1 Solution - Assignment 1

This document is produced with Sweave. For that reason all uses of ggplot2 functions for plotting need to be done inside a print - otherwise there will be no figures.

```
> require(MASS)
> require(ggplot2)
> setwd("~/courses/statlearn/statlearn_2009/R/")
> load("Assignment1.RData")
```


1.1 Question 1

> X <- as.matrix (Assignment1Train[, -16])
> y <- Assignment1Train[, 16]

Computing group means and the estimate of the covariance matrix.

```
> groupMeans <- apply(X, 2, function(x) tapply(x, y, mean))
> SigmaHat <- t(X - groupMeans[y, ]) %*% (X - groupMeans[y, ])/(dim(X)[1] -
+ 3)
```

	D8S1179	D21S11	D7S820	CSF1PO	D3S1358	TH01	D13S317	D16S539	D2S1338	D19S433	vWA	TPOX	D18S51	D5S818	FGA
African America	27.16	59.57	19.69	21.16	31.69	15.11	23.29	21.70	41.50	26.92	32.87	17.74	32.22	23.23	45.83
Caucasian	25.57	59.79	20.02	22.70	32.18	15.95	22.17	22.80	41.43	27.84	33.40	18.37	30.23	23.02	43.93
Hispanic	25.99	60.20	20.59	22.30	32.01	15.58	21.68	22.41	40.16	27.56	33.04	18.81	30.61	22.61	45.3

Table 1: Group Means

	D8S1179	D21S11	D7S820	CSF1PO	D3S1358	TH01	D13S317	D16S539	D2S1338	D19S433	vWA	TPOX	D18S51	D5S818	FGA
D8S1179	5.11	0.01	0.07	-0.05	-0.06	0.29	0.26	0.02	-0.65	0.17	-0.17	0.31	-0.26	0.13	-0.02
D21S11	0.01	6.06	0.30	-0.14	-0.21	-0.05	-0.29	-0.20	0.13	-0.16	0.07	-0.03	0.10	-0.12	-0.15
D7S820	0.07	0.30	3.63	0.38	-0.38	-0.14	0.17	0.00	-0.01	0.14	0.02	0.14	0.59	-0.03	0.17
CSF1PO	-0.05	-0.14	0.38	4.14	-0.30	0.14	0.10	-0.04	1.46	-0.25	0.04	0.17	1.58	0.27	0.30
D3S1358	-0.06	-0.21	-0.38	-0.30	2.55	-0.02	-0.12	-0.18	0.44	-0.00	-0.19	-0.01	0.46	-0.03	-0.37
TH01	0.29	-0.05	-0.14	0.14	-0.02	3.39	-0.10	0.14	-0.32	-0.16	-0.10	0.25	0.19	0.04	-0.05
D13S317	0.26	-0.29	0.17	0.10	-0.12	-0.10	4.87	0.29	-0.20	-0.06	-0.17	-0.07	-0.01	0.12	-0.07
D16S539	0.02	-0.20	0.00	-0.04	-0.18	0.14	0.29	4.09	-0.11	0.23	0.22	-0.05	-0.16	0.16	-0.05
D2S1338	-0.65	0.13	-0.01	1.46	0.44	-0.32	-0.20	-0.11	20.00	-0.07	0.13	-0.76	3.03	-0.00	-0.04
D19S433	0.17	-0.16	0.14	-0.25	-0.00	-0.16	-0.06	0.23	-0.07	2.86	-0.28	-0.10	0.01	-0.10	-0.24
vWA	-0.17	0.07	0.02	0.04	-0.19	-0.10	-0.17	0.22	0.13	-0.28	3.95	-0.08	-0.31	-0.17	0.32
TPOX	0.31	-0.03	0.14	0.17	-0.01	0.25	-0.07	-0.05	-0.76	-0.10	-0.08	5.16	0.37	-0.06	-0.05
D18S51	-0.26	0.10	0.59	1.58	0.46	0.19	-0.01	-0.16	3.03	0.01	-0.31	0.37	13.21	0.26	-0.00
D5S818	0.13	-0.12	-0.03	0.27	-0.03	0.04	0.12	0.16	-0.00	-0.10	-0.17	-0.06	0.26	3.07	0.01
FGA	-0.02	-0.15	0.17	0.30	-0.37	-0.05	-0.07	-0.05	-0.04	-0.24	0.32	-0.05	-0.00	0.01	9.01

Table 2: Sigmahat

For later use in subsequent plots we compute the group means after a centering and scaling.

```
> groupMeans <- apply(scale(X), 2, function(x) tapply(x, y, mean))
```


1.2 Question 2

We make this plot after centering (compulsory) and scaling (optional, but generally recommended).

```
> Xsvd <- svd(scale(X))
> population <- levels(Assignment1Train[, 16])[c(2, 1, 3)]
> print(qplot(Xsvd$u[, 1] * Xsvd$d[1], Xsvd$u[, 2] * Xsvd$d[2],
+ colour = y) + geom_point(aes(groupMeans[c(2, 1, 3), ] %*%
+ Xsvd$v[, 1], groupMeans[c(2, 1, 3), ] %*% Xsvd$v[, 2], fill = population),
+ colour = I("black"), shape = 22, size = 8))
```


1.3 Question 3

We do this using centered and scaled X 's. The actual lda classifier is not affected by this (just remember that new observations should be centered and scaled using the same estimated means and variances) but the resulting plots are then in a standardized form, which is common.

```
> Xlda <- lda(scale(X), y)
> print(qplot(scale(X) %*% Xlda$scaling[, 1], scale(X) %*% Xlda$scaling[,
+ 2], colour = y) + geom_point(aes(groupMeans[c(2, 1, 3), ] %*%
```

Xlda\$scaling[, 1], groupMeans[c(2, 1, 3),] \%*\% Xlda\$scaling[,
$+2]$, fill = population), colour = I("black"), shape = 22,
$+\quad$ size $=8)$)

1.4 Question 4

```
> X <- X[y != "Hispanic", ]
> y <- y[y != "Hispanic", drop = TRUE]
> Xlda <- lda(X, y)
```

Computing misclassification tables.

```
> pred <- table(predict(Xlda)$class, y)
> print(pred)
```

y		
African American	Caucasian	
African American	144	22
Caucasian	30	154
> print(pred/sum(pred), digits = 3)		
y African American		
Caucasian		
African American	0.4114	0.0629
Caucasian	0.0857	0.4400

Then computing the number of misclassifications and the relative number of misclassifications.
> $\operatorname{print}(\operatorname{pred}[1,2]+\operatorname{pred}[2,1])$
[1] 52
> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)
[1] 0.149

1.5 Question 5

> Xglm <- glm(population ~ ., data = cbind (X, data.frame (population = y) ,
$+\quad$ family $=$ binomial)

Computing misclassification tables.

```
> pred <- table(levels(y)[round(predict(Xglm, type = "response")) +
+ 1], y)
> print(pred)
```


Then computing the number of misclassifications and the relative number of misclassifications.
> $\operatorname{print}(\operatorname{pred}[1,2]+\operatorname{pred}[2,1])$
[1] 53
> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)
[1] 0.151

1.6 Question 6

```
> mu1Hat <- Xlda$means[2, ]
> muOHat <- Xlda$means[1, ]
> residuals <- X - Xlda$means[y, ]
> SigmaHat <- t(residuals) %*% residuals/(dim(X)[1] - 2)
> tauHatBeta0 <- log(Xlda$prior[2]/Xlda$prior[1]) + (t(mu0Hat) %*%
+ solve(SigmaHat, muOHat) - t(mu1Hat) %*% solve(SigmaHat, mu1Hat))/2
> tauHatBeta <- solve(SigmaHat, mu1Hat - muOHat)
> hat <- data.frame(tauHat = c(tauHatBeta0, tauHatBeta), Hat = Xglm$coef)
> print(hat)
```

	tauHat	Hat
	-18.1177	-20.9366
D8S1179	-0.3779	-0.3948
D21S11	0.0474	0.0897
D7S820	0.1330	0.1534
CSF1P0	0.5227	0.5851
D3S1358	0.3125	0.2790
TH01	0.2934	0.2980
D13S317	-0.2497	-0.2969
D16S539	0.2369	0.2105
D2S1338	-0.0176	-0.0169
D19S433	0.4022	0.4426
vWA	0.1819	0.2094
TPOX	0.0755	0.0922
D18S51	-0.2528	-0.2391
D5S818	-0.1171	-0.1152
FGA	-0.2237	-0.2540

When we do two class classification the scalings from lda and the $\hat{\beta}$ coefficient from logistic regression are not directly comparable, but tauHatBeta above, which is comparable with $\hat{\beta}$, is in fact proportional to the scaling. The constant of proportionality comes from two facts. First, there is a different "centering" used for the scaling in the affine space spanned by $\hat{\mu}_{1}$ and $\hat{\mu}_{2}$, and second, the scaling vector is by definition of unit length when we use the inner product given by $\hat{\Sigma}$.

```
> tildeBeta <- solve(SigmaHat, mu1Hat - (Nk[2] * mu1Hat + Nk[1] *
+ mu0Hat)/sum(Nk))
> tildeBeta <- tildeBeta/sqrt(tildeBeta %*% SigmaHat %*% tildeBeta)
> lda(X, y)$scaling/tildeBeta
```

 LD1
 D8S1179 1
D21S11 1
D7S820 1
CSF1PO 1
D3S1358 1
TH01 1

D13S317	1
D16S539	1
D2S1338	1
D19S433	1
vWA	1
TPOX	1
D18S51	1
D5S818	1
FGA	1

If you turn to classification problems with the number of groups $K \geq 3$ the $\hat{\beta}_{1}, \ldots, \hat{\beta}_{K-1}$ vectors from multinomial regression are in general not comparable in any direct way to the scalings computed from lda. In this situation the only way to get something out of lda that is comparable to the estimates from the multinomial regression is to compute the plug-in estimates of the parameter function τ.

```
> trainPosterior <- data.frame(logis = predict(Xglm, type = "response"),
+ lda = predict(Xlda)$posterior[, 2])[order(y), ]
> print(ggplot(data = melt(cbind(data.frame(index = 1:(dim(X)[1]),
+ diff = trainPosterior[, 1] - trainPosterior[, 2] + 0.5),
+ trainPosterior), id = "index"), aes(x = index, y = value,
+ col = variable)) + geom_point())
```


1.7 Question 7

```
> allLevels <- levels(factor(c(unlist(Assignment1Train[, -16]),
+ unlist(Assignment1Test[, -16]))))
```

```
> Assignment1TrainMod <- data.frame(lapply(as.data.frame(X), function(x) factor(x,
+ levels = allLevels)))
```

We compute the estimates of the marginal distributions.

```
> counts <- lapply(Assignment1TrainMod, function(x) tapply(x, y,
+ table))
> epsilon <- 0.01
> h <- lapply(counts, function(x) lapply(x, function(x) (x + epsilon)/sum(x +
+ epsilon)))
> logit <- sapply(h, function(x) log((x[[2]])/(x[[1]])))
> logitMelt <- melt(logit)
> print(qplot(x = X1, y = value, data = logitMelt[abs(logitMelt$value) >
+ 0.02, ], geom = "line") + facet_wrap(~X2, scale = "free_x"))
```


Computing the training error.

```
> Nk <- table(y)
> intercept <- log(Nk[2]/Nk[1])
> predictionNaive <- apply(X, 1, function(x) intercept + sum(diag(logit[as.character(x),
+ ])))
> print(qplot(1:(dim(X)[1]), predictionNaive[order(y)], shape = I(20),
+ colour = y[order(y)]))
```


Computing the misclassification tables.

```
> pred <- table(levels(y)[(predictionNaive > 0) + 1], y)
> print(pred)
```

y		
	African American	Caucasian
African American	162	6
Caucasian	12	170

> print(pred/sum(pred), digits = 3)

y				
African American				Caucasian
African American	0.4629	0.0171		
Caucasian	0.0343	0.4857		

Then computing the number of misclassifications and the relative number of misclassifications.
> print(pred[1, 2] + pred[2, 1])
[1] 18
> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)
[1] 0.0514

1.8 Question 8

```
> yTest <- as.factor(as.vector(Assignment1Test[, 16]))
> XTest <- Assignment1Test[, -16]
> predictionNaive <- apply(XTest, 1, function(x) intercept + sum(diag(logit[as.character(x),
+ ])))
```

Naive test error:

```
> pred <- table(levels(yTest)[(predictionNaive > 0) + 1], yTest)
> print(pred)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{yTest} \\
\hline & African American & Caucasian \\
\hline African American & 65 & 13 \\
\hline Caucasian & 17 & 74 \\
\hline \multicolumn{3}{|l|}{> print(pred/sum(pred), digits = 3)} \\
\hline \multicolumn{3}{|c|}{yTest} \\
\hline \multicolumn{3}{|r|}{African American Caucasian} \\
\hline African American & 0.3846 & 0.0769 \\
\hline Caucasian & 0.1006 & 0.4379 \\
\hline
\end{tabular}
```

Then computing the number of misclassifications and the relative number of misclassifications.

```
> print(pred[1, 2] + pred[2, 1])
```

[1] 30
> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)
[1] 0.178

LDA test error:

```
> pred <- table(predict(Xlda, XTest)$class, yTest)
```

> print(pred)
yTest African American Caucasian
African American $61 \quad 19$
Caucasian $21 \quad 68$
> print(pred/sum(pred), digits $=3$)

yTest African		
American	Caucasian	
African American	0.361	0.112
Caucasian	0.124	0.402

Then computing the number of misclassifications and the relative number of misclassifications.

```
> print(pred[1, 2] + pred[2, 1])
[1] 40
> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)
[1] 0.237
```

Glm test error:

```
> pred <- table(levels(y)[round(predict(Xglm, XTest, type = "response")) +
+ 1], yTest)
> print(pred)
\begin{tabular}{lrr}
\multicolumn{2}{c}{ yTest } \\
& African & American \\
Caucasian \\
African American & 65 & 21 \\
Caucasian & 17 & 66
\end{tabular}
> print(pred/sum(pred), digits = 3)
\begin{tabular}{lrrr}
\multicolumn{2}{c}{ yTest } \\
African & & \\
American & Caucasian \\
Caucasian & 0.385 & 0.124 \\
American & 0.101 & 0.391
\end{tabular}
```

Then computing the number of misclassifications and the relative number of misclassifications.
> $\operatorname{print}(\operatorname{pred}[1,2]+\operatorname{pred}[2,1])$
[1] 38
> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)
[1] 0.225

The Naive Bayes method seems to be able to make the best predictions - also on the test data. The method does adapt a lot to the concrete dataset and we see a considerable increase in the estimated expected prediction error on the test data compared to misclassification rate on the training data for the Naive Bayes procedure. However, it also seems that the Naive Bayes procedure captures some important, non-linear effects that improves on the prediction.

Some have noted that there is an implementation of "naive Bayes" in the e1071 library. In effect this is a diagonal QDA - a quadratic discriminant analysis but where the covariance matrices are assumed diagonal. It turns out that is method performs surprisingly well and seems to have the smallest generalization error. It does not suffer from the many free parameters that are in my hand-crafted naive Bayes procedure above, but it incorporates quadratic terms, which seem to be very important.

1.9 Generalizations

If we think of include quadratic terms in a more direct way, we can do so, either explicitly using a logistic regression model or though more general non-linear effects in a generalized additive model. Using logistic regression with quadratic terms included:

```
> form <- as.formula(paste("population"", paste(colnames(X), collapse = "+"),
+ "+", paste("I(", colnames(X), "^2)", sep = "", collapse = "+")))
> XQglm <- glm(form, data = cbind(X, data.frame(population = y)),
+ family = binomial)
> pred <- table(levels(y)[round(predict(XQglm, XTest, type = "response")) +
+ 1], yTest)
> print(pred)
\begin{tabular}{lrr}
\multicolumn{2}{c}{ yTest } & \\
& African & \\
American & Caucasian \\
Caucasian & 66 & 18 \\
American & 16 & 69
\end{tabular}
> print(pred/sum(pred), digits = 3)
\begin{tabular}{lrr}
\multicolumn{3}{c}{ yTest } \\
African American & Caucasian \\
African American & 0.3905 & 0.1065 \\
Caucasian & 0.0947 & 0.4083
\end{tabular}
> print(pred[1, 2] + pred[2, 1])
[1] }3
> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)
[1] 0.201
```

Using a generalized additive model

```
> require(gam)
> form <- as.formula(paste("population~", paste("s(", colnames(X),
+ ",df=3)", sep = "", collapse = "+")))
> Xgam <- gam(form, data = cbind(X, data.frame(population = y)),
+ family = binomial)
> pred <- table(levels(y)[round(predict(Xgam, XTest, type = "response")) +
+ 1], yTest)
> print(pred)
                                    yTest
                                    African American Caucasian
    African American 66 15
    Caucasian 16 72
> print(pred/sum(pred), digits = 3)
\begin{tabular}{lrr}
\multicolumn{3}{c}{ yTest } \\
African & & \\
American & Caucasian \\
African American & 0.3905 & 0.0888 \\
Caucasian & 0.0947 & 0.4260
\end{tabular}
> print(pred[1, 2] + pred[2, 1])
[1] 31
> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)
[1] 0.183
```

