
1 Solution – Assignment 1

This document is produced with Sweave. For that reason all uses of ggplot2 functions for
plotting need to be done inside a print – otherwise there will be no figures.

> require(MASS)

> require(ggplot2)

> setwd("~/courses/statlearn/statlearn_2009/R/")

> load("Assignment1.RData")

1.1 Question 1

> X <- as.matrix(Assignment1Train[, -16])

> y <- Assignment1Train[, 16]

It seems that 230 has some outlier values and it is exclude.

> X <- X[-230, ]

> y <- y[-230]

Computing group means and the estimate of the covariance matrix.

> groupMeans <- apply(X, 2, function(x) tapply(x, y, mean))

> SigmaHat <- t(X - groupMeans[y, ]) %*% (X - groupMeans[y, ])/(dim(X)[1] -

+ 3)
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For later use in subsequent plots we compute the group means after a centering and scaling.

> groupMeans <- apply(scale(X), 2, function(x) tapply(x, y, mean))

1.2 Question 2

We make this plot after centering (compulsory) and scaling (optional, but generally recom-
mended).

> Xsvd <- svd(scale(X))

> population <- levels(Assignment1Train[, 16])[c(2, 1, 3)]

> print(qplot(Xsvd$u[, 1] * Xsvd$d[1], Xsvd$u[, 2] * Xsvd$d[2],

+ colour = y) + geom_point(aes(groupMeans[c(2, 1, 3), ] %*%

+ Xsvd$v[, 1], groupMeans[c(2, 1, 3), ] %*% Xsvd$v[, 2], fill = population),

+ colour = I("black"), shape = 22, size = 8))

Xsvd$u[, 1] * Xsvd$d[1]

X
sv

d$
u[

, 2
] *

 X
sv

d$
d[

2]
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1.3 Question 3

We do this using centered and scaled X’s. The actual lda classifier is not affected by this (just
remember that new observations should be centered and scaled using the same estimated
means and variances) but the resulting plots are then in a standardized form, which is
common.

> Xlda <- lda(scale(X), y)

> print(qplot(scale(X) %*% Xlda$scaling[, 1], scale(X) %*% Xlda$scaling[,

+ 2], colour = y) + geom_point(aes(groupMeans[c(2, 1, 3), ] %*%

3



+ Xlda$scaling[, 1], groupMeans[c(2, 1, 3), ] %*% Xlda$scaling[,

+ 2], fill = population), colour = I("black"), shape = 22,

+ size = 8))

scale(X) %*% Xlda$scaling[, 1]

sc
al

e(
X

) 
%

*%
 X

ld
a$

sc
al

in
g[

, 2
]
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1.4 Question 4

> X <- X[y != "Hispanic", ]

> y <- y[y != "Hispanic", drop = TRUE]

> Xlda <- lda(X, y)

Computing misclassification tables.

> pred <- table(predict(Xlda)$class, y)

> print(pred)

y
African American Caucasian

African American 143 22
Caucasian 30 154

> print(pred/sum(pred), digits = 3)

y
African American Caucasian

African American 0.410 0.063
Caucasian 0.086 0.441

4



Then computing the number of misclassifications and the relative number of misclassifica-
tions.

> print(pred[1, 2] + pred[2, 1])

[1] 52

> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)

[1] 0.149

1.5 Question 5

> Xglm <- glm(population ~ ., data = cbind(X, data.frame(population = y)),

+ family = binomial)

Computing misclassification tables.

> pred <- table(levels(y)[round(predict(Xglm, type = "response")) +

+ 1], y)

> print(pred)

y
African American Caucasian

African American 144 24
Caucasian 29 152

> print(pred/sum(pred), digits = 3)

y
African American Caucasian

African American 0.4126 0.0688
Caucasian 0.0831 0.4355

Then computing the number of misclassifications and the relative number of misclassifica-
tions.

> print(pred[1, 2] + pred[2, 1])

[1] 53

> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)

[1] 0.152

5



1.6 Question 6

> mu1Hat <- Xlda$means[2, ]

> mu0Hat <- Xlda$means[1, ]

> residuals <- X - Xlda$means[y, ]

> SigmaHat <- t(residuals) %*% residuals/(dim(X)[1] - 2)

> tauHatBeta0 <- log(Xlda$prior[2]/Xlda$prior[1]) + (t(mu0Hat) %*%

+ solve(SigmaHat, mu0Hat) - t(mu1Hat) %*% solve(SigmaHat, mu1Hat))/2

> tauHatBeta <- solve(SigmaHat, mu1Hat - mu0Hat)

> hat <- data.frame(tauHat = c(tauHatBeta0, tauHatBeta), Hat = Xglm$coef)

> print(hat)

tauHat Hat
-18.3628 -20.9147

D8S1179 -0.3760 -0.3948
D21S11 0.0473 0.0897
D7S820 0.1326 0.1534
CSF1PO 0.5268 0.5846
D3S1358 0.3123 0.2789
TH01 0.2931 0.2979
D13S317 -0.2494 -0.2969
D16S539 0.2356 0.2106
D2S1338 -0.0151 -0.0171
D19S433 0.4000 0.4427
vWA 0.1815 0.2094
TPOX 0.0762 0.0921
D18S51 -0.2497 -0.2392
D5S818 -0.1165 -0.1152
FGA -0.2238 -0.2539

When we do two class classification the scalings from lda and the β̂ coefficient from logistic
regression are not directly comparable, but tauHatBeta above, which is comparable with β̂,
is in fact proportional to the scaling. The constant of proportionality comes from two facts.
First, there is a different ”centering” used for the scaling in the affine space spanned by µ̂1

and µ̂2, and second, the scaling vector is by definition of unit length when we use the inner
product given by Σ̂.

> tildeBeta <- solve(SigmaHat, mu1Hat - (Nk[2] * mu1Hat + Nk[1] *

+ mu0Hat)/sum(Nk))

> tildeBeta <- tildeBeta/sqrt(tildeBeta %*% SigmaHat %*% tildeBeta)

> lda(X, y)$scaling/tildeBeta

LD1
D8S1179 1
D21S11 1
D7S820 1
CSF1PO 1
D3S1358 1
TH01 1

6



D13S317 1
D16S539 1
D2S1338 1
D19S433 1
vWA 1
TPOX 1
D18S51 1
D5S818 1
FGA 1

If you turn to classification problems with the number of groups K ≥ 3 the β̂1, . . . , β̂K−1

vectors from multinomial regression are in general not comparable in any direct way to the
scalings computed from lda. In this situation the only way to get something out of lda that
is comparable to the estimates from the multinomial regression is to compute the plug-in
estimates of the parameter function τ .

> trainPosterior <- data.frame(logis = predict(Xglm, type = "response"),

+ lda = predict(Xlda)$posterior[, 2])[order(y), ]

> print(ggplot(data = melt(cbind(data.frame(index = 1:(dim(X)[1]),

+ diff = trainPosterior[, 1] - trainPosterior[, 2] + 0.5),

+ trainPosterior), id = "index"), aes(x = index, y = value,

+ col = variable)) + geom_point())
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1.7 Question 7

> allLevels <- levels(factor(c(unlist(Assignment1Train[, -16]),

+ unlist(Assignment1Test[, -16]))))

7



> Assignment1TrainMod <- data.frame(lapply(as.data.frame(X), function(x) factor(x,

+ levels = allLevels)))

We compute the estimates of the marginal distributions.

> counts <- lapply(Assignment1TrainMod, function(x) tapply(x, y,

+ table))

> epsilon <- 0.01

> h <- lapply(counts, function(x) lapply(x, function(x) (x + epsilon)/sum(x +

+ epsilon)))

> logit <- sapply(h, function(x) log((x[[2]])/(x[[1]])))

> logitMelt <- melt(logit)

> print(qplot(x = X1, y = value, data = logitMelt[abs(logitMelt$value) >

+ 0.02, ], geom = "line") + facet_wrap(~X2, scale = "free_x"))
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Computing the training error.

> Nk <- table(y)

> intercept <- log(Nk[2]/Nk[1])

> predictionNaive <- apply(X, 1, function(x) intercept + sum(diag(logit[as.character(x),

+ ])))

> print(qplot(1:(dim(X)[1]), predictionNaive[order(y)], shape = I(20),

+ colour = y[order(y)]))

8



1:(dim(X)[1])
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Computing the misclassification tables.

> pred <- table(levels(y)[(predictionNaive > 0) + 1], y)

> print(pred)

y
African American Caucasian

African American 161 6
Caucasian 12 170

> print(pred/sum(pred), digits = 3)

y
African American Caucasian

African American 0.4613 0.0172
Caucasian 0.0344 0.4871

Then computing the number of misclassifications and the relative number of misclassifica-
tions.

> print(pred[1, 2] + pred[2, 1])

[1] 18

> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)

[1] 0.0516
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1.8 Question 8

> yTest <- as.factor(as.vector(Assignment1Test[, 16]))

> XTest <- Assignment1Test[, -16]

> predictionNaive <- apply(XTest, 1, function(x) intercept + sum(diag(logit[as.character(x),

+ ])))

Naive test error:

> pred <- table(levels(yTest)[(predictionNaive > 0) + 1], yTest)

> print(pred)

yTest
African American Caucasian

African American 65 12
Caucasian 17 75

> print(pred/sum(pred), digits = 3)

yTest
African American Caucasian

African American 0.385 0.071
Caucasian 0.101 0.444

Then computing the number of misclassifications and the relative number of misclassifica-
tions.

> print(pred[1, 2] + pred[2, 1])

[1] 29

> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)

[1] 0.172

LDA test error:

> pred <- table(predict(Xlda, XTest)$class, yTest)

> print(pred)

yTest
African American Caucasian

African American 61 19
Caucasian 21 68

> print(pred/sum(pred), digits = 3)

10



yTest
African American Caucasian

African American 0.361 0.112
Caucasian 0.124 0.402

Then computing the number of misclassifications and the relative number of misclassifica-
tions.

> print(pred[1, 2] + pred[2, 1])

[1] 40

> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)

[1] 0.237

Glm test error:

> pred <- table(levels(y)[round(predict(Xglm, XTest, type = "response")) +

+ 1], yTest)

> print(pred)

yTest
African American Caucasian

African American 65 21
Caucasian 17 66

> print(pred/sum(pred), digits = 3)

yTest
African American Caucasian

African American 0.385 0.124
Caucasian 0.101 0.391

Then computing the number of misclassifications and the relative number of misclassifica-
tions.

> print(pred[1, 2] + pred[2, 1])

[1] 38

> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)

[1] 0.225
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The Naive Bayes method seems to be able to make the best predictions - also on the test
data. The method does adapt a lot to the concrete dataset and we see a considerable increase
in the estimated expected prediction error on the test data compared to misclassification
rate on the training data for the Naive Bayes procedure. However, it also seems that the
Naive Bayes procedure captures some important, non-linear effects that improves on the
prediction.

Some have noted that there is an implementation of “naive Bayes” in the e1071 library. In
effect this is a diagonal QDA – a quadratic discriminant analysis but where the covariance
matrices are assumed diagonal. It turns out that is method performs surprisingly well and
seems to have the smallest generalization error. It does not suffer from the many free
parameters that are in my hand-crafted naive Bayes procedure above, but it incorporates
quadratic terms, which seem to be very important.

1.9 Generalizations

If we think of include quadratic terms in a more direct way, we can do so, either explicitly
using a logistic regression model or though more general non-linear effects in a generalized
additive model. Using logistic regression with quadratic terms included:

> form <- as.formula(paste("population~", paste(colnames(X), collapse = "+"),

+ "+", paste("I(", colnames(X), "^2)", sep = "", collapse = "+")))

> XQglm <- glm(form, data = cbind(X, data.frame(population = y)),

+ family = binomial)

> pred <- table(levels(y)[round(predict(XQglm, XTest, type = "response")) +

+ 1], yTest)

> print(pred)

yTest
African American Caucasian

African American 66 18
Caucasian 16 69

> print(pred/sum(pred), digits = 3)

yTest
African American Caucasian

African American 0.3905 0.1065
Caucasian 0.0947 0.4083

> print(pred[1, 2] + pred[2, 1])

[1] 34

> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)

[1] 0.201
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Using a generalized additive model

> require(gam)

> form <- as.formula(paste("population~", paste("s(", colnames(X),

+ ",df=3)", sep = "", collapse = "+")))

> Xgam <- gam(form, data = cbind(X, data.frame(population = y)),

+ family = binomial)

> pred <- table(levels(y)[round(predict(Xgam, XTest, type = "response")) +

+ 1], yTest)

> print(pred)

yTest
African American Caucasian

African American 66 15
Caucasian 16 72

> print(pred/sum(pred), digits = 3)

yTest
African American Caucasian

African American 0.3905 0.0888
Caucasian 0.0947 0.4260

> print(pred[1, 2] + pred[2, 1])

[1] 31

> print((pred[1, 2] + pred[2, 1])/sum(pred), digits = 3)

[1] 0.183
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