BMC course in Statistical Learning, 2009

Lectures: Niels Richard Hansen

o Homepage: http://www.math.ku.dk/~richard/courses/bmc2009/
e Co-taught with the regular Statistical Learning course at University of Copenhagen.

e Evaluation: A minor, individual assignment — practical A major, individual project
— mostly practical

e Theoretical training exercises handed out 26-4-2009.

e Practical exercises: During the course I have planned 9 small practical R-exercises
that you will solve/work on in class. Solutions will be provided. Additional selected
exercises from the book will be given.

e Teaching material:  The Elements of Statistical Learning. Data Mining, Inference,
and Prediction 2nd ed. together with hand-outs from the lectures.

Statistical Learning

What is Statistical Learning?

Old wine on new bottles? Is it not just plain statistical inference and regression theory?

New(ish) field on how to use statistics to make the computer “learn”?

A merger of classical disciplines in statistics with methodology from areas known as machine
learning, pattern recognition and artificial neural networks.

Magjor purpose: Prediction — as opposed to .... truth!?  Major point of view: Function
approximation, solution of a mathematically formulated estimation problem — as opposed to
algorithms.

The areas mentioned above, machine learning, pattern recognition and artificial neural net-
works have lived their lifes mostly in the non-statistical literature. The theories for learning
— what would be called estimation in the statistical jargon — have been developed mostly by
computer scientists, engineers, physicists and others.

The quite typical approach of statistics to the problem of inductive inference — the learning
from data — is to formulate the problem as a mathematical problem. Then learning means
that we want to find one mathematical model for data generation among a set of candidate
models, and the one found is almost always found as a solution to an estimation equation
or an optimization problems. A typical alternative approach to learning is algorithmic, and
a lot of the algorithms are thought up with the behavior of human beings in mind. Hence
the term “learning” — and hence the widespread use of terminology such as “training data”
and “supervised learning” in machine learning.



Iris data

A classical dataset collected by the botanist Edgar Anderson, 1935, The irises of the Gaspe
Peninsula and studied by statistician R. A. Fisher, 1936 The use of multiple measurements
in taxonomic problems. Available as the iris dataset in the MASS library in R.

Sepal Petal
Tength  width Length  Width Species
5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa
4.7 3.2 1.3 0.2 setosa
7.0 3.2 4.7 1.4 versicolor
6.4 3.2 4.5 1.5 versicolor
6.9 3.1 4.9 1.5 versicolor
6.3 3.3 6.0 2.5 virginica
5.8 2.7 5.1 1.9 virginica
7.1 3.0 5.9 2.1 virginica

Figure 1.1 — Prostate Cancer

A classical scenario from statistics. How does the response variable 1psa relate to a number
of other measured or observed quantities — some continuous and some categorical?

Typical approach is regression — the scatter plot to the left might reveal some correlations.

Figure 1.2 — Hand Written Digits

A classical problem from pattern recognition. How do we classify an image of a handwritten
number as 0 - 97

This is the mail sorting problem based on zip codes.

It’s not so easy — is
the fourth 5

a nine or a five?



Figure 1.3 — Microarray Measurements

A problem of current importance. How does the many genes of our cells behave?

We can measure the activity of thousands of genes simultaneously — the gene expression
levels — and want to know about the relation of gene expression patterns to “status of the
cell” (healthy, sick, cancer, what type of cancer ...)

Classification

The objective in a classification problem is to be able to classify an object into a finite
number of distinct groups based on observed quantities.

With hand written digits we have 10 groups and an 8x8 pixel gray tone image (a vector in
RQSG).

With microarrays a typical scenario is that we have 2 groups (cancer type A and cancer
type B) and a 10-30 thousand dimensional vector of gene expressions.

Setup — and One Simple Idea

We have observations (x1,y1),..., (zn,yn) with z; € RP and y; € {0,1}. We assume that
the data arose as independent and identically distributed samples of a pair (X,Y") of random
variables.

Assume X = g € RP what is Y? Let
Ni(zg) = {i | z; is one of the k’th nearest observations}.

Define )
f(ffo):E Z yi €10,1]

1ENg (z0)

and classify using magority rules

(1 if f(me) > 1/2
y_{o iff(x2)<1/2

In generality we study problems where x; € E and y; € F' and where we want to understand
the relation between the two variables. When F' = R we mostly talk about regression and
when F is discrete we talk about classification.

Sometimes the assumption of independence can be relaxed without harming the methods
used too seriously, and in other cases — in designed experiments — we can hardly think of
the x;’s as random, in which case we will regard only the y;’s as (conditionally) independent
given the x;’s.



Figure 2.2 — 15-Nearest Neighbor Classifier

A wiggly separation barrier between x(’s classified as zero’s and one’s is characteristic of
nearest neighbors. With k£ = 15 we get a partition of the space into just two connected
“classification components”.

Figure 2.3 — 1-Nearest Neighbor Classifier

With k& = 1 every observed point has its own “neighborhood of classification”. The result is
a large(r) number of connected classification components.

Linear Classifiers

A classifier is called linear if there is an affine function
z—z"B+ By

with the classifier at xq
! if T34y >0
f(””)_{o if 273+ By <0

There are several examples of important linear classifiers. We encounter

e Linear discriminant analysis (LDA).
e Logistic regression.

e Support vector machines.

Tree based methods is a fourth method that relies on locally linear classifiers.

For K = 2 groups the linear classifier can be seen as a classifier where the two connected
classification components are half spaces in RP.

With K > 2 groups a linear classifier is a classifier where the sets {z | f(z) = k} = f~1(k)
for kK = 1,..., K can be written as the intersection of half spaces. That is, there are
(B1,B0.1)s---» (Bry Bo,r) and corresponding half spaces By, ..., B, with B; = {z | 278; +
Bo,; > 0} such that

f1 k) = () B

i€ly

Regression

If the y variable is continuous we usually talk about regression. You should all know the
linear regression model
Y =X"8+060+e¢
2

where ¢ and X are independent, E(¢) =0 and V(e) = o*.

We talk about a prediction f(z) of Y given X = z where f : R? — R is a predictor. In the
linear regression model above

fl@)=B(Y|X =2)=2"6+ fo

is a natural choice of linear predictor.



Statistical Decision Theory

Question: How do we make optimal decisions of action/prediction under uncertainty?

We need to

e decide how we measure the quality of the decision — loss functions,
e decide how we model the uncertainty — probability measures,

e decide how we weigh together the losses.

Loss Functions

A loss function in the framework of ordinary regression analysis is a function L : R x R —
[0, c0).

A predictor is a function f : RP — R. If (z,y) € RP x R the quality of predicting y as f(y)
is measured by the loss

L(y, f(z)).

Large values are bad! Examples where L(y,§) = V(y — §):

e The squared error loss; V (t) = t2.

e The absolute value loss; V(t) = |¢|.

e Huber for ¢ > 0; V(t) = t?1(|t| < ¢) + (2¢|t| — A)1(Jt| > ).

e The e-insensitive loss; V (¢) = |¢|1(]¢] > €).
A more general setup is sometimes needed. We let E and F denote two sets (with suitable
measurable structure) and we let A denote an “action space” (also with suitable measurable
structure). A loss function is a function L : F' x A — [0,00). A decision rule is a map

f: E — A. The loss of making the decision f(x) for the pair (x,y) € E x F is L(y, f(x)).
If X is a random variable with values in E the risk (or expected loss) is

R(f,y) = E(L(y, f(X)))-

If (X,Y) is a pair of random variables with values in E x F the (unconditional) risk is

R(f) = E(L(Y, f(X)))-

The conditional risk is
R(fIY =y) = E(L(y, f(X)]Y =y)

and we have that R(f) = F(R(f]Y)). But be careful with the notation. It is tempting to
view R(f) as the expectation of R(f,Y) but that is in general only correct if X and Y are
independent. The definition of R(f,y) dictates that we take expectation using the marginal
distribution of X. The definition of R(f|Y = y) dictates that we take expectation in the
conditional distribution of X given Y = y.



Probability Models

Let (X,Y) be a random variable with values in RP x R and decompose the distribution of
P into the conditional distribution P, of Y given X = z and the marginal distribution P;
of X. This means

Pr(X € A,Y € B) = / P,(B)Py(dz).
A

Recall that if the joint distribution has density f(z,y) w.r.t. the Lebesgue measure the
marginal distribution has density

fiw) = [ fa)dy
and the conditional distribution has density

f(z,y)
filx)

and we have Bayes formula f(z,y) = f(y|x) fi(x).

flylz) =

Formally the conditional distributions P, x € RP, need to form a Markov kernel. On a nice
space like R? it is always possible to find such a Markov kernel — though the proof of this is
in general non-constructive. Thus there is always a conditional distribution. In the case of
densities the existence is direct and completely constructive as shown above, and for most
practical purposes this is what matters.

Weighing the Loss

If L is a loss function, (X,Y") a random variable and f : R? — R a predictor then L(Y, f(X))
has a probability distribution on [0, c0).

Single number summaries of the distribution include

o Expected prediction error; EPE(f) = E(L(Y, f(X))).

o Median prediction error; MPE(f) = median(L(Y, f(X))).

e Complicated 1; Cy(f) = E(L(Y, f(X)))? + AV(L(Y, £(X))).

o Complicated 2; Cs(f) = E(L(Y, f(X))) + APr(L(Y, f(X)) > r).

Small values of all the four suggested error measures are good. The median prediction error
will be more favorable to predictors that give skewed loss distributions with fat right tails
when compared to the expected prediction error (probably not good!). The two complicated
choices involve combinations of the expected prediction error and the variance or the prob-
ability of getting a large loss, respectively. They both work in the other direction than the
median prediction error and penalizes predictors with fat right-skewed loss distributions.
Changing the loss function instead can have similar effects.



Take Home Message

The quality of a predictor and the theory of statistical decision theory depend upon several
highly subjective choices.

In practice the choices are mathematically convenient surrogates. We investigate the result-
ing methodology and try to understand pros and cons of the choices.

Using ezpected prediction error combined with the squared error loss is the best understood
setup.

The model choice is not entirely subjective — we return to that below.

Optimality is never an unconditional quality — a predictor can only be optimal given the
choice of loss function, probability model and weighing method.

Optimal Prediction
We find that

EPE(f) = t/zxyhﬂx»f%dxmw>
- //U&Lﬂmﬂammpmmy

E(L(Y,f(z))|X=x)

This quantity is minimized by minimizing the expected loss conditionally on X = z,

f(z) = argmin E(L(Y,§)|X = z).

e Squared error loss; L(y, ) = (y — 9)?
f() = B(Y|X = )

e Absolute value loss; L(y,9) = |y — 9]

f(z) = median(Y'|X = z)

We recall that for a real valued random variable with finite second moment
EY —¢)?>=E(Y —-EY))?>4+(EY)-c)?=V{)+(EY)-c)?>V(Y)
with equality if and only if ¢ = E(Y"). This gives the result on the optimal predictor for the
squared error loss.
If Y is a random variable with finite first moment and distribution function F' we have that

EWfd:/CF@&+/WLJWMt

—0o0



This follows from the general formula that since |Y — ¢| is a positive random variable then
ElY —c| = [;7 P(]Y —¢| > t)dt. If it happens that F(c+¢) < 1— F(c+e¢) for ane > 0
we can decrease both integrals by changing ¢ to ¢ +¢. Likewise, if F(c—¢) > 1— F(c—¢)
we can decrease both integrals by changing ¢ to ¢ — . An optimal choice of ¢ therefore
satisfies F(c+) = F(¢c) > 1 — F(c+) =1 — F(c¢) and F(¢c—) <1 — F(c—), or in other words
F(c—) <1/2 < F(c¢). By definition this holds only if ¢ is a median.

Optimal Classification

For classification problems the discrete variable Y does not take values in R but we can
encode the values as {1,...,K}. We require that the classifier f : R? — {1,..., K} only
take these finite number of values.

We only need to specify the losses L(k,l) for k,l = 1,..., K and we get the conditional
expected prediction error

K
E(L(Y, f(2))|X =2) =Y _ L(k, Py (k).
k=1

The optimal classifier is in general given by

K

f(z) = argmax; Z L(k, )P, (k).

k=1

0-1 loss and the Bayes classifier
The 0-1 loss function is L(k,l) = 1(k # 1) is very popular with

E(L(Y, f(2))|X = 2) =1 = Pu(f(x)).

The Bayes classifier is the optimal solution given by

fB(x) = argmax; P, (k)

The Bayes rate
EPE(fg)=1- E(mI?XPX(k))

is the expected prediction error for the Bayes classifier.

When we require that f can only take one of the K different values we can regard f to
be a hard classifier. If we in the general formulation of statistical decision theory take
the action space A to be the set of probability vectors on {1,..., K} we allow for predic-
tors/classifiers/decisions f : RP — A to be probability vectors. These could be called soft



classifiers as they do not pinpoint a single value but provide a distribution on the possible
values. A natural loss function is the minus-log-likelihood

L(y,p) = —logp(y).

With this loss function the conditional expected prediction error is

E(L(Y, f(2))|X = 2) = Zlogf Py (i)

remembering that f(z) = (f(x)(1),..., f(z)(K))T is a probability vector. This quantity
is the cross entropy between the probability vector P, and f(x), and it is minimized for
f(z) = P,. From any soft classifier we can get a natural hard classifier by taking f"d(z) =
argmax, f(x)(i). If f(x) = P, then fh'd = fp is the Bayes classifier again.

Figure 2.5 — The Bayes Classifier

The example data used for nearest neighbor are simulated and the Bayes classifier can be
calculated exactly.

It can be computed using Bayes formula for £ = 0,1

7 [r(2)
mofo(x) + w1 f1(x)

Pr(Y =kl X =2) =

and the argmax is found to be

f(x) = argmaxy _q 1 7% fr ().
In the example fo and f; are mixtures of 10 Gaussian distributions.

Estimation Methodology

The choice of optimal predictor is dictated by the probability model. Let (Py)gco denote a
parametrized family of distributions for (X,Y") and fy the Py-optimal predictor.

How can we estimate fp from the sample (x1,v1),..., (N, yn)?

o The plug-in principle: Let 6 denote an estimator of 6 and take fa-

e The conditional plug-in principle: Assume that the conditional distribution, P, (),
of Y given X = x depends upon 6 through a parameter function 7 : © — ©5. Then
fo = [rp) and if 7 is an estimator of 7 we take f;.

e Direct method: Forget the probabilistic model.
— Aim for a direct, non-parametric estimator of fy(z), e.g. the idea behind nearest
neighbors for estimation of E(Y|X = z).
— Empirical risk minimization: Take F to be a set of predictor functions and take

f—argmlanL (yi, f(x3)).

fer



We can always assume that if (Py)sco is a parametrized family of probability measures then
there are two parameter functions p : © — ©; and 7 : ® — O3 such that the marginal
distribution of X is P ,9) and the conditional distribution of Y given X = z is P, - (s)-
After all we can always just take ©; = ©5 and p = 7 the identity map. However, in practice
there are parameter functions of a somewhat more interesting nature. It follows that the
optimal predictor — that depends only on P, ;) — can always be written as f;(g).

If there is a joint density fo(x,y) = fr(y|lz)fi1 ,(z) with (p,7) = (p(8),7(8)) we can for
instance choose 6 as the maximum likelihood estimator of § in the full model. Or we could
choose 7 as the maximum likelihood estimator in the conditional model of Y given X. In
general T(é) # 7 unless we have that 7 and p are variation independent, that is, unless

{(p(60),7(0)) | 0 € ©} = ©1 x Os.

For the empirical risk minimization strategy we can see that we simply estimate P as the

empirical measure
N

A 1
P = n Zé(%,yi)

i=1

and then we make a plug-in estimator of f based on P. This is similar to the plug-in
principle with the most general parametrized model consisting of all probability measures.
However, there is a restricting choice of the class F of predictor functions that we allow. We
might not forget the original model entirely in that we could take F = {fy | § € ©}. For
empirical risk minimization to work can not have a too vivid imagination of which functions
f that should be in the class F. A suitable choice of model restriction has thus moved from
the model for the probability measure to the model for the predictor. In some cases this
strategy actually coincides with the conditional plug-in principle. Whether it is practical to
find the minimizer — or decide if it even exists and/or is unique — for the empirical expected
prediction error is another story that depends entirely on the choice of L and F.

Figure 2.6 — Curse of dimension

The side lengths (Distance) of a subcube in dimension d as a function of its volume 7 is r'/¢,

which increases rapidly with d. Almost everything is far away/close to the boundary in high
dimensions. The median distance from the origin to the closest data point for N uniform
points in the d-dimensional unit ball is

1/d
1/N
(1 - 1 > .
2

The Bias-Variance Tradeoff for nearest neighbors

Consider the case with Y = f(X) + ¢ where X and ¢ are independent, F(¢) = 0 and
V(e) = o2
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With fk the k-nearest neighbor regressor the test errorin xg is

E((Y — fu(z0))?|X =m0) = BE((Y — f(20))*|X
+E((f(z0) — U
+E((fr(wo) — E(

o)
( X0 = 20))*| X = o)
k($0)|X0 = 300))2|X = o)

[ V)

variance
Squared bias

Small choices of k (complex model) will give a large variance and generally a smaller bias,
and vice versa for large choices of k (simple model).

Figure 2.11 — The Generic Bias-Variance Tradeoff

The training error is the number err = + 37" | L(y;, f(x;)). It generally decays with model
complexity. The test error generally decays up to a point depending upon the sample size
— and then it increases again.

The increase of the test error for complex models is known as overfitting — it is a variance
phenomena. Bad performance for simple models is a bias phenomena.

The training error is a bad estimator for the test error and the expected prediction error.

It is important to comprehend how serious a problem overfitting is. The phenomena has
been discovered and re-discovered several times in the history of science. A natural attitude
towards a simplistic and by some measures wrong model is that we should use a more
complicated model. We will then be able to make the model fit the data at hand better and
everything looks nice. However, overfitting come as a thief in the night and a new dataset
considered the next day will fit very badly. A trend today — and in this course — is to
develop flexible models but where model complexity is somehow controlled. In combination
with methodology (Chapter 7) to strike a good balance for the dataset at hand between
how complex a model we can consider without overfitting. This is the generic bias-variance
tradeoff problem.

Figure 2.4 — Bias-Variance Tradeoff for k-nearest neighbors

What is called the test error here is in reality an estimate of the expected prediction error
for the estimated predictor based on an independent dataset.
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