
More on Splines

Recall the basis
N1(x) = 1, N2(x) = x

and

N2+l(x) =
(x− ξl)3+ − (x− ξK)3+

ξK − ξl
−

(x− ξK−1)3+ − (x− ξK)3+
ξK − ξK−1

for l = 1, . . . ,K − 2 for natural cubic splines. Observe that N ′′1 (x) = N ′′2 (x) = 0 and

N ′′2+l(x) =


6 x−ξl
ξK−ξl x ∈ (ξl, ξK−1]

6 (ξK−1−ξl)(ξK−x)
(ξK−ξl)(ξK−ξK−1)

x ∈ (ξK−1, ξK)

0 x ≤ ξl and x ≥ ξK

Assuming that ξ1 < . . . < ξK the functions N ′′3 , . . . , N
′′
K are linearly independent.

For the differentiation above the second derivative of (x− ξl)3+ equals 6(x− ξl)+. Therefore,
for x ≤ ξl all terms in the second derivative are 0 and for x ≥ ξK the x’s in each of the
fractions cancel each other and then both fractions are seen to be equal to 1, thus the
difference is 0.

Regularity of the Spline Smoother

If x1, . . . , xN are all different, N1, . . . , NN is the basis for the n.c.s. with knots x1, . . . , xN
and f =

∑N
i=1 θiNi we have

θTΩNθ =

∫ b

a

f ′′(x)2dx = 0

if and only if f ′′(x) = 0 for all x ∈ [a, b]. Hence

θ2+l = . . . = θK = 0.

If also θTNTNθ = 0 then

(θ1 θ2)

(
N

∑
i xi∑

i xi
∑
i x

2
i

)(
θ1
θ2

)
= 0,

which implies that θ1 = θ2 = 0 if N ≥ 2. The in general positive semidefinite matrix

NTN + λΩN

is thus positive definite for λ > 0.

The result above can also be proved simply by proving directly that N has full rank N
whenever x1, . . . , xN are all different. Then NTN is positive definite. It is actually straight
forward to see that it has rank at least N −1. The (N −1)× (N −1) upper left block matrix
is lower triangular with non-zero numbers in the diagonal, which implies that the last N −1
columns must be linearly independent. However, it is not a priory crystal clear that the first
column – the column of ones – is also always linearly independent of the others. Anyway
there is a good point in observing that ΩN in itself is only positive semidefinite, and in such
a way that the two paremeters corresponding to a linear fit are not penalized.

To understand the question of whether N has full rank it is useful to take a slightly more
abstract point of view. The function space of natural cubic splines with knots ξ1 < . . . < ξK
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is a K dimensional vector space. If we take any basis ϕ1, . . . , ϕK of functions we know that
the K functions are linearly independent – as functions. A recurring problem is whether the
vectors ϕ1(x), . . . , ϕK(x) where ϕi(x) = (ϕi(x1), . . . , ϕK(xN ))T are also linearly indepen-
dent as N dimensional vectors if x = (x1, . . . , xN )T is an N -vector with at least K different
coordinates. If we take these points to be precisely the K knots, this is equivalent to asking
if the vectors span a K dimensional space, which means that for any y1, . . . , yK there are
β1, . . . , βK such that

K∑
i=1

βiϕi(ξj) = yj

for j = 1, . . . ,K. Since
∑K
i=1 βiϕi is a natural cubic spline and ϕ1, . . . , ϕK span the space

of natural cubic splines with knots ξ1 < . . . ξK we are actually asking whether there is a
natural cubic spline that interpolates the points (ξ1, y1), . . . , (ξK , yK). This interpolation
property is a well established property of splines (for K ≥ 2), and we provide a reference
below.

Due to the interpolation property of natural cubic splines we conclude that for any basis
ϕ1, . . . , ϕK of the space of natural cubic splines with knots ξ1 < . . . < ξK the vectors
ϕ1(ξ1), . . . , ϕK(ξK) are linearly independent. This holds in particular for the previously
considered specific basis, which implies that N always has full rank N if the xi’s are all
different.

A splendid reference for many more details on splines is Nonparametric Regression and
Generalized Linear Models by Green and Silverman. Here you can also find details on fast,
linear algebra algorithms for computing with splines and spline bases. Theorem 2.2 gives
the interpolation property of natural cubic splines.

The Reinsch Form

Let
Sλ = N(NTN + λΩN )−1NT

be the spline smoother and N = UDV T the singular value decomposition of N. Since N is
square N × N , U is orthogonal hence invertible with U−1 = UT , and D is invertible if N
has full rank N . Then

Sλ = UDV T (V D2V T + λΩN )−1V DUT

= U(D−1V TV D2V TV D−1 + λD−1V TΩNV D
−1)−1UT

= U(I + λD−1V TΩNV D
−1)−1UT

= (UTU + λUTD−1V TΩNV D
−1U)−1

= (I + λUTD−1V TΩNV D
−1U︸ ︷︷ ︸

K

)−1

= (I + λK)−1

The Demmler-Reinsch Basis

The matrix K is positive semidefinite and we write

K = ŪDŪT
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where D = diag(d1, . . . , dN ) with 0 = d1 = d2 < d3 ≤ . . . ≤ dN and Ū is orthogonal.

The columns in Ū , denoted ū1, . . . , ūN , are known as the Demmler-Reinsch basis.

The Demmler-Reinsch basis is a (the) orthonormal basis of RN with the property that the
smoother Sλ is diagonal in this basis:

Sλ = Ū(I + λD)−1ŪT

The eigenvalues are in decreasing order

ρk(λ) =
1

1 + λdk

for k = 1, . . . , N – and ρ1(λ) = ρ2(λ) = 1.

The Demmler-Reinsch Basis

We may also observe that
Sλūk = ρk(λ)ūk.

We think of and visualize ūk as a function evaluated in the points x1, . . . , xN .

One important consequence of these derivations is that the Demmler-Reinsch basis does not
depend upon λ and we can clearly see the effect of λ through the eigenvalues ρk(λ) that
work as shrinkage coefficients multiplied on the basis vectors.

Also

trace(Sλ) =

N∑
k=1

1

1 + λdk
.

Nonparametric Logistic Regression

With
logit Pr(Y = 1 | X = x) = f(x)

and likelihood loss + a penalty term of the form

λ

∫ b

a

f ′′(x)2dx

the minimizer of the penalized minus-log-likelihood is still a spline.

The iterative optimization algorithm operates by the update scheme

fi+1 = Sλ,izi

with
Sλ,i = N(NTWiN + λΩN )−1NTWi

and
zi = fi + W−1

i (y − pi).
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