
CART – Classification and Regression Trees
Trees can be viewed as basis expansions of simple functions

f (x) =
M∑

m=1

cm1(x ∈ Rm)

with R1, . . . ,Rm ⊆ Rp disjoint.
The CART algorithm is a heuristic, adaptive algorithm for basis function
selection.
A recursive, binary partition (a tree) is given by a list of splits

{(t01), (t11, t12), (t21, t22, t23, t24), . . . , (tn1, . . . , tn2n)}

and corresponding split variable indices

{(i01), (i11, i12), (i21, i22, i23, i24), . . . , (in1, . . . , in2n)}

R1 = (xi01 < t01) ∩ (xi11 < t11) ∩ . . . ∩ (xin1 < tn1)

and we can determine if x ∈ R1 in n steps � M = 2n.
Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 1 / 25

Figure 9.2 – Recursive Binary Partitions

The recursive partition of [0, 1]2 above
and the representation of the partition by
a tree.

A binary tree of depth n can represent
up to 2n partitions/basis functions.

We can determine which Rj an x belongs
to by n recursive yes/no questions.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 2 / 25

Figure 9.2 – General Partitions

A general partition that can not be
represented as binary splits.

With M sets in a general partition we
would in general need of the order M
yes/no questions to determine which of
the sets an x belongs to.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 3 / 25

Figure 9.2 – Recursive Binary Partitions

For a fixed partition R1, . . . ,RM the least
squares estimates are

ĉm = ȳ(Rm) =
1

Nm

∑
i :xi∈Rm

yi

Nm = |{i | xi ∈ Rm}.

The recursive partion allows for rapid
computation of the estimates and rapid
predition of new observations.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 4 / 25

Greedy Splitting Algorithm
With squared error loss and an unknown partition R1, . . . ,RM we would
seek to minimize

N∑
i=1

(yi − ȳ(Rm(i)))2

over the possible binary, recursive partitions. But this is computationally
difficult.

An optimal single split on a region R is determined by

min
j

min
s

 ∑
i :xi∈R(j ,s)

(yi − ȳ(R(j , s)))2 +
∑

i :xi∈R(j ,s)c

(yi − ȳ(R(j , s)c))2

︸ ︷︷ ︸

univariate optimization problem

with R(j , s) = {x ∈ R | xj < s} The tree growing algorithm recursively
does single, optimal splits on each of the partitions obtained in the
previous step.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 5 / 25

Tree Pruning

The full binary tree, T0, representing the partitions R1, . . . ,RM with
M = 2n may be too large. We prune it by snipping of leafs or subtrees.

For any subtree T of T0 with |T | leafs and partition R1(T), . . . ,R|T |(T)
the cost-complexity of T is

Cα(T) =
N∑

i=1

(yi − ȳ(Rm(i)(T)))2 + α|T |.

Theorem

There is a finite set of subtrees T0 ⊇ Tα1 ⊃ Tα2 ⊃ . . . ⊃ Tαr with
0 ≤ α1 < α2 < . . . < αr such that Tαi minimizes Cα(T) for α ∈ [αi , αi+1)

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 6 / 25

Node Impurities and Classification Trees
Define the node impurity as the average loss for the node R

Q(R) =
1

N(R)

∑
i :xi∈R

(yi − ȳ(R))2

The greedy split of R is found by

min
j

min
s

(N(R(j , s))Q(R(j , s)) + N(R(j , s)c)Q(R(j , s)c))

with R(j , s) = {x ∈ R | xj < s} and we have

Cα(T) =

|T |∑
m=1

N(Rm(T))Q(Rm(T)) + α|T |.

If Y takes K discrete values we focus on the node estimate for Rm(T) in
tree T as being

p̂m(T)(k) =
1

Nm

∑
i :xi∈Rm(T)

1(yi = k)

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 7 / 25

Node Impurities and Classification Trees
The loss functions for classification enter in the specification of the node
impurities used for splitting an cost-complexity computations.

Examples of

0-1 loss gives misclassification error impurity:

Q(Rm(T)) = 1−max{p̂(Rm(T))(1), . . . , p̂(Rm(T))(K)}

likelihood loss gives entropy impurity:

Q(Rm(T)) = −
K∑

k=1

p̂(Rm(T))(k) log p̂(Rm(T))(k)

The Gini index impurity:

Q(Rm(T)) =
K∑

k=1

p̂(Rm(T))(k)(1− p̂(Rm(T))(k))

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 8 / 25

Figure 9.3 – Node Impurities

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 9 / 25

Spam Example

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 10 / 25

Spam Example

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 11 / 25

Spensitivity and Specificity

The sensitivity is the probability of predicting 1 given that the true value is
1 (predict a case given that there is a case).

sensitivity = Pr(f (X) = 1|Y = 1)

=
Pr(Y = 1, f (X) = 1)

Pr(Y = 1, f (X) = 1) + Pr(Y = 1, f (X) = 0)

The specificity is the probability of predicting 0 given that the true value is
0 (predict that there is no case given that there is no case).

specificity = Pr(f (X) = 0|Y = 0)

=
Pr(Y = 0, f (X) = 0)

Pr(Y = 0, f (X) = 0) + Pr(Y = 0, f (X) = 1)

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 12 / 25

ROC curves

The reciever operating characteristic or ROC curve.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 13 / 25

Ensembles of Weak Predictors

A weak predictor is a predictor that performs only a little better than
random guessing.

With an ensemble or collection of weak predictors f̂1, . . . , f̂B we seek to
combine their predictions, e.g. as

f̂ B =
1

B

B∑
b=1

f̂b

hoping to improve performance.

Bootstrap aggregation or Bagging is an example where the ensemble of
preditors are obtained by estimation of the predictor on bootstrapped data
sets.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 14 / 25

Combining Weak Predictors

Recall that

V (f̂ B(x)) =
1

B2

B∑
b=1

V (f̂b(x)) +
1

B2

∑
b 6=b′

cov(f̂b(x), f̂ ′b(x))

hence bagging can be improved if the preditors can be “de-correlated”.

Random Forests (Chapter 15) is a modification of bagging for trees where
the “bagged trees” are de-correlated.

The problem of ensemble learning is broken down into the

The selection of base learners.

The combination of the base learners.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 15 / 25

Trees as Ensemble Learners

The basis expansion techniques can be seen as ensemble learning (with or
without regularization) where we have specified the base learners a priori.

For trees we build and combine sequentially and recursively the simplest
base learners; the stumps or single splits.

Are there general ways to search the space of learners and combinations of
simple learners?

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 16 / 25

Stagewise Additive Modeling

With b(·, γ) for γ ∈ Γ a parameterized family of basis functions we can
seek expansions of the form

M∑
m=1

βmb(x , γm)

With fixed γm this is standard, with unrestricted γm this is in general very
difficult numerically.

Suggetion: Evolve the expansions in stages where (βm, γm) are estimated
in step m and then fixed forever.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 17 / 25

Boosting

With any loss function L the Forward Stagewise Additive Model is
estimated by the algorithm:

1 Set m = 1 and initialize with f̂0(x) = 0.

2 Compute

(β̂m, γ̂m) = argmin
β,γ

N∑
i=1

L(yi , f̂m−1(xi) + βb(xi , γ))

3 Set fm = fm−1 + β̂mb(·, γ̂m), m = m + 1 and return to 2.

Note that with squared error loss

L(yi , f̂m−1(xi) + βb(xi , γ)) = ((yi − f̂m−1(xi))− βb(xi , γ))2

every estimation step is a reestimation on the residuals.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 18 / 25

Base Classifiers

With Y ∈ {−1, 1} and any classifier G (x) ∈ {−1, 1} the misclassification
error is

err(G) =
1

N

N∑
i=1

1(yi 6= G (xi)) =
1

2N

N∑
i=1

(1− yiG (xi))

With G a class of classifiers the (unweigted) optimal classifier is

Ĝ = argmin
G∈G

err(G)

With w1, . . . ,wN ≥ 0 the weighted optimal classifier is

Ĝ = argmin
G∈G

N∑
i=1

wi1(yi 6= G (xi))

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 19 / 25

Surrogate Loss Functions

Most important property of the surrogate loss functions is that they are
convexifications of the 0-1-loss.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 20 / 25

AdaBoost – Classification with Exponential Loss
With exponential loss L(y , f (x)) = exp(−yf (x)) and with

w
(m)
i = exp(−yi fm−1(xi))

N∑
i=1

L(yi , f̂m−1(xi) + βG (xi)) =
N∑

i=1

w
(m)
i exp(−yiβG (xi))

= (eβ − e−β)
N∑

i=1

w
(m)
i 1(yi 6= G (xi)) + e−β

N∑
i=1

w
(m)
i

The minimizer is Ĝm = argminG∈G
∑N

i=1 w
(m)
i 1(yi 6= G (xi)),

β̂m =
1

2
log

1− errm
errm

The updated weights in step m + 1 are

w
(m+1)
i = w

(m)
i exp(−yi β̂mĜm(xi))

= w
(m)
i exp(2β̂m1(yi 6= Ĝm(xi))) exp(−β̂m).

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 21 / 25

Figure 10.1 – Schematic AdaBoost

G (x) =
M∑

m=1

αmGm(x)
1 Initialize with weights wi = 1/N

and set m = 1 and fix M.

2 Fit a classifier Gm using weights wi .

3 Recompute weights as

wi ← wi exp(αm1(yi 6= Gm(xi)))

where αm = log((1− errm)/errm)
and

errm =
1∑N

i=1 wi

N∑
i=1

wi1(yi 6= G (xi)).

4 Stop if m = M or set m→ m + 1
and return to 2

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 22 / 25

Figure 10.2 and 10.3

Boosting using stumps only can
outperform even large trees in terms of
test error (simulation).

Even when the misclassification error is 0
on the training data it can pay to
continue the boosting and the
exponential loss will continue to
decrease.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 23 / 25

More Boosting
The computational problem in boosting is minimization of

N∑
i=1

L(yi , f̂m−1(xi) + βb(xi , γ)).

For classification with exponential loss this simplifies to weighted optimal
classification.

For regression and squared error loss this is re-estimation based on the
residuals.
With the notation

L(f) =
N∑

i=1

L(yi , fi)

for f = (f1, . . . , fN) ∈ RN we aim at finding steps h1, . . . ,hM and with h0

the initial guess an approximate minimizer of the form

fM =
M∑

m=0

hm.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 24 / 25

Gradient Boosting

The gradient of L : RN → R is

∇L(f) = (∂zL(y1, f1), . . . , ∂zL(yN , fN))T

Gradient descent algorithms suggest steps from fm in the direction of
−∇L(fm);

hm = −ρm∇L(fm).

Problem: −ρm∇L(fm) is most likely not obtainable as a prediction within
the class of base learners – it is not of the form β(b(x1, γ), . . . , b(xN , γ))T .

Solution: Fit a base learner ĥm to −∇L(fm) and compute by iteration the
expansion

f̂M =
M∑

m=0

ρmĥm.

This is gradient boosting as implemented in the mboost library.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 25 / 25

