
Introduction to object oriented programming in
R, with special emphasis on the ExpressionSet

class

Kasper Daniel Hansen
Margaret Taub

based on slides developed by
Jim Bullard

University of Copenhagen
August 17-21, 2009

1 / 25

OOP

I Object oriented programming (OOP) is a popular programming
paradigm. Object oriented programming allows us to construct
modular pieces of code which can be utilized as building blocks for
large systems.

I R is a functional language, not particular object oriented, but
support exists for programming in an object oriented style.

I The Bioconductor project uses OOP extensively, and it is important
to understand basic features to work effectively with Bioconductor.

I R has two different OOP systems, known as S3 and S4. These two
systems are quite different, with S4 being more object oriented, but
sometimes harder to work with.

I In both systems, the object oriented system is much more
method-centric than languages like Java and Python - R’s system is
very Lisp-like.

2 / 25

Why?

As a (Bioconductor) user, it is important to have an understanding of S3
and S4.

I In order to understand and use a package unfamiliar to you.

I In order to diagnose and fix when things break (as they tend to do).

Pay close attention to how to get help, how to examine the definition of
a class and a method, and how to examine the code.

3 / 25

S3 Classes

First we will take a look at S3 classes. Base R uses S3 more or less
exclusively.

I “The greatest use of object oriented programming in R is through
print methods, summary methods and plot methods. These methods
allow us to have one generic function call, plot say, that dispatches
on the type of its argument and calls a plotting function that is
specific to the data supplied.” – R Manual (referring to the S3
system).

I An S3 class is (most often) a list with a class attribute. It is
constructed by the following code class(obj) <- "class.name".

4 / 25

S3 Classes

> xx <- rnorm(1000)

> class(xx)

> plot(xx)

> yy <- ecdf(xx)

> class(yy)

> plot(yy)

> plot

> plot.ecdf

> plot.default

> methods("plot")

> getS3method("plot", "histogram")

What plot does, depends on the class of the x argument. It is a
method. plot.ecdf is the ecdf method for plot.

5 / 25

Constructing a new S3 Class

> jim <- list(height = 2.54 * 12 * 6/100, weight = 180/2.2,

+ name = "James")

> class(jim) <- "person"

> class(jim)

We have now made an object of class person. We now define a print
method.

> print(jim)

> print.person <- function(x, ...) {

+ cat("name:", x$name, "\n")

+ cat("height:", x$height, "meters", "\n")

+ cat("weight:", x$weight, "kilograms", "\n")

+ }

> print(jim)

Note the method/class has the ”dot” naming convention of
method.class.

6 / 25

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=plot
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=print

S3 classes are not robust

> fit <- lm(rnorm(100) ~ 1)

> class(fit)

> print(fit)

> class(fit) <- "something"

> print(fit)

> class(fit) <- "person"

> print(fit)

In case print does not have a method for the class, it dispatches to the
default method, print.default.
S3 does not have the concept of type checking – there is no way to
formally define a class and ensure that the object conform to the
definition.

7 / 25

S3 classes and the help system

S3 classes are traditionally documented in the help page for the function
that creates them. Example: lm.
Methods have a generic help page (often not very informative),
sometimes with more specific help under ?method.class. Example:
plot.lm.

8 / 25

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=print
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=print.default

Inheritance in S3

In S3, inheritance is achieved by the class attribute being a vector. A
canonical example is

> fit <- glm(rpois(100, lambda = 1) ~

+ 1, family = "poisson")

> class(fit)

> methods("residuals")

> methods("model.matrix")

If no method for the first is found, the second class is checked.

9 / 25

Useful S3 Method Functions

I methods("print") and methods(class = "lm")

I getS3method("print","person") : Gets the appropriate method
associated with a class, useful to see how a method is implemented.
Try: getS3method("residuals", "lm").

I In emacs using ESS or in the R Gui we can use TAB completion to
determine what methods are available. This can be quite useful for
getting help on the specific method (we will see more of this later).
In TextMate use ctrl-shift-H.

I Sometimes, methods are non-visible, because they are hidden in a
namespace. Use getS3method or getAnywhere to get around this.

> residuals.HoltWinters

> getS3method("residuals.HoltWinters")

> getAnywhere("residuals.HoltWinters")

10 / 25

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=getS3method
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=getAnywhere

S4 classes, why?

I Although S3 classes can be quite useful and powerful and fast they
do not facilitate the type of modularization and type safety that a
true object oriented system intends.

I S4 classes are more a traditional object oriented system with type
checking, multiple-dispatch, and inheritance.

I S4 is implemented in the methods package in base R.

I For thorough information on S4, read Chambers (1998)
“Programming with data” (also known as the green book) (first
chapter available at
http://www.omegahat.org/RSMethods/Intro.pdf) or Chambers
(2008) “Software for Data Analysis: Programming with R”.

I There are also several good, short, tutorials on the net.

11 / 25

Defining an S4 class

> myRep <- representation(height = "numeric",

+ weight = "numeric", name = "character")

> setClass("personS4", representation = myRep)

> getClass("personS4")

> jimS4 <- new("personS4")

> jimS4

> jimS4 <- new("personS4", height = 2.54 *

+ 12 * 6/100, weight = 180/2.2,

+ name = "James")

> jimS4

> jimS4@name

> validObject(jimS4)

> jimS4@height <- "2"

12 / 25

http://www.omegahat.org/RSMethods/Intro.pdf

Notes on the S4 class example

I It is rare for users to define their own S4 classes.

I The use of new to instantiate a new member of the class is not
always needed, often there are explicit constructor functions (see
later).

I The use of @ to access the class slots is heavily discouraged, instead
use accessor functions (see later).

13 / 25

Defining the print method

For completion, we define the print method for personS4. For S4
classes, it is not print, but rather show.

> setMethod("show", signature("personS4"),

+ function(object) {

+ cat("name:", object@name,

+ "\n")

+ cat("height:", object@height,

+ "meters", "\n")

+ cat("weight:", object@weight,

+ "kilograms", "\n")

+ })

> jimS4

> getMethod("show", signature("personS4"))

14 / 25

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=new
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=print
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=show

S4 Generics

In order to make a new generic we need to call the function setGeneric.

> setGeneric("BMI", function(object) standardGeneric("BMI"))

> setMethod("BMI", "personS4", function(object) {

+ object@weight/object@height^2

+ })

> BMI(jimS4)

15 / 25

ExpressionSet

In order to get better real-life examples, we will now deconstruct the
ExpressionSet from the package Biobase. This is a very important – and
complicated – class from Bioconductor. It will be very profitable to feel
comfortable with this class, which is also an excellent example of the
power of S4 (and sometimes the frustration of S4).
Some history: the ExpressionSet class is a new design, expanding the
older (deprecated) exprSet class (which you still see referenced). There is
a fair amount of historical baggage associated with this package.

16 / 25

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=setGeneric

ExpressionSet: Basic idea

Samples

Covariates

Features
(genes)

Samples

pData "slot"
(in phenoData)

exprs "slot"
(in assayData)

Covariates fData "slot"
(in featureData)

Features
(genes)

17 / 25

Exploring Biobase

Loading

> require(Biobase)

> library(help = Biobase)

> getClass("ExpressionSet")

> data(sample.ExpressionSet)

> sample.ExpressionSet

> head(exprs(sample.ExpressionSet))

> head(pData(sample.ExpressionSet))

> head(fData(sample.ExpressionSet))

18 / 25

phenoData / AnnotatedDataFrame

An AnnotatedDataFrame is essentially a versioned data.frame with some
descriptive labels of the columns.

> getClass("AnnotatedDataFrame")

> sample.phenoData <- phenoData(sample.ExpressionSet)

> sample.phenoData

> pData(sample.phenoData)

> varLabels(sample.phenoData)

> sampleNames(sample.phenoData)

> sample.phenoData$type

(Note the last one).
This also works directly from the ExpressionSet:

> pData(sample.ExpressionSet)

> varLabels(sample.ExpressionSet)

> sampleNames(sample.ExpressionSet)

> sample.ExpressionSet$type

> featureNames(sample.ExpressionSet)

19 / 25

eSet and ExpressionSet

The ExpressionSet class is derived from eSet. The main difference
between these two classes is that an ExpressionSet provides an exprs
method which accesses the expression matrix.

> hasMethod("exprs", "eSet")

> hasMethod("exprs", "ExpressionSet")

> getMethod("exprs", "ExpressionSet")

exprs is an example of an accessor function.

20 / 25

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=exprs
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=exprs

Accessing the ExpressionSet

I Accessing the relevant data involves calling accessor functions. We
should try to avoid ever accessing the data directly with the “@”
accessor because it is less future-proof. Unlike many object oriented
programming languages R does not provide a mechanism for
protecting data, such as “private” member variables in many
languages.

I Have a look at ?ExpressionSet to see what other methods are
available.

> featureNames(sample.ExpressionSet)

> sampleNames(sample.ExpressionSet)

> exprs(sample.ExpressionSet)

> slot(sample.ExpressionSet, "exprs")

> assayData(sample.ExpressionSet,

+ "exprs")

21 / 25

ExpressionSet 2

An ExpressionSet contains information

I About characteristics of the samples (phenoData / pData).

I About gene-level measurements (assayData / exprs).

I About the microarray (featureData / fData) (rarely used).

All linked together appropriately. Linking allows for easy subsetting.
The expression matrix has dimension Nfeatures × Narrays

22 / 25

Subsetting ExpressionSets

We can subset the ExpressionSet object just as we can subset a matrix.
Columns refer to samples and rows refer to features.

> Type <- phenoData(sample.ExpressionSet)$type

> cases <- grep("Case", Type)

> controls <- grep("Control", Type)

> casesEx <- sample.ExpressionSet[,

+ cases]

> controlsEx <- sample.ExpressionSet[,

+ controls]

What is the class of casesEx and controlsEx?

> sample.ExpressionSet[sample(nrow(sample.ExpressionSet),

+ size = 10, replace = FALSE),

+ 5:10]

Subsetting is used a lot!
Remember to read the ”ExpressionSet Introduction” vignette in Biobase.

23 / 25

ExpressionSet: again

Samples

Covariates

Features
(genes)

Samples

pData "slot"
(in phenoData)

exprs "slot"
(in assayData)

Covariates fData "slot"
(in featureData)

Features
(genes)

24 / 25

Replacement Methods

I As we have already seen R has a somewhat strange type of function
that allows us to modify objects in place.

I It is uncommon to define new replacement functions, however they
are used quite frequently in day to day programming of R.

I Two examples are: names and colnames. Type “colnames” into the R
window and hit “tab”, notice the function “colnames<-”?

> a <- matrix(1:16, nrow = 4, ncol = 4)

> colnames(a) <- paste("V", 1:4,

+ sep = ".")

> colnames(a)

> point <- list(x = 1, y = 2)

> x.val <- function(x, value) {

+ x$x <- value

+ }

> "x.val<-" <- function(x, value) {

+ x$x <- value

+ return(x)

25 / 25

Replacement Methods

+ }

> x.val(point, 10)

> print(point)

> x.val(point) <- 10

> print(point)

What does the first print statement print? What about the second?

26 / 25

http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=names
http://bioinfo.cipf.es/pruebas/helpR/cgi-bin/helpR.cgi?topic=colnames

