
Basis Expansions
With X ∈ Rp and Y ∈ R the function

f (x) = E (Y |X = x)

is typically globally a non-linear function. We discuss situations where p is
small or moderate, but where the function is complicated.

A basis function expansion of f is an expansion

f (x) =
M∑

m=1

βmhm(x)

with hm : Rp → R for m = 1, . . . ,M.

The basis functions are chosen and fixed and the parameters βm for
m = 1, . . . ,M are estimated. This is a linear model in the derived variables
h1(X ), . . . , hM(X ).
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Polynomial Bases

Monomials are classical basis functions;

hm(x) = x r11 x r22 . . . x
rp
p

with ri ∈ {0, . . . , d} and r1 + . . .+ rp ≤ d . This basis spans the
polynomials of degree ≤ d .

If the linear models provide first order Taylor approximations of the
function, expansions in the degree d polynomials provide order d
Taylor approximations.

However, if p ≥ 2 the number of basis functions grows exponentially
in d .

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning October 10, 2011 2 / 18



Indicators
A completely different, non-differentiable idea is to approximate f locally
as a constant. Box-type basis functions are

hm(x) = 1(l1 ≤ x1 ≤ r1) . . . 1(lp ≤ xp ≤ rp)

with li ≤ ri and li , ri ∈ [−∞,∞] for i = 1, . . . , p.

If the boxes are disjoint, the columns in the X-matrix for the derived
variables are orthogonal:

Xim = hm(xi ) ∈ {0, 1}

We can think of this as dummy variables representing the box.
Consequently, with least squares estimation

β̂m =
1

Nm

∑
i :hm(xi )=1

yi , Nm =
N∑
i=1

1(hm(xi ) = 1).
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Basis Strategies
The size of the typical set of basis functions increases rapidly with p.
What are feasible strategies for basis selection?

Restriction: Choose a priory only special basis functions
Additivity; hmj : R→ R

hm(x) =

p∑
j=1

hmj(xj)

Radial basis functions:

hm(x) = D

(
||x − ξm||

λm

)

Selection: As variable selection – implement exhaustive or step-wise
inclusions/exclusions of basis functions.

Penalization: As ridge regression – keep the entire set of basis
functions but penalize the size of the parameter vector.
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Figure 5.1
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Figure 5.2
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Splines – p = 1

Define h1(x) = 1, h2(x) = x and

hm+2(x) = (x − ξm)+ t+ = max{0, t}

for ξ1, . . . , ξK the knots.

f (x) =
M+2∑
m=1

βmhm(x)

is a piecewise linear, continuous function. One order-M spline basis with
knots ξ1, . . . , ξK is

h1(x) = 1, . . . , hM(x) = xM−1, hM+l(x) = (x − ξl)M−1+ , l = 1, . . . ,K .
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Figure 5.3
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Natural Cubic Splines
Splines of order M are polynomials of degree M − 1 beyond the boundary
knots ξ1 and ξK . The natural cubic splines are the splines of order 4 that
are linear beyond the two boundary knots. With

f (x) = β0 + β1x + β2x
2 + β3x

3 +
K∑

k=1

θk(x − ξk)3+

the restriction is that β2 = β3 = 0 and

K∑
k=1

θk =
K∑

k=1

θkξk = 0.

N1(x) = 1, N2(x) = x

and

N2+l(x) =
(x − ξl)3+ − (x − ξK )3+

ξK − ξl
−

(x − ξK−1)3+ − (x − ξK )3+
ξK − ξK−1

for l = 1, . . . ,K − 2 form a basis.
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B Splines (Basis Splines, or YASB)

Yet Another Spline Basis ...

Defined by a recursion in M;

Bk,1(x) =

{
1 if τk ≤ x ≤ τk+1

0 otherwise

with

τ1 ≤ . . . τM = ξ0 < τM+1 = ξ1 < . . . < τM+K = ξK < τM+K+1 = ξK+1 ≤ . . . ≤ τ2M+K

and

Bk,r =
x − τi

τi+r+1 − τi
Bk,r−1(x) +

τi+r − x

τi+r − τi
Bk+1,r−1(x)

for k = 1, . . . ,K + 2M − r .
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Figure 5.20 – B-splines
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Knot Placing Strategies

How do you determine the knots?

Fix the number (the complexity parameter), spread them uniformly
over the whole range of data.

Fix the number, spread them according to the empirical distribution.

Adaptive selection of the number and/or the location – ranging from
ad hoc adaptation to a full fledged, complete estimation from data.

Smoothing methods automatically determine their location

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning October 10, 2011 12 / 18



Smoothing Splines
Allowing E (Y |X = x) = f (x) to be an arbitrary, but twice differentiable
function, define the penalized residual sum of squares

RSS(f , λ) =
N∑
i=1

(yi − f (xi ))2 + λ

∫ b

a
f ′′(t)2dt

If f λ is a minimizer of RSS(f , λ), the natural cubic splines with knots in
x1, . . . , xN have the properties that

they can interpolate; there is a natural cubic spline f0 with
f0(xi ) = f λ(xi )

and among all interpolants f , f0 attains the smallest value of∫ b

a
f ′′(t)2dt.

The solution f λ =
∑N

i=1 θiNi (x) is a natural cubic spline.
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Smoothing Splines
In vector notation

f = Nθ

with Nij = Nj(xi ) and

RSS(f , λ) = (y − f)T (y − f) + λ

∫ b

a
f ′′(t)2dt

= (y −Nθ)T (y −Nθ) + λθTΩNθ

with

ΩN,ij =

∫ b

a
N ′′i (t)N ′′j (t)dt.

This generalized ridge regression problem has solution

θ̂ = (NTN + λΩN)−1NTy

and the fitted values are

f̂ = N(NTN + λΩN)−1NTy
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Degrees Of Freedom

Writing
Sλ = N(NTN + λΩN)−1NT

and by analogy with projection matrices the effective degrees of freedom is

dfλ = trace(Sλ).

The value of dfλ is monotonely decreasing from N to 0 as λ increases
from 0 to ∞.

The matrix Sλ is known as a spline smoother and it is common to specify
the degrees of freedom instead of λ in practice.
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Figure 5.8 – Smoother Matrix
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Multidimensional Splines
Two multivariate versions.

Tensor products. Consider a basis consisting of

Bi1,R(x1)Bi2,R(x2) . . .Bip ,R(xp)

– compare with the multinomial basis for polynomials.

Thin plate splines. If p = 2 consider minimizing

N∑
i=1

(yi − f (xi ))2 + λ

∫
A

(∂21 f )2 + 2(∂1∂2f )2 + (∂22 f )2.

The solution is a function

f (x) = β0 + xTβ +
N∑
i=1

αiη(||x − xi ||)

with η(z) = z2 log(z2) – thus a radial basis function expansion.
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Figure 5.10 – Tensor Products of B-splines
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