BMC course in Statistical Learning, 2009

Lectures: Niels Richard Hansen

@ Homepage: nttp://www.math.ku.dk/~richard/courses/bmc2009/

@ Co-taught with the regular Statistical Learning course at University of
Copenhagen.

e Evaluation:

A minor, individual assignment — practical
A major, individual project — mostly practical

@ Theoretical training exercises handed out 26-4-2009.

@ Practical exercises: During the course | have planned 9 small practical
R-exercises that you will solve/work on in class. Solutions will be
provided. Additional selected exercises from the book will be given.

@ Teaching material: The Elements of Statistical Learning. Data
Mining, Inference, and Prediction 2nd ed. together with hand-outs
from the lectures.
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Statistical Learning
What is Statistical Learning?

Old wine on new bottles? Is it not just plain statistical inference and
regression theory?

New(ish) field on how to use statistics to make the computer “learn”?

A merger of classical disciplines in statistics with methodology from areas
known as machine learning, pattern recognition and artificial neural
networks.

Major purpose: Prediction — as opposed to .... truth!?

Major point of view: Function approximation, solution of a mathematically
formulated estimation problem — as opposed to algorithms.
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Iris data

A classical dataset collected by the botanist Edgar Anderson, 1935, The
irises of the Gaspe Peninsula and studied by statistician R. A. Fisher, 1936
The use of multiple measurements in taxonomic problems. Available as
the iris dataset in the MASS library in R.

Sepal Petal
Length Width Length Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
6.3 3.3 6.0 2.5 virginica
5.8 2.7 5.1 1.9 virginica
7.1 3.0 5.9 2.1 virginica
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Figure 1.1 — Prostate Cancer

A classical scenario from statistics. How
does the response variable 1psa relate to
a number of other measured or observed
quantities — some continuous and some
categorical?

Typical approach is regression — the

scatter plot to the left might reveal some
correlations.
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Figure 1.2 — Hand Written Digits

A classical problem from pattern
recognition. How do we classify
an image of a handwritten
number as 0 - 97

This is the mail sorting problem
based on zip codes.

It's not so easy — is
a nine or a five?
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Figure 1.3 — Microarray Measurements

Niels Richard Hansen (Univ. Copenhagen)

A problem of current importance. How does the
many genes of our cells behave?

We can measure the activity of thousands of
genes simultaneously — the gene expression
levels — and want to know about the relation of
gene expression patterns to “status of the cell”
(healthy, sick, cancer, what type of cancer ...)
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Classification

The objective in a classification problem is to be able to classify an object
into a finite number of distinct groups based on observed quantities.

With hand written digits we have 10 groups and an 8x8 pixel gray tone
image (a vector in R?%9).

With microarrays a typical scenario is that we have 2 groups (cancer type

A and cancer type B) and a 10-30 thousand dimensional vector of gene
expressions.
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Setup — and One Simple ldea

We have observations (x1, y1), - .., (xn, yn) with x; € RP and y; € {0,1}.
We assume that the data arose as independent and identically distributed
samples of a pair (X, Y) of random variables.

Assume X = xp € RP what is Y7 Let

Ni(x0) = {i | x; is one of the k'th nearest observations}.

Define
~ 1

Flo) = ¢ > yielo1]

i€ Ny (xo)
and classify using majority rules

[ 1 iff(x) >1/2
YZlo0  iff(x) <1/2
Niels Richard Hansen (Univ. Copenhagen)
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Figure 2.2 — 15-Nearest Neighbor Classifier

A wiggly separation barrier between xp's
classified as zero's and one's is
characteristic of nearest neighbors. With
k = 15 we get a partition of the space
into just two connected ‘“classification
components” .
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Figure 2.3 — 1-Nearest Neighbor Classifier

With k = 1 every observed point has its
own “neighborhood of classification”.
The result is a large(r) number of
connected classification components.
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Linear Classifiers
A classifier is called linear if there is an affine function

XI—>xTﬁ+ﬁo

with the classifier at xg

1 ifx"8+5y>0
f(x) = . -
(*) { 0 ifxTB4 6 <0
There are several examples of important linear classifiers. We encounter
e Linear discriminant analysis (LDA).
@ Logistic regression.
@ Support vector machines.

Tree based methods is a fourth method that relies on locally linear
classifiers.
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Regression

If the y variable is continuous we usually talk about regression. You should
all know the linear regression model

Y=X"8+po+e

where ¢ and X are independent, E(¢) =0 and V/(¢) = o2.

We talk about a prediction f(x) of Y given X = x where f : RP - R is a
predictor. In the linear regression model above

f(x) = E(YIX = x) = x" + o

is a natural choice of linear predictor.
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Statistical Decision Theory

Question: How do we make optimal decisions of action/prediction under
uncertainty?

We need to

@ decide how we measure the quality of the decision — loss functions,
@ decide how we model the uncertainty — probability measures,

@ decide how we weigh together the losses.
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Loss Functions

A loss function in the framework of ordinary regression analysis is a
function L : R x R — [0, 00).

A predictor is a function f : R? — R. If (x,y) € RP x R the quality of
predicting y as f(y) is measured by the loss

Ly, f(x))-

Large values are bad! Examples where L(y,y) = V(y — 7):
@ The squared error loss; V(t) = t2.
@ The absolute value loss; V/(t) = |t].
@ Huber for ¢ > 0; V(t) = t21(|t] < c) + (2c|t] — 2)1(]t| > <).
@ The e-insensitive loss; V(t) = |t|1(|t| > ¢).
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Probability Models

Let (X, Y) be a random variable with values in RP x R and decompose
the distribution of P into the conditional distribution P, of Y given X = x
and the marginal distribution P; of X. This means

P(X €AY eB)= /A P,(B)Py(dx).

Recall that if the joint distribution has density f(x,y) w.r.t. the Lebesgue
measure the marginal distribution has density

G0 = [ flxy)dy
and the conditional distribution has density

o = 2,

and we have Bayes formula f(x,y) = f(y|x)f(x).
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Weighing the Loss

If Lis a loss function, (X, Y) a random variable and f : R” — R a
predictor then L(Y, f(X)) has a probability distribution on [0, c0).

Single number summaries of the distribution include
e Expected prediction error; EPE(f) = E(L(Y, f(X))).
e Median prediction error; MPE(f) = median(L(Y, f(X))).
e Complicated 1; Ci(f) = E(L(Y, f(X)))? + AV(L(Y, f(X))).

e Complicated 2; Co(f) = E(L(Y, f(X))) + APr(L(Y, (X)) > r).
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Take Home Message

The quality of a predictor and the theory of statistical decision theory
depend upon several highly subjective choices.

In practice the choices are mathematically convenient surrogates. We
investigate the resulting methodology and try to understand pros and cons
of the choices.

Using expected prediction error combined with the squared error loss is the
best understood setup.

The model choice is not entirely subjective — we return to that below.
Optimality is never an unconditional quality — a predictor can only be

optimal given the choice of loss function, probability model and weighing
method.
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Optimal Prediction
We find that

EPE(f)

[ - fepP(ax.ay)

= [ [ L r)Putay) Pr(av).

E(L(Y,f(x))|X:x)

This quantity is minimized by minimizing the expected loss conditionally

on X = x,

f(x) = argmin E(L(Y, §)|X = x).

e Squared error loss; L(y,y) = (y — ¥)?
f(x)=E(Y|X =x)
@ Absolute value loss; L(y,y) = |y — ¥
f(x) = median(Y|X = x)
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Optimal Classification

For classification problems the discrete variable Y does not take values in
R but we can encode the values as {1,..., K}. We require that the
classifier f : RP — {1,..., K} only take these finite number of values.

We only need to specify the losses L(k, /) for k,/ =1,..., K and we get
the conditional expected prediction error

K
E(L(Y, FOO)X = x) =D L(k, £(x))Px(k).
k=1

The optimal classifier is in general given by

K

f(x) = argmax; > _ L(k, )Py(k).

k=1
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0-1 loss and the Bayes classifier
The 0-1 loss function is L(k,l) = 1(k # I) is very popular with

E(L(Y, F))IX = x) = 1 = P(F(x)).

The Bayes classifier is the optimal solution given by

fe(x) = argmax Py (k)

The Bayes rate
EPE(fg) =1— E(mfx Px(k))

is the expected prediction error for the Bayes classifier.
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Figure 2.5 — The Bayes Classifier

Niels Richard Hansen (Univ. Copenhagen)

The example data used for nearest
neighbor are simulated and the Bayes
classifier can be calculated exactly.

It can be computed using Bayes formula
for k=0,1

ﬂkfk(X)

Pr(Y = k| X =x) = mofo(x) + m1fi(x)

and the argmax is found to be
f(x) = argmaxkzo’lﬂkfk(x).

In the example fy and f; are mixtures of
10 Gaussian distributions.
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Estimation Methodology

The choice of optimal predictor is dictated by the probability model. Let
(Pg)oco denote a parametrized family of distributions for (X, Y) and fy
the Py-optimal predictor.

How can we estimate fy from the sample (x1,y1), ..., (xn, yn)?
@ The plug-in principle: Let § denote an estimator of # and take 7

@ The conditional plug-in principle: Assume that the conditional
distribution, P, (9), of Y given X = x depends upon 6 through a
parameter function 7: © — ©3. Then fy = f (5 and if 7 is an
estimator of 7 we take f;.

@ Direct method: Forget the probabilistic model.
o Aim for a direct, non-parametric estimator of fy(x), e.g. the idea
behind nearest neighbors for estimation of E(Y|X = x).

e Empirical risk minimization: Take F to be a set of predictor functions
and take

- 1
f = argmin — L(y;, f(x;)).
gmin - 3" Ly F(x))
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Figure 2.6 — Curse of dimension

The side lengths (Distance) of a subcube in dimension d as a function of
its volume r is r1/9, which increases rapidly with d. Almost everything is
far away/close to the boundary in high dimensions. The median distance
from the origin to the closest data point for N uniform points in the

d-dimensional unit ball is
LN 1/d
1—- = )
2
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The Bias-Variance Tradeoff for nearest neighbors

Consider the case with Y = f(X) + € where X and € are independent,
E(e) = 0 and V/(e) = o2.

With 7 the k-nearest neighbor regressor the test error in xp is

E((Y — f(x0))IX =x0) = E((Y = f(x0))*|X = x0)
+E((f(x0) — E(f(x0)[X0 = x0))?|X = xo)
+E((Fe(x0) — E(f(x0)[Xo = x0))?|X = xo)

2
2

=0 —l—E fXO Z f(X/ + 0—7
/GN;((X()) ~~~

variance

Squared bias

Small choices of k (complex model) will give a large variance and generally
a smaller bias, and vice versa for large choices of k (simple model).
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Figure 2.11 — The Generic Bias-Variance Tradeoff

The training error is the number

err =151 L(y;, F(x))). It generally
decays with model complexity. The test
error generally decays up to a point
depending upon the sample size — and

then it increases again.
The increase of the test error for complex models is known as overfitting —

it is a variance phenomena. Bad performance for simple models is a bias
phenomena.

The training error is a bad estimator for the test error and the expected
prediction error.
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Figure 2.4 — Bias-Variance Tradeoff for k-nearest neighbors

What is called the test error here is in
reality an estimate of the expected
prediction error for the estimated

predictor based on an independent
dataset.
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