
CART – Classification and Regression Trees
Trees can be viewed as basis expansions of simple functions

f (x) =
M∑

m=1

cm1(x ∈ Rm)

with R1, . . . ,Rm ⊆ Rp disjoint.
The CART algorithm is a heuristic, adaptive algorithm for basis function
selection.
A recursive, binary partition (a tree) is given by a list of splits

{(t01), (t11, t12), (t21, t22, t23, t24), . . . , (tn1, . . . , tn2n)}

and corresponding split variable indices

{(i01), (i11, i12), (i21, i22, i23, i24), . . . , (in1, . . . , in2n)}

R1 = (xi01 < t01) ∩ (xi11 < t11) ∩ . . . ∩ (xin1 < tn1)

and we can determine if x ∈ R1 in n steps � M = 2n.
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Figure 9.2 – Recursive Binary Partitions

The recursive partition of [0, 1]2 above
and the representation of the partition by
a tree.

A binary tree of depth n can represent
up to 2n partitions/basis functions.

We can determine which Rj an x belongs
to by n recursive yes/no questions.
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Figure 9.2 – General Partitions

A general partition that can not be
represented as binary splits.

With M sets in a general partition we
would in general need of the order M
yes/no questions to determine which of
the sets an x belongs to.
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Figure 9.2 – Recursive Binary Partitions

For a fixed partition R1, . . . ,RM the least
squares estimates are

ĉm = ȳ(Rm) =
1

Nm

∑
i :xi∈Rm

yi

Nm = |{i | xi ∈ Rm}.

The recursive partion allows for rapid
computation of the estimates and rapid
predition of new observations.
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Greedy Splitting Algorithm
With squared error loss and an unknown partition R1, . . . ,RM we would
seek to minimize

N∑
i=1

(yi − ȳ(Rm(i)))2

over the possible binary, recursive partitions. But this is computationally
difficult.

An optimal single split on a region R is determined by

min
j

min
s

 ∑
i :xi∈R(j ,s)

(yi − ȳ(R(j , s)))2 +
∑

i :xi∈R(j ,s)c

(yi − ȳ(R(j , s)c))2


︸ ︷︷ ︸

univariate optimization problem

with R(j , s) = {x ∈ R | xj < s} The tree growing algorithm recursively
does single, optimal splits on each of the partitions obtained in the
previous step.
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Tree Pruning

The full binary tree, T0, representing the partitions R1, . . . ,RM with
M = 2n may be too large. We prune it by snipping of leafs or subtrees.

For any subtree T of T0 with |T | leafs and partition R1(T ), . . . ,R|T |(T )
the cost-complexity of T is

Cα(T ) =
N∑

i=1

(yi − ȳ(Rm(i)(T )))2 + α|T |.

Theorem

There is a finite set of subtrees T0 ⊇ Tα1 ⊃ Tα2 ⊃ . . . ⊃ Tαr with
0 ≤ α1 < α2 < . . . < αr such that Tαi minimizes Cα(T ) for α ∈ [αi , αi+1)
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Node Impurities and Classification Trees
Define the node impurity as the average loss for the node R

Q(R) =
1

N(R)

∑
i :xi∈R

(yi − ȳ(R))2

The greedy split of R is found by

min
j

min
s

(N(R(j , s))Q(R(j , s)) + N(R(j , s)c)Q(R(j , s)c))

with R(j , s) = {x ∈ R | xj < s} and we have

Cα(T ) =

|T |∑
m=1

N(Rm(T ))Q(Rm(T )) + α|T |.

If Y takes K discrete values we focus on the node estimate for Rm(T ) in
tree T as being

p̂m(T )(k) =
1

Nm

∑
i :xi∈Rm(T )

1(yi = k)
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Node Impurities and Classification Trees
The loss functions for classification enter in the specification of the node
impurities used for splitting an cost-complexity computations.

Examples of

0-1 loss gives misclassification error impurity:

Q(Rm(T )) = 1−max{p̂(Rm(T ))(1), . . . , p̂(Rm(T ))(K )}

likelihood loss gives entropy impurity:

Q(Rm(T )) = −
K∑

k=1

p̂(Rm(T ))(k) log p̂(Rm(T ))(k)

The Gini index impurity:

Q(Rm(T )) =
K∑

k=1

p̂(Rm(T ))(k)(1− p̂(Rm(T ))(k))
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Figure 9.3 – Node Impurities
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Spam Example
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Spam Example

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning June 8, 2009 11 / 25



Spensitivity and Specificity

The sensitivity is the probability of predicting 1 given that the true value is
1 (predict a case given that there is a case).

sensitivity = Pr(f (X ) = 1|Y = 1)

=
Pr(Y = 1, f (X ) = 1)

Pr(Y = 1, f (X ) = 1) + Pr(Y = 1, f (X ) = 0)

The specificity is the probability of predicting 0 given that the true value is
0 (predict that there is no case given that there is no case).

specificity = Pr(f (X ) = 0|Y = 0)

=
Pr(Y = 0, f (X ) = 0)

Pr(Y = 0, f (X ) = 0) + Pr(Y = 0, f (X ) = 1)
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ROC curves

The reciever operating characteristic or ROC curve.
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Ensembles of Weak Predictors

A weak predictor is a predictor that performs only a little better than
random guessing.

With an ensemble or collection of weak predictors f̂1, . . . , f̂B we seek to
combine their predictions, e.g. as

f̂ B =
1

B

B∑
b=1

f̂b

hoping to improve performance.

Bootstrap aggregation or Bagging is an example where the ensemble of
preditors are obtained by estimation of the predictor on bootstrapped data
sets.
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Combining Weak Predictors

Recall that

V (f̂ B(x)) =
1

B2

B∑
b=1

V (f̂b(x)) +
1

B2

∑
b 6=b′

cov(f̂b(x), f̂ ′b(x))

hence bagging can be improved if the preditors can be “de-correlated”.

Random Forests (Chapter 15) is a modification of bagging for trees where
the “bagged trees” are de-correlated.

The problem of ensemble learning is broken down into the

The selection of base learners.

The combination of the base learners.
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Trees as Ensemble Learners

The basis expansion techniques can be seen as ensemble learning (with or
without regularization) where we have specified the base learners a priori.

For trees we build and combine sequentially and recursively the simplest
base learners; the stumps or single splits.

Are there general ways to search the space of learners and combinations of
simple learners?
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Stagewise Additive Modeling

With b(·, γ) for γ ∈ Γ a parameterized family of basis functions we can
seek expansions of the form

M∑
m=1

βmb(x , γm)

With fixed γm this is standard, with unrestricted γm this is in general very
difficult numerically.

Suggetion: Evolve the expansions in stages where (βm, γm) are estimated
in step m and then fixed forever.
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Boosting

With any loss function L the Forward Stagewise Additive Model is
estimated by the algorithm:

1 Set m = 1 and initialize with f̂0(x) = 0.

2 Compute

(β̂m, γ̂m) = argmin
β,γ

N∑
i=1

L(yi , f̂m−1(xi ) + βb(xi , γ))

3 Set fm = fm−1 + β̂mb(·, γ̂m), m = m + 1 and return to 2.

Note that with squared error loss

L(yi , f̂m−1(xi ) + βb(xi , γ)) = ((yi − f̂m−1(xi ))− βb(xi , γ))2

every estimation step is a reestimation on the residuals.
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Base Classifiers

With Y ∈ {−1, 1} and any classifier G (x) ∈ {−1, 1} the misclassification
error is

err(G ) =
1

N

N∑
i=1

1(yi 6= G (xi )) =
1

2N

N∑
i=1

(1− yiG (xi ))

With G a class of classifiers the (unweigted) optimal classifier is

Ĝ = argmin
G∈G

err(G )

With w1, . . . ,wN ≥ 0 the weighted optimal classifier is

Ĝ = argmin
G∈G

N∑
i=1

wi1(yi 6= G (xi ))
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Surrogate Loss Functions

Most important property of the surrogate loss functions is that they are
convexifications of the 0-1-loss.
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AdaBoost – Classification with Exponential Loss
With exponential loss L(y , f (x)) = exp(−yf (x)) and with

w
(m)
i = exp(−yi fm−1(xi ))

N∑
i=1

L(yi , f̂m−1(xi ) + βG (xi )) =
N∑

i=1

w
(m)
i exp(−yiβG (xi ))

= (eβ − e−β)
N∑

i=1

w
(m)
i 1(yi 6= G (xi )) + e−β

N∑
i=1

w
(m)
i

The minimizer is Ĝm = argminG∈G
∑N

i=1 w
(m)
i 1(yi 6= G (xi )),

β̂m =
1

2
log

1− errm
errm

The updated weights in step m + 1 are

w
(m+1)
i = w

(m)
i exp(−yi β̂mĜm(xi ))

= w
(m)
i exp(2β̂m1(yi 6= Ĝm(xi ))) exp(−β̂m).
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Figure 10.1 – Schematic AdaBoost

G (x) =
M∑

m=1

αmGm(x)
1 Initialize with weights wi = 1/N

and set m = 1 and fix M.

2 Fit a classifier Gm using weights wi .

3 Recompute weights as

wi ← wi exp(αm1(yi 6= Gm(xi )))

where αm = log((1− errm)/errm)
and

errm =
1∑N

i=1 wi

N∑
i=1

wi1(yi 6= G (xi )).

4 Stop if m = M or set m→ m + 1
and return to 2
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Figure 10.2 and 10.3

Boosting using stumps only can
outperform even large trees in terms of
test error (simulation).

Even when the misclassification error is 0
on the training data it can pay to
continue the boosting and the
exponential loss will continue to
decrease.
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More Boosting
The computational problem in boosting is minimization of

N∑
i=1

L(yi , f̂m−1(xi ) + βb(xi , γ)).

For classification with exponential loss this simplifies to weighted optimal
classification.

For regression and squared error loss this is re-estimation based on the
residuals.
With the notation

L(f) =
N∑

i=1

L(yi , fi )

for f = (f1, . . . , fN) ∈ RN we aim at finding steps h1, . . . ,hM and with h0

the initial guess an approximate minimizer of the form

fM =
M∑

m=0

hm.
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Gradient Boosting

The gradient of L : RN → R is

∇L(f) = (∂zL(y1, f1), . . . , ∂zL(yN , fN))T

Gradient descent algorithms suggest steps from fm in the direction of
−∇L(fm);

hm = −ρm∇L(fm).

Problem: −ρm∇L(fm) is most likely not obtainable as a prediction within
the class of base learners – it is not of the form β(b(x1, γ), . . . , b(xN , γ))T .

Solution: Fit a base learner ĥm to −∇L(fm) and compute by iteration the
expansion

f̂M =
M∑

m=0

ρmĥm.

This is gradient boosting as implemented in the mboost library.
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