
1 StatLearn Practical exercise 5

Exercise 1.1. Download the LA ozone data set from the book homepage. We will be regress-
ing the cube root of the ozone concentration on the other variables. Divide the data set into
two groups at random. One group, which we call the training data, containing 2/3 of the
observations and one group, which we call the test data, with 1/3 of the observations. Use
only the training data below for the estimation.

Solution. We first load the necessary libraries for ridge regression, LASSO and best subset
selection.

library(MASS)

library(glmnet)

library(leaps)

After this, we load the data set. The data set contains 330 observations, each consisting of 9
predictors and 1 response. The response, ozone, is in the first column. As we wish to regress
the cubic root of ozone, we update this column with the cubic roots of the original data.

LAozone = read.table("http://www-stat.stanford.edu/

~tibs/ElemStatLearn/datasets/LAozone.data",

sep=",",head=T)

LAozone[,1]<-LAozone[,1]^(1/3)

We divide the data sets into training and test parts. We use a training sample of 40, as this
yields results which better demonstrate the points of the following exercises.

trainNumObs<-40

trainIndex<-sample(1:330,size=trainNumObs,replace=FALSE)

LAozoneTrain<-LAozone[trainIndex,]

LAozoneTest<-LAozone[-trainIndex,]

�

Exercise 1.2. Compute the best model for each dimension (best subset selection), estimate
test error and compute the training error. Make a plot.

Solution. We first define the design matrices and response vectors for the training and test
data sets for later use.
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trainDesign<-as.matrix(LAozoneTrain[,-1])

trainResponse<-as.matrix(LAozoneTrain[,1])

testDesign<-as.matrix(LAozoneTest[,-1])

testResponse<-as.matrix(LAozoneTest[,1])

In order to compute the best subset linear regression estimates, we use the function regsubsets
from the leaps package. nbest=1 signifies that we are only interested in the one best subset
for each number of predictors, instead of, say, the 10 best subsets. nvmax=9 signifies that we
wish to have best subsets estimates up to 9 predictors.

LABestSubset<-regsubsets(x=trainDesign,y=trainResponse,nbest=1,nvmax=9)

bestSubsetCoef<-coefficients(LABestSubset,1:9)

We need to compute the training and the test errors. These are given as the empirical
mean loss of the estimated predictor function over the training and the test samples for each
model, that is, for each best subset up to size 9. The i’th best subset estimates are stored
as a vector in bestSubsetCoef[[i]]. The loss used in linear regression is the squared loss,
and therefore, the training error is the mean square of the residuals.

bestSubsetTestError<-numeric()

bestSubsetTrainingError<-numeric()

for(i in 1:9)

{

param<-rep(0,9)

names(param)<-c("vh","wind","humidity","temp","ibh","dpg","ibt","vis","doy")

param[names(bestSubsetCoef[[i]][-1])]<-bestSubsetCoef[[i]][-1]

bestSubsetTestError[i]<-mean((testResponse-

bestSubsetCoef[[i]][1]-

testDesign%*%param)^2)

bestSubsetTrainingError[i]<-mean((trainResponse-

bestSubsetCoef[[i]][1]-

trainDesign%*%param)^2)

}

Finally, we plot the test error and the training errors.

plot(1:9,ylim=c(0,max(bestSubsetTestError,bestSubsetTrainingError)),type="n",

xlab="Dimension",ylab="Error",main="Best subset test and training errors")

points(1:9,bestSubsetTestError,type="b",col="red",lwd=2)

points(1:9,bestSubsetTrainingError,type="b",col="blue",lwd=2)
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legend(x=6.5,y=max(bestSubsetTestError,bestSubsetTrainingError)/5,

c("Test error","Training error"),col=c("red","blue"),lwd=2)

The results of the plot are as follows.
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We note that the training error is decreasing as a function of the dimension of the fit. This
corresponds to better fitting to our training data as a higher number of predictors are made
available. The test error is not decreasing, this corresponds to our fit for the training data
set not necessarily generalizing well to the test data set. Furthermore, the training error is
systematically lower than the test error. This corresponds to the “optimism of the training
error”, meaning that our fit does better on our particular training set than it does on other
datasets even with similar distributions. �

Exercise 1.3. Compute the ridge and LASSO paths. Estimate the test error, compute the
training error and plot them as a function of the penalization parameter.

Solution. In order to calculat the LASSO path, we use the function glmnet from the package
glmnet. glmnet optimizes 1

2n∥y−Xβ∥22+λ∥β∥1, where n is the number of observations, and
y and X are the standardized response and design matrix. Note that this does not generally
correspond to any particular L1-penalized optimization problem in the nonstandardized case.

3



glmnet returns an object LAlasso of class glmnet, where the coefficients may be obtained
as coef(LAlasso), and the sequence of λ’s may be obtained as LAlasso$lambda.

LAlasso<-glmnet(trainDesign,trainResponse,

family="gaussian",alpha=1,standardize=TRUE)

lassoCoef<-t(as.matrix(coef(LAlasso)))

lassoLambdaSeq<-LAlasso\$lambda

In order to obtain the ridge regression solutions, we use the function lm.ridge from the
package MASS. lm.ridge does not automatically generate the sequence of λ’s to be used. In
order to obtain a reasonable sequence of λ’s, experience shows that the sequence generated by
glmnet times 4*trainNumObs yields reasonable results. It is essential to use coef(LAridge)
and not LAridge$coef, as the latter returns estimates from a ridge regression problem which
is on a different scale than our original ridge regression problem.

ridgeLambdaSeq<-4*trainNumObs*lassoLambdaSeq

LAridge<-lm.ridge(ozone ~ .,data=LAozoneTrain,lambda=ridgeLambdaSeq)

ridgeCoef<-as.matrix(coef(LAridge))

Test and training errors are then calculated by manually calculating the fitted values, as in
the best subset case, and squaring and averaging the resulting residuals.

lassoTestError<-numeric()

lassoTrainingError<-numeric()

ridgeTestError<-numeric()

ridgeTrainingError<-numeric()

for(i in 1:length(lassoLambdaSeq))

{

lassoTestError[i]<-mean((testResponse-lassoCoef[i,1]-

testDesign%*%lassoCoef[i,-1])^2)

lassoTrainingError[i]<-mean((trainResponse-lassoCoef[i,1]-

trainDesign%*%lassoCoef[i,-1])^2)

}

for(i in 1:length(ridgeLambdaSeq))

{

ridgeTestError[i]<-mean((testResponse-ridgeCoef[i,1]-

testDesign%*%ridgeCoef[i,-1])^2)

ridgeTrainingError[i]<-mean((trainResponse-ridgeCoef[i,1]-

trainDesign%*%ridgeCoef[i,-1])^2)

}
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Next, we plot the test and training errors against the sequence of λ’s for the LASSO fit.

X11()

plot(lassoLambdaSeq,lassoLambdaSeq,

ylim=c(0,max(lassoTestError,lassoTrainingError)),type="n",

xlab="Lambda",ylab="Error",main="LASSO test and training errors")

points(lassoLambdaSeq,lassoTestError,type="b",col="red",lwd=2)

points(lassoLambdaSeq,lassoTrainingError,type="b",col="blue",lwd=2)

legend(x=max(lassoLambdaSeq)/2,y=max(lassoTestError,lassoTrainingError)/5,

c("Test error","Training error"),col=c("red","blue"),lwd=2)

The results of the plot are as follows.
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Compared to the best subset case, the training error now appears as an increasing function.
This is because the effective dimensionality of the model decreases with values plotted on
the horizontal axis, λ, while it in the best subset case increased as the values plotted on the
horizontal axis, subset size, increased. The test error increases for very small and very large
values of λ. The increase for very small values of λ appears because the models for small
values of λ overfit and thus do not generalize well. The increase for very large values of λ
appears because the models have small dimensionality and therefore have difficulty fitting
the data well. We repeat the exercise for the ridge regression case.
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X11()

plot(ridgeLambdaSeq,ridgeLambdaSeq,

ylim=c(0,max(ridgeTestError,ridgeTrainingError)),type="n",

xlab="Lambda",ylab="Error",main="Ridge test and training errors")

points(ridgeLambdaSeq,ridgeTestError,type="b",col="red",lwd=2)

points(ridgeLambdaSeq,ridgeTrainingError,type="b",col="blue",lwd=2)

legend(x=max(ridgeLambdaSeq)/2,y=max(ridgeTestError,ridgeTrainingError)/5,

c("Test error","Training error"),col=c("red","blue"),lwd=2)

This results in the following plot.
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As in the LASSO case, the training error increases as the penalization parameter λ inceases,
corresponding to a greater training error for models with less dimensionality. The test error
increases for very small and very large values of λ, corresponding to overfitting for small λ
and difficultly with fitting the data for large λ. �

Exercise 1.4. Compute the Cp statistic for best subset selection and ridge regression and
compare with the estimated test errors.
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Solution. The Cp statistic is generally given as

Cp = errs +
2d

n
σ̂2
ε ,

where errs is the training error, σ̂2
ε is a suitable noise variance estimate, colloquially denoting

an estimate of the conditional distribution of Y given X, n is the number of training obser-
vations and d is the effective degrees of freedom. We have already calculated the training
errors for the best subset and ridge regression models. It remains to calculate the effective
degrees of freedom and the noise variance estimate.

We may obtain the noise variance estimate by unbiased estimation of the variance in the
ordinary linear regression model. This is the sum of squared residuals divided by the number
of observations, trainNumObs, minus the dimension of the parameter space, 9.

noiseVar<-1/(trainNumObs-9)*sum(lm(ozone ~ .,data=LAozoneTrain)\$residuals^2)

In the best subset case, the effective degrees of freedom is equal to the subset size, while in
the ridge regression case, the effective degrees of freedom is tr X(XtX+ λI)−1Xt, where X
is the design matrix of the ridge regression problem, λ is the penalization parameber and I
is the identity matrix of order corresponding to the number of predictors.

We calculate the Cp values. The ridge regression estimates obtained through lm.ridge are
optimizers of ∥y − Xβ∥22 + λ∥β∥22, where X is the standardized design matrix. Therefore,
when calculating the ridge regression effective degrees of freedom, we need to take this into
account.

trainDesignStandard<-scale(trainDesign)

bestSubsetCp<-numeric()

for(i in 1:9) bestSubsetCp[i]<-bestSubsetTrainingError[i] +

2 * i / trainNumObs * noiseVar

for(i in 1:length(ridgeLambdaSeq))

{

df<-sum(diag(trainDesignStandard%*%

solve(t(trainDesignStandard)%*%

trainDesignStandard+

ridgeLambdaSeq[i]*diag(1,9))%*%

t(trainDesignStandard)))

ridgeCp[i]<-ridgeTrainingError[i] + 2 * df / trainNumObs * noiseVar

}

Next, we plot the Cp values for best subset regression as well as the test errors obtained
earlier.
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X11()

plot(1:9,1:9,ylim=c(0,max(bestSubsetTestError,bestSubsetCp)),type="n",

xlab="Number of predictors",ylab="Value",

main="Best subset test errors and Cp statistics")

points(1:9,bestSubsetTestError,type="b",col="red",lwd=2)

points(1:9,bestSubsetCp,type="b",col="green",lwd=2)

legend(x=5,y=max(bestSubsetTestError,bestSubsetCp)/5,

c("Test error","Cp value"),col=c("red","green"),lwd=2)

This results in the following plot for best subset regression.
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Ideally, Cp estimates the in-sample error, which is defined for any fixed set of independent
variable observations (xi) as

Errin =
1

n

n∑
i=1

EL(Y ′
i , f̂s(xi)),

where f̂s(xi) is the fitted value at xi based on stochastic responses (Yi), and Y ′
i has the

distribution of Y given X = xi, and (Yi) and (Y ′
i ) are independent. The test error does not

necessarily estimate the in-sample error unbiasedly, as the test error is based on the estimate
using the training data, while exchanging both the response and the independent variables
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with new data. Still, we would hope that the test errors are reminiscent of the in-sample
error, and in particular that the Cp values and the test errors approximately agree. This
is somewhat validated by the plot results, although the results are highly dependent on the
training sample. Next, we plot the ridge regression Cp values and test errors.

X11()

plot(log(ridgeLambdaSeq),ridgeLambdaSeq,ylim=c(0,max(ridgeTestError,ridgeCp)),

type="n",xlab="Log lambda",ylab="Value",

main="Ridge test errors and Cp statistics")

points(log(ridgeLambdaSeq),ridgeTestError,type="b",col="red",lwd=2)

points(log(ridgeLambdaSeq),ridgeCp,type="b",col="green",lwd=2)

legend(x=max(log(ridgeLambdaSeq))/3,y=max(ridgeTestError,ridgeCp)/5,

c("Test error","Cp value"),col=c("red","green"),lwd=2)

The plot obtained from this is the following. As before, the Cp values and the test errors are
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relatively close. In both cases, we note that the Cp values are systematically lower than the
test errors. This may be due to small-sample issues or to a discrepancy between the mean of
the test error and the in-sample error. �
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