With 1 the N -dimensional vector with one’s at all positions, the column means can be
computed as

x̄T =
1
N

1TX

The projection in RN onto 1 and the orthogonal complement 1⊥ are given by the matrices

P =
1
N

11T , IN − P = IN −
1
N

11T ,

respectively.
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Linear Algebra - the Covariance Matrix

The empirical covariance matrix is

(N − 1)Σ̂ = (X− 1x̄T )T (X− 1x̄T )
= (X− PX)T (X− PX)
= ((IN − P )X)T (IN − P )X
= XT (IN − P )X

since (IN − P )2 = IN − P .

Often we will use the augmented matrix {1 X} and often we will assume that X has then been
orthogonalized with 1. This means that X has been replaced with (IN − P )X = X− 1x̄T .
This does not change the column space of {1 X} .

Singular Value Decomposition

Theorem 1. If X is an N × p matrix there exists an N × p matrix U , a p × p matrix V
and a diagonal matrix

D =


d1 . . . 0
...

. . .
...

0 . . . dp


such that UTU = Ip, V TV = Ip, d1 ≥ . . . ≥ dp ≥ 0 and

X = UDV T .

We call d1, . . . , dp the singular values. V is an orthogonal matrix with V −1 = V T . The
columns in U with corresponding di > 0 form an orthonormal basis for the column space of
X.

Figure 14.20 – Dimension Reduction

A one dimensional representation of 2D data points is sought.

The natural idea is to minimize the sum of squared distances from the line to the data points
perpendicular to the line.

This differs from linear regression where we consider the sum of distances parallel to the 2nd
coordinate axis.

Dimension Reduction and Projections

How can we visualize the data in X? What is a good low-dimensional projection P : Rp → Rp
with rank 1, 2 or 3?

With
V = {Vq Vp−q}
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where Vq is p× q, the projection onto the columns of Vq is

Pq = VqV
T
q .

Then Pq minimizes among all rank q projections the reconstruction error

N∑
i=1

||xi − Pqxi||2 = trace((X−XPq)(X−XPq)T )

Note that a computation of the reconstruction error by computing the N ×N matrix (X−
XPq)(X − XPq)T and then computing the trace is a computational waste. All the non-
diagonals in the matrix product are not needed.

We will generally always replace X by X − 1x̄T before attempting a projection onto a
subspace. Because the p coordinates we measure by no means need to be measured on a
common scale it is often also most relevant to normalize the columns to have unit length
before we attempt a dimension reduction. That is, we divide each column by its empirical
standard error. If there are other ways to bring all variables measured on a common scale
that might be preferred. We should note that the projections obtained from the singular
value decomposition is not invariant to marginal scaling of the columns in X.

Figure 14.21 – Dimension Reduction and PC

The coordinates for the Pq projections of the data points in the Vq basis are called the q
first principal components.

The coordinates are

XVq = UDV TVq

= UDdiag(1, . . . , 1, 0, . . . , 0)
= UqDq

with Uq and Dq the matrices with the q first columns from U and D, respectively.

Figure 14.23 – Two First Principal Components for Threes

The first principal component shows primarily the variation in how wide the hand written
threes are. The second shows primarily the variation in how thick the drawn line is.

Figure 14.23 – Two First Principal Components for Threes

All pixel values are measured on the same scale so we would only centralize – not scale –
the columns.
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One-dimensional Normal Variables

Let X be real valued and X|Y = k be N(µk, σ2) for k = 1, 2. If Pr(Y = k) = πk the Bayes
classifier is

f(x) =
{

1 if π1f1(x) ≥ π2f2(x)
2 if π1f1(x) < π2f2(x)

Or

f(x) =
{

1 if log(f1(x)/f2(x)) ≥ log(π2/π1)
2 if log(f1(x)/f2(x)) < log(π2/π1)

Or

f(x) =
{

1 if 2x(µ1 − µ2) ≥ 2σ2 log(π2/π1)− µ2
2 + µ2

1

2 if 2x(µ1 − µ2) < 2σ2 log(π2/π1)− µ2
2 + µ2

1

Linear Discriminant Analysis

Let Y take values in {1, . . . ,K} with

Pr(Y = k) = πk

with π1 + . . .+ πK = 1, and let the conditional distribution of X|Y = k be N(µk,Σ) on Rp
with Σ regular. That is, the density for X|Y = k is

gk(x) =
1√

2πdet(Σ)
p e
− 1

2 (x−µk)T Σ−1(x−µk).

The conditional probability of Y = k|X = x is

Pr(Y = k|X = x) =
πkgk(x)

π1g1(x) + . . .+ πkg1(x)

The Bayes Classifier

log
Pr(Y = k|X = x)
Pr(Y = l|X = x)

= log
πk
πl

+ log
gk(x)
gl(x)

= log
πk
πl

+
1
2

(x− µl)TΣ−1(x− µl)−
1
2

(x− µk)TΣ−1(x− µk)

= log
πk
πl

+
1
2
µTl Σ−1µl −

1
2
µTk Σ−1µk + xTΣ−1(µk − µl)

The boundary – the x’s where Pr(Y = k|X = x) = Pr(Y = l|X = x) – is a hyperplane. We
call this a linear classifier as we can determine the classification by the computation of the
finite number of linear functions xTΣ−1(µk − µl), k, l = 1, . . . ,K.
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Linear Discriminant Functions

Introducing

δk(x) = xTΣ−1µk −
1
2
µTk ΣTµk + log πk

we see that

log
Pr(Y = k|X = x)
Pr(Y = l|X = x)

= δk(x)− δl(x)

The decision boundaries are the solutions to the linear equations

δk(x) = δl(x)

and the Bayes classifier is
f(x) = argmaxkδk(x).

Figure 4.5 – Linear Discrimination

Estimation

We use the the plug-in principle for estimation. That is, maximum likelihood estimation of
all the parameters in the full model for (X,Y )

π̂k =
Nk
N
, Nk =

N∑
i=1

1(yi = k)

µ̂k =
1
Nk

∑
i:yi=k

xi

Σ̂ =
1

N −K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)2

– with the usual centralized estimate of the covariance matrix.

Estimation

If A is the N ×K design matrix, the projection onto its column space is P = A(ATA)−1AT

and we can write

µ̂T = (ATA)−1ATX

Σ̂ =
1

N −K
(X− PX)T (X− PX)

=
1

N −K
XT (IN − P )X

The design matrix A is given by

Ai,j =
{

1 if yi = j
0 if yi 6= j
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Parameter Functions

Fixing the last group K as a reference group we have for k = 1, . . . ,K − 1 that

log
Pr(Y = k|X = x)
Pr(Y = K|X = x)

= log
πk
πK

+
1
2
µTKΣ−1µK −

1
2
µTk Σ−1µk︸ ︷︷ ︸

βk0

+xT Σ−1(µk − µK)︸ ︷︷ ︸
βk

Thus

Pr(Y = k|X = x) =
exp(βk0 + xTβk)

1 +
∑K−1
l=1 exp(βl0 + xTβl)

for k = 1, . . . ,K− 1. The conditional distribution depends upon π1, . . . , πK−1, µ1, . . . , µk,Σ
through the parameter function

τ : RK−1 × RKp × PDp → RK−1 × R(K−1)p

τ(π1, . . . , πK−1, µ1, . . . , µK ,Σ) = (β10, . . . , β(K−1)0, β1, . . . , βK−1).

We use PDp to denote the set of p × p positive definite matrices. Note that it is more
problematic to define any simple parameter functions ρ such that the marginal distribution
of X depends upon ρ only.

Quadratic Discriminant Analysis

What if Σ1 6= Σ2 (K = 2)?

log
Pr(Y = k|X = x)
Pr(Y = l|X = x)

= δ̄k(x)− δ̄l(x)

where
δ̄k(x) = −1

2
log detΣk −

1
2

(x− µk)TΣ−1
k (x− µk) + log(πk).

is a quadratic function. The decision boundaries are the solutions to the quadratic equations
δ̄k(x) = δ̄l(x) and the Bayes classifier is

f(x) = argmaxk δ̄k(x).

Figure 4.6 – Quadratic Discrimination

To get quadratic boundaries one can either do QDA (right) or one can transform the bivariate
variable X = (X1, X2)T to the five dimensional variable X ′ = (X1, X2, X

2
1 , X1X2, X

2
2 ) and

do LDA in R5 (left). The linear boundary in R5 shows up as a quadratic boundary in R2.

If the linear boundary R5 is given by

βTX ′ + β0 = β1X1 + β2X2 + β3X
2
1 + β4X1X2 + β5X

2
2 = 0

we see that in terms of X1 and X2 this is a quadratic equation. Note that due to the
transformation X 7→ X ′ there is no chance that X ′ can be 5-dimensional, regular normal
distribution. The methodology can, however, still be useful.
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Regularized Estimation

Can we estimate Σ – or Σk – to the needed precision? What if p is large?

Regularization or shrinkage estimation may be a solution.

αΣ̂k + (1− α)Σ̂

for α ∈ [0, 1] when we do QDA.

γΣ̂ + (1− γ)diag(σ̂2
1 , . . . , σ̂

2
p)

for γ ∈ [0, 1] when we do LDA.

Or even
γΣ̂ + (1− γ)σ̂2Ip

for γ ∈ [0, 1].

Bias-Variance Tradeoff

For the vowel data we try the use of different convex combinations of the estimated covariance
matrices Σ̂k and the common estimated covariance matrix Σ̂.

Figure 4.4 – Dimension Reduction

Linear discriminant analysis provides a direct dimension reduction to the K-dimensional
space. The above figure shows a further reduction to a 2D projection chosen to maximize
the spread of the group means.

Figure 4.9 – Discrimination and Dimension Reduction

How to project to maximize the spread of group means? The usual inner product in Eu-
clidean space is not optimal – we should use the inner product given by Σ−1

Change of Basis Point of View

If Σ = cV D2V T with D a diagonal matrix with strictly positive entries and c > 0 we let
x̃ = D−1V Tx and µ̃k = D−1V Tµk. This is a change of basis given by the matrix D−1V T .
With R a constant not depending on k we have

log Pr(Y = k|X = x) = log πk −
1
2c

(x− µk)TV D−2V T (x− µk) +R

= log πk −
||x̃− µ̃k||2

2c
+R.

Hence
argmaxkPr(Y = k|X = x) = argmin

k
||x̃− µ̃k||2 − 2c log πk.
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If A denotes the affine space spanned by µ̃1, . . . , µ̃K and Q the projection onto that space
we have that Qx̃− µ̃k ⊥ x̃−Qx̃ and we see that

argmaxkPr(Y = k|X = x) = argmin
k
||Qx̃− µ̃k||2 − 2c log πk.

Assuming that A = µ0 +span{v∗1 , . . . , v∗K} where v∗1 , . . . , v
∗
K constitute and othonormal basis

in the usual inner product and µ0 ∈ A we find that

Qx̃ = µ0 +
K∑
k=1

(x̃T v∗k)v∗k

and

||Qx̃− µ̃k||2 =
K∑
k=1

((x̃T v∗k − µ̃Tk v∗k)2

=
K∑
k=1

(xTD−1V v∗k − µTkD−1V v∗k)2

Thus a practical solution for computing the classifier is to first compute one such orthonormal
basis v∗1 , . . . , v

∗
K and then compute the vectors

LDk = D−1V v∗k.

For a given x is we use the formula above to compute the distance from x̃ to µ̃k for each
k = 1, . . . ,K and classify to the group k with the smallest distance – modulo the correction
given by −2c log πk. If all groups are equally probably we can ignore this correction, and
otherwize it has the effect of adding a larger number to the least probable groups.

The next construction for a given dataset provides one such choice of orthonomal basis where
we seek (for plotting purposes) to sequentially maximize the discrimination of the group
means for each choice of basis vector. Thus the first vectors provide the best discrimination
of the group means and the last provide the least discrimination.

LDA as Dimension Reduction Technique

If X−PX = UDV T is the singular value decomposition we get that the estimated covariance
matrix is

Σ̂ =
1

N −K
VD2V T

Choosing a change of basis given by the matrix D−1V T the resulting data matrix will have
empirical covariance matrix 1

N−K I.

In the changed basis we let

(PX− 1x̄T )V D−1 = U∗D∗V ∗T

denote the singular value decomposition. The minimal rank q reconstruction error – mea-
sured using the usual Euclidean norm – for the deviations of the group means to the total
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mean is spanned by the first q columns in V ∗. Then the columns of V D−1V ∗ are the
canonical coordinates.

The so-called “sphering” of the data is not a unique operation. If we apply any orthogonal
transformation to the data after one “sphering”, we still get a data matrix with the empirical
covariance matrix proportional to the unit matrix. Therefore, we could also apply the change
of basis given by V D−1V T , which is equal to

√
N −KΣ̂1/2.

Figure 4.8 – Dimension Reduction
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