Basis Expansions
With X € RP and Y € R the function

f(z) = E(Y[X =)
is typically globally a non-linear function. We discuss situations where p is small or moderate,

but where the function is complicated.

A basis function expansion of f is an expansion

M
f@) =Y Buhm()
m=1
with A, : RP > Rform=1,..., M.

The basis functions are chosen and fixed and the parameters f3,, for m = 1,..., M are
estimated. This is a linear model in the derived variables hy(X), ..., ha(X).

Polynomial Bases
Monomials are classical basis functions;
T2 r
b () = 2y 29? . P

with r; € {0,...,d} and 7 + ... + 7, < d. This basis spans the polynomials of degree < d.

e If the linear models provide first order Taylor approximations of the function, expan-
sions in the degree d polynomials provide order d Taylor approximations.

e However, if p > 2 the number of basis functions grows exponentially in d.

Indicators

A completely different, non-differentiable idea is to approximate f locally as a constant.
Box-type basis functions are

h(z) =1(L <21 <) 1l < ap < 1p)

with I; <r; and l;,7; € [—o0,00] fori=1,...,p.

If the boxes are disjoint, the columns in the X-matrix for the derived variables are orthogonal:
Xim = h’m(xi) € {07 1}

We can think of this as dummy variables representing the box. Consequently, with least
squares estimation

m tthp, (25)=1 =1



Basis Strategies

The size of the typical set of basis functions increases rapidly with p. What are feasible
strategies for basis selection?

e Restriction: Choose a priory only special basis functions
— Additivity; hp; : R = R
(@) = o (25)

j=1

oty 0 (L5 nl

e Selection: As variable selection — implement exhaustive or step-wise inclusions/exclusions
of basis functions.

— Radial basis functions:

e Penalization: As ridge regression — keep the entire set of basis functions but penalize
the size of the parameter vector.
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Splines — p=1
Define hy(z) =1, ho(z) = x and

hipt2(@) = (& = &n)+  t+ = max{0,t}

for &1,...,&k the knots.

M+2
flz) = Z Bmhim ()
m=1
is a piecewise linear, continuous function. One order-M spline basis with knots &1, ..., &k is

hi(z) =1,...,har(2) = 2™ hy(e) = (@ - &Y', 1=1,...,K.

Figure 5.3



Natural Cubic Splines

Splines of order M are polynomials of degree M — 1 beyond the boundary knots &; and £k
The natural cubic splines are the splines of order 4 that are linear beyond the two boundary
knots. With

K
f(x) = Bo + Biz + Box® + Baz® + Zek(a? —&)3
k=1
the restriction is that fy = f3 = 0 and

K K
Z9k = Zakfk =0.
k=1 k=1

Ni@) =1, No(w)=uz

and
-8t - (-l @&k - (@ &r)I
Nai(@) = Ex — & §r — €K1

forl=1,..., K — 2 form a basis.

Obviously f2 = 3 = 0 and then beyond the last knot the second derivative of f is

K K K
f'(x) = 60k(x— &) =62 Y O — 6 Oy,
=1 h=1 k=1

which is zero for all z if and only if the conditions above are fulfilled. For Ny y; we see that

_ v b — 1 1
Ttk —& KT Ttk —€k % tk—€xk1 Ek—&

and the condition is easily verified. By evaluating the functions in the knots, say, it is on the
other hand easy to see that the K different functions are linearly independent. Therefore
they must span the space of natural cubic splines of co-dimension 4 in the set of cubic
splines.

0

B Splines (Basis Splines, or YASB)
Yet Another Spline Basis ...

Defined by a recursion in M;

. 1 if i, < <7y
By (x) = { 0 otherwise

with
T1< ...t =8 <Tm4+1 =81 < ... <TM4+K =&k < TM+K+1 =Ek+1 < ... < TeMt K
and
X T Titr — &
Bk,r - Bk’,r—l(x) + Bk—‘—l,r—l(z)
Titr+1 — Ti Titr — Ti
fork=1,..., K+2M —r



Figure 5.20 — B-splines

Knot Placing Strategies

How do you determine the knots?

e Fix the number (the complexity parameter), spread them uniformly over the whole
range of data.

Fix the number, spread them according to the empirical distribution.

e Adaptive selection of the number and/or the location — ranging from ad hoc adaptation
to a full fledged, complete estimation from data.

Smoothing methods automatically determine their location

Smoothing Splines

Allowing E(Y|X = z) = f(z) to be an arbitrary, but twice differentiable function, define
the penalized residual sum of squares

N

b
RSS(f.0) = Y- (0s — f(@i))? + 1 [ 70

i=1

If f* is a minimizer of RSS(f, \), the natural cubic splines with knots in x1,...,zy have
the properties that

e they can interpolate; there is a natural cubic spline fy with fo(z;) = f(;)

e and among all interpolants f, fo attains the smallest value of

/a " perar

The solution f* = va:l 0;N;(z) is a natural cubic spline.

Only requirement above on a < b is that [a, ] contains all the data points. For the inter-
polation argument we also need that the z;’s are different. See Exercise 5.7 for the second
bullet point above.

Smoothing Splines

In vector notation
f =N6

with Nij = N](IZ) and

RSS(f,\) = (y—H)T(y—f) +/\/ f(t)2dt
= (y—NO)(y —NO)+ 0" Qy0



with .
QN,Z»J:/ N{'(t)N} (t)dt.
a
This generalized ridge regression problem has solution
6= (NTN+AQy) !Ny

and the fitted values are .
f=N(N'N+Qy) 'NTy

Degrees Of Freedom

Writing
Sy = N(NTN + \Qpy) 'NT

and by analogy with projection matrices the effective degrees of freedom is
dfy = trace(Sy).
The value of df is monotonely decreasing from N to 0 as A increases from 0 to oo.

The matrix Sy is known as a spline smoother and it is common to specify the degrees of
freedom instead of A in practice.

Figure 5.8 — Smoother Matrix



Multidimensional Splines

Two multivariate versions.

e Tensor products. Consider a basis consisting of

Bil’R(ﬂfl)Bi%R(xQ) I Bip,R(ZL’p)
— compare with the multinomial basis for polynomials.
e Thin plate splines. If p = 2 consider minimizing
N
S = )+ ) [ (G0 + 20000 + B
i=1
The solution is a function
N
f@)=po+a"B+ Y am(llz — i)
i=1

with 1(z) = 2%log(2?) — thus a radial basis function expansion.

Figure 5.10 — Tensor Products of B-splines



