
CART – Classification and Regression Trees

Trees can be viewed as basis expansions of simple functions

f(x) =
M∑
m=1

cm1(x ∈ Rm)

with R1, . . . , Rm ⊆ Rp disjoint.

The CART algorithm is a heuristic, adaptive algorithm for basis function selection.

A recursive, binary partition (a tree) is given by a list of splits

{(t01), (t11, t12), (t21, t22, t23, t24), . . . , (tn1, . . . , tn2n)}

and corresponding split variable indices

{(i01), (i11, i12), (i21, i22, i23, i24), . . . , (in1, . . . , in2n)}
R1 = (xi01 < t01) ∩ (xi11 < t11) ∩ . . . ∩ (xin1 < tn1)

and we can determine if x ∈ R1 in n steps �M = 2n.

All the remaining sets in the partition corresponding to the 2n leafs are determined similarly
and recursively. It is by far easier to draw a picture of the corresponding tree than to write
down the precise mathematical recursion in terms of indices. A point is that the algorithmic
complexity of determining which of the 2n sets in the partition an x belongs to scales with
n. Thus even for extremely large partitions we can very rapidly determine where a concrete
x belongs.

In practice not all of the 2n partitions need to be present. The tree can be “pruned” so that
some of the leaf are not at depth n.

Figure 9.2 – Recursive Binary Partitions

The recursive partition of [0, 1]2 above and the representation of the partition by a tree.

A binary tree of depth n can represent up to 2n partitions/basis functions.

We can determine which Rj an x belongs to by n recursive yes/no questions.

Figure 9.2 – General Partitions

A general partition that can not be represented as binary splits.

With M sets in a general partition we would in general need of the order M yes/no questions
to determine which of the sets an x belongs to.

Figure 9.2 – Recursive Binary Partitions

For a fixed partition R1, . . . , RM the least squares estimates are

ĉm = ȳ(Rm) =
1
Nm

∑
i:xi∈Rm

yi

1

Nm = |{i | xi ∈ Rm}.

The recursive partion allows for rapid computation of the estimates and rapid predition of
new observations.

Greedy Splitting Algorithm

With squared error loss and an unknown partition R1, . . . , RM we would seek to minimize

N∑
i=1

(yi − ȳ(Rm(i)))2

over the possible binary, recursive partitions. But this is computationally difficult.

An optimal single split on a region R is determined by

min
j

min
s

 ∑
i:xi∈R(j,s)

(yi − ȳ(R(j, s)))2 +
∑

i:xi∈R(j,s)c

(yi − ȳ(R(j, s)c))2

︸ ︷︷ ︸

univariate optimization problem

with R(j, s) = {x ∈ R | xj < s} The tree growing algorithm recursively does single, optimal
splits on each of the partitions obtained in the previous step.

Note that the complements above are taken within the regionR, that is, R(j, s)c = R\R(j, s).

Tree Pruning

The full binary tree, T0, representing the partitions R1, . . . , RM with M = 2n may be too
large. We prune it by snipping of leafs or subtrees.

For any subtree T of T0 with |T | leafs and partition R1(T), . . . , R|T |(T) the cost-complexity
of T is

Cα(T) =
N∑
i=1

(yi − ȳ(Rm(i)(T)))2 + α|T |.

Theorem 1. There is a finite set of subtrees T0 ⊇ Tα1 ⊃ Tα2 ⊃ . . . ⊃ Tαr with 0 ≤ α1 <
α2 < . . . < αr such that Tαi

minimizes Cα(T) for α ∈ [αi, αi+1)

A proof of the theorem above can be found in Section 7.2 in Pattern Recognition and Neural
Networks by Brian D. Ripley.

The practical consequence of the theorem above is that tree algorithms find this sequence
of pruned trees in the estimation process and then the choice of α can be determined by
validation or cross-validation. We do not need to consider other choices of α than those
corresponding to the precomputed pruned trees.

2

Node Impurities and Classification Trees

Define the node impurity as the average loss for the node R

Q(R) =
1

N(R)

∑
i:xi∈R

(yi − ȳ(R))2

The greedy split of R is found by

min
j

min
s

(N(R(j, s))Q(R(j, s)) +N(R(j, s)c)Q(R(j, s)c))

with R(j, s) = {x ∈ R | xj < s} and we have

Cα(T) =
|T |∑
m=1

N(Rm(T))Q(Rm(T)) + α|T |.

If Y takes K discrete values we focus on the node estimate for Rm(T) in tree T as being

p̂m(T)(k) =
1
Nm

∑
i:xi∈Rm(T)

1(yi = k)

Node Impurities and Classification Trees

The loss functions for classification enter in the specification of the node impurities used for
splitting an cost-complexity computations.

Examples of

• 0-1 loss gives misclassification error impurity:

Q(Rm(T)) = 1−max{p̂(Rm(T))(1), . . . , p̂(Rm(T))(K)}

• likelihood loss gives entropy impurity:

Q(Rm(T)) = −
K∑
k=1

p̂(Rm(T))(k) log p̂(Rm(T))(k)

• The Gini index impurity:

Q(Rm(T)) =
K∑
k=1

p̂(Rm(T))(k)(1− p̂(Rm(T))(k))

Note that it is certainly not always the case that all K different cases are present in a single
set Rm, hence some of the estimated conditional probabilities are 0 and we have to remember
that 0 log 0 = 0 yields a continuous extension of p log p in 0.

The Gini index can be thought of in the following way: With the 0-1 loss ...

3

Figure 9.3 – Node Impurities

Spam Example

Spam Example

Spensitivity and Specificity

The sensitivity is the probability of predicting 1 given that the true value is 1 (predict a
case given that there is a case).

sensitivity = Pr(f(X) = 1|Y = 1)

=
Pr(Y = 1, f(X) = 1)

Pr(Y = 1, f(X) = 1) + Pr(Y = 1, f(X) = 0)

The specificity is the probability of predicting 0 given that the true value is 0 (predict that
there is no case given that there is no case).

specificity = Pr(f(X) = 0|Y = 0)

=
Pr(Y = 0, f(X) = 0)

Pr(Y = 0, f(X) = 0) + Pr(Y = 0, f(X) = 1)

ROC curves

The reciever operating characteristic or ROC curve.

Ensembles of Weak Predictors

A weak predictor is a predictor that performs only a little better than random guessing.

With an ensemble or collection of weak predictors f̂1, . . . , f̂B we seek to combine their
predictions, e.g. as

f̂B =
1
B

B∑
b=1

f̂b

hoping to improve performance.

4

Bootstrap aggregation or Bagging is an example where the ensemble of preditors are obtained
by estimation of the predictor on bootstrapped data sets.

Bagging is treated in Section 8.7 in the book. Note the “weak predictor” is often taken
to mean “simple predictor” where again simple refers to a predictor with few parameters,
which has low variance and besides from special cases considerable bias. There is, however,
nothing that prevent us from considering ensembles of weak predictors where “weak” refers
to high variance as opposed to high bias.

Combining Weak Predictors

Recall that

V (f̂B(x)) =
1
B2

B∑
b=1

V (f̂b(x)) +
1
B2

∑
b 6=b′

cov(f̂b(x), f̂ ′b(x))

hence bagging can be improved if the preditors can be “de-correlated”.

Random Forests (Chapter 15) is a modification of bagging for trees where the “bagged trees”
are de-correlated.

The problem of ensemble learning is broken down into the

• The selection of base learners.

• The combination of the base learners.

Trees as Ensemble Learners

The basis expansion techniques can be seen as ensemble learning (with or without regular-
ization) where we have specified the base learners a priori.

For trees we build and combine sequentially and recursively the simplest base learners; the
stumps or single splits.

Are there general ways to search the space of learners and combinations of simple learners?

Stagewise Additive Modeling

With b(·, γ) for γ ∈ Γ a parameterized family of basis functions we can seek expansions of
the form

M∑
m=1

βmb(x, γm)

With fixed γm this is standard, with unrestricted γm this is in general very difficult numer-
ically.

Suggetion: Evolve the expansions in stages where (βm, γm) are estimated in step m and then
fixed forever.

5

Boosting

With any loss function L the Forward Stagewise Additive Model is estimated by the algo-
rithm:

1. Set m = 1 and initialize with f̂0(x) = 0.

2. Compute

(β̂m, γ̂m) = argmin
β,γ

N∑
i=1

L(yi, f̂m−1(xi) + βb(xi, γ))

3. Set fm = fm−1 + β̂mb(·, γ̂m), m = m+ 1 and return to 2.

Note that with squared error loss

L(yi, f̂m−1(xi) + βb(xi, γ)) = ((yi − f̂m−1(xi))− βb(xi, γ))2

every estimation step is a reestimation on the residuals.

Base Classifiers

With Y ∈ {−1, 1} and any classifier G(x) ∈ {−1, 1} the misclassification error is

err(G) =
1
N

N∑
i=1

1(yi 6= G(xi)) =
1

2N

N∑
i=1

(1− yiG(xi))

With G a class of classifiers the (unweigted) optimal classifier is

Ĝ = argmin
G∈G

err(G)

With w1, . . . , wN ≥ 0 the weighted optimal classifier is

Ĝ = argmin
G∈G

N∑
i=1

wi1(yi 6= G(xi))

A simple class of classifiers is the class of stumps – trees with only two leafs. A stump is
given simply by a pair (i, t) of the splitting variable and the split point, and if we use the
misclassification node impurity the optimization over (i, t) is precisely the optimization we
carry out when we make each greedy step in the algorithm for estimation of trees.

Surrogate Loss Functions

Most important property of the surrogate loss functions is that they are convexifications of
the 0-1-loss.

6

AdaBoost – Classification with Exponential Loss

With exponential loss L(y, f(x)) = exp(−yf(x)) and with w
(m)
i = exp(−yifm−1(xi))

N∑
i=1

L(yi, f̂m−1(xi) + βG(xi)) =
N∑
i=1

w
(m)
i exp(−yiβG(xi))

= (eβ − e−β)
N∑
i=1

w
(m)
i 1(yi 6= G(xi)) + e−β

N∑
i=1

w
(m)
i

The minimizer is Ĝm = argminG∈G
∑N
i=1 w

(m)
i 1(yi 6= G(xi)),

β̂m =
1
2

log
1− errm

errm

The updated weights in step m+ 1 are

w
(m+1)
i = w

(m)
i exp(−yiβ̂mĜm(xi))

= w
(m)
i exp(2β̂m1(yi 6= Ĝm(xi))) exp(−β̂m).

The weights in the AdaBoost algorithm evolve over time multiplying larger weights in the
m’th step on those pairs (xi, yi) that are misclassified by the classifier in the m’th step.

Figure 10.1 – Schematic AdaBoost

G(x) =
M∑
m=1

αmGm(x)

1. Initialize with weights wi = 1/N and set m = 1 and fix M .

2. Fit a classifier Gm using weights wi.

3. Recompute weights as

wi ← wi exp(αm1(yi 6= Gm(xi)))

where αm = log((1− errm)/errm) and

errm =
1∑N
i=1 wi

N∑
i=1

wi1(yi 6= G(xi)).

4. Stop if m = M or set m→ m+ 1 and return to 2

7

Figure 10.2 and 10.3

Boosting using stumps only can outperform even large trees in terms of test error (simula-
tion).

Even when the misclassification error is 0 on the training data it can pay to continue the
boosting and the exponential loss will continue to decrease.

More Boosting

The computational problem in boosting is minimization of

N∑
i=1

L(yi, f̂m−1(xi) + βb(xi, γ)).

For classification with exponential loss this simplifies to weighted optimal classification.

For regression and squared error loss this is re-estimation based on the residuals.

With the notation

L(f) =
N∑
i=1

L(yi, fi)

for f = (f1, . . . , fN) ∈ RN we aim at finding steps h1, . . . ,hM and with h0 the initial guess
an approximate minimizer of the form

fM =
M∑
m=0

hm.

Gradient Boosting

The gradient of L : RN → R is

∇L(f) = (∂zL(y1, f1), . . . , ∂zL(yN , fN))T

Gradient descent algorithms suggest steps from fm in the direction of −∇L(fm);

hm = −ρm∇L(fm).

Problem: −ρm∇L(fm) is most likely not obtainable as a prediction within the class of base
learners – it is not of the form β(b(x1, γ), . . . , b(xN , γ))T .

Solution: Fit a base learner ĥm to −∇L(fm) and compute by iteration the expansion

f̂M =
M∑
m=0

ρmĥm.

8

This is gradient boosting as implemented in the mboost library.

More information on gradient boosting and the mboost R-package can be found in: Pe-
ter Bühlmann and Torsten Hothorn. Boosting Algorithms: Regularization, Prediction and
Model Fitting. Statistical Science 2007, Vol. 22, No. 4, 477-505. There is also an interesting
discussion following the paper.

9

