## Parameter transformations - LDA

Fixing the last group $K$ as a reference group we have for $k=1, \ldots, K-1$ that

$$
\begin{aligned}
\log \frac{\operatorname{Pr}(Y=k \mid X=x)}{\operatorname{Pr}(Y=K \mid X=x)}= & \underbrace{\log \frac{\pi_{k}}{\pi_{K}}+\frac{1}{2} \mu_{K}^{T} \Sigma^{-1} \mu_{K}-\frac{1}{2} \mu_{k}^{T} \Sigma^{-1} \mu_{k}}_{\beta_{k 0}} \\
& +x^{T} \underbrace{\Sigma^{-1}\left(\mu_{k}-\mu_{K}\right)}_{\beta_{k}}
\end{aligned}
$$

Thus

$$
\operatorname{Pr}(Y=k \mid X=x)=\frac{\exp \left(\beta_{k 0}+x^{\top} \beta_{k}\right)}{1+\sum_{l=1}^{K-1} \exp \left(\beta_{l 0}+x^{\top} \beta_{l}\right)}
$$

for $k=1, \ldots, K-1$. The conditional distribution depends upon $\pi_{1}, \ldots, \pi_{K-1}, \mu_{1}, \ldots, \mu_{k}, \Sigma$ through the parameter transformation

$$
\left(\pi_{1}, \ldots, \pi_{K-1}, \mu_{1}, \ldots, \mu_{K}, \Sigma\right) \mapsto\left(\beta_{10}, \ldots, \beta_{(K-1) 0}, \beta_{1}, \ldots, \beta_{K-1}\right)
$$

## Logistic Regression

We consider $K=2$ and encode the $y$-variable as 0 or 1 . The logistic regression model is given by

$$
\operatorname{Pr}(Y=1 \mid X=x)=\frac{\exp \left(\left(1, x^{T}\right) \beta\right)}{1+\exp \left(\left(1, x^{T}\right) \beta\right)}
$$

Hence

$$
\operatorname{Pr}(Y=0 \mid X=x)=1-\frac{\exp \left(\left(1, x^{\top}\right) \beta\right)}{1+\exp \left(\left(1, x^{T}\right) \beta\right)}=\frac{1}{1+\exp \left(\left(1, x^{T}\right) \beta\right)}
$$

We saw that the conditional distribution of $Y$ given $X$ in the LDA setup is a logistic regression model.

## Figure 4.12 - South African Heart Disease Data

A typical use of logistic regression. The response variable is Myocardial Infarction. The two cases ( $0 / 1$ ) are color coded in the plot.

The plot reveals pair-wise - and marginal - effects of the 7 observed variables on MI.

And clear correlations between obesity and sbp (systolic blood pressure), say.

## Logistic Regression - Notation

Given a dataset $\left(y_{1}, x_{1}\right), \ldots,\left(y_{N}, x_{N}\right)$ write

$$
\mathbf{p}(\beta)=\left(p_{i}(\beta)\right)_{i=1}^{N}, \quad p_{i}(\beta)=\frac{\exp \left(\left(1, x_{i}^{T}\right) \beta\right)}{1+\exp \left(\left(1, x_{i}^{\top}\right) \beta\right)} .
$$

With $h: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$

$$
h_{i}(z)=-\log \left(1+\exp \left(z_{i}\right)\right)
$$

and taking coordinatewise logarithm

$$
\log \mathbf{p}(\beta)=\mathbf{X} \beta+h(\mathbf{X} \beta)
$$

and

$$
\log (\mathbf{1}-\mathbf{p}(\beta))=h(\mathbf{X} \beta)
$$

## Logistic Regression - The Minus-Log-Likelihood Function

The (conditional) likelihood function of observing $y_{1}, \ldots, y_{N}$ given $x_{1}, \ldots, x_{N}$ is

$$
\mathcal{L}(\beta)=\prod_{i=1}^{N} p_{i}(\beta)^{y_{i}}\left(1-p_{i}(\beta)\right)^{1-y_{i}}
$$

and the minus-log-likelihood function is

$$
\begin{aligned}
I(\beta) & =-\mathbf{y}^{T}(\mathbf{X} \beta+h(\mathbf{X} \beta))-(\mathbf{1}-\mathbf{y})^{T} h(\mathbf{X} \beta) \\
& =-\mathbf{y}^{T} \mathbf{X} \beta-\mathbf{1}^{T} h(\mathbf{X} \beta)
\end{aligned}
$$

Observe that $D_{z} h(z)$ is diagonal with

$$
D_{z} h(z)_{i i}=-\frac{\exp \left(z_{i}\right)}{1+\exp \left(z_{i}\right)}
$$

## Logistic Regression - The MLE

By differentiation

$$
\begin{aligned}
D_{\beta} l(\beta) & =-\mathbf{y}^{T} \mathbf{X}-\mathbf{1}^{T} D_{z} h(\mathbf{X} \beta) \mathbf{X} \\
& =-\mathbf{y}^{T} \mathbf{X}+\mathbf{p}(\beta)^{T} \mathbf{X} \\
& =\left(\mathbf{p}(\beta)^{T}-\mathbf{y}^{T}\right) \mathbf{X}
\end{aligned}
$$

and

$$
D_{\beta}^{2} I(\beta)=D_{\beta} \mathbf{p}(\beta)^{T} \mathbf{X}=\mathbf{X}^{T} \mathbf{W}(\beta) \mathbf{X}
$$

with

$$
\begin{aligned}
\mathbf{W}(\beta) & =\operatorname{diag}(\mathbf{p}(\beta)) \operatorname{diag}(1-\mathbf{p}(\beta)) \\
& =\left\{\begin{array}{ccc}
p_{1}(\beta)\left(1-p_{1}(\beta)\right) & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & p_{N}(\beta)\left(1-p_{N}(\beta)\right)
\end{array}\right\}
\end{aligned}
$$

## Likelihood Equation

The non-linear likelihood estimation equation reads (after transposition)

$$
\mathbf{X}^{T} \mathbf{p}(\beta)=\mathbf{X}^{T} \mathbf{y}
$$

Since $D_{\beta}^{2} l(\beta)=\mathbf{X}^{T} \mathbf{W}(\beta) \mathbf{X}$ is positive definite whenever $\mathbf{X}$ has full rank $p+1$, the minus-log-likelihood function is strictly convex and a minimum is unique.

There is no solution if the $x$-values for the two groups can be separated completely by a hyperplane.

## Logistic Regression - Algorithm

A first order Taylor expansion

$$
\mathbf{p}(\beta) \simeq \mathbf{p}\left(\beta^{0}\right)+\mathbf{W}\left(\beta^{0}\right) \mathbf{X}\left(\beta-\beta^{0}\right)
$$

around $\beta^{0}$ yields the approximating equation

$$
\mathbf{X}^{T} \mathbf{W}\left(\beta^{0}\right) \mathbf{X} \beta=\mathbf{X}^{T} \mathbf{W}\left(\beta^{0}\right)(\underbrace{\mathbf{X} \beta^{0}+\mathbf{W}\left(\beta^{0}\right)^{-1}\left(\mathbf{y}-\mathbf{p}\left(\beta^{0}\right)\right)}_{\text {adjusted response }=\mathbf{z}_{0}}) .
$$

The solution is precisely the solution of the weighted least squares problem

$$
\underset{\beta}{\operatorname{argmin}}\left(\mathbf{z}_{0}-\mathbf{X} \beta\right)^{T} \mathbf{W}\left(\beta^{0}\right)\left(\mathbf{z}_{0}-\mathbf{X} \beta\right)
$$

Iteration yielding a sequence $\beta^{n}, n \geq 0$, is known as the iterative reweighted least squares algorithm - or IRLS - using the adjusted response

$$
\mathbf{z}_{n}=\mathbf{X} \beta^{n}+\mathbf{W}\left(\beta^{n}\right)^{-1}\left(\mathbf{y}-\mathbf{p}\left(\beta^{n}\right)\right)
$$

in the $(n+1)$ 'th iteration. The algorithm is equivalent to the Newton-Raphson algorithm.

## Multinomial Regression and LDA

It is possible to formulate a multinomial version of the binary logistic regression model.

The algorithm for estimation becomes more complicated.

LDA relies on MLE for the full parameter in the full distribution of $(X, Y)$. Logistic/multinomial regression relies on MLE in the conditional distribution of $Y \mid X$.

Logistic regression makes fewer distributional assumptions. Deviations from normality could affect LDA in the negative direction.

If the distributional assumptions for LDA are fulfilled, LDA is a little more efficient.

## Penalized logistic regression

With $J: \mathbb{R}^{p+1} \rightarrow[0, \infty)$ we can consider the penalized minus-log-likelihood

$$
I(\beta)+\lambda J(\beta) .
$$

If $J(\beta)=\sum_{i=1}^{p} \beta_{i}^{2}$ or $J(\beta)=\sum_{i=1}^{p}\left|\beta_{i}\right|$ there is always a minimizer.
Efficient algorithms (especially for lasso in the $R$ package glmnet) are based on iterations that solve a penalized weighted least squares problem.

## Large $p$ Small $N$ Problems

When $p>N$ and in particular when $p \gg N$ new issues arise.

- We are never able to estimate all parameters without regularization. E.g. in a regression there are $p$ parameters but the $\mathbf{X}$-matrix only has rank $N$.
- Signals can drown in noise.
- Big matrices, computational challenges.

As a rule of thumb; choose simple methods over complicated methods when $p \gg N$, regularize and bet on "sparsity".

## Figure 18.1

Simulation study with $Y=\sum_{i=1}^{p} \beta_{j} X_{j}+\sigma \epsilon$.

## Diagonal or Independence LDA

Recall that the estimated LDA classifier can be determined by

$$
\delta_{k}(x)=\log \pi_{k}-\frac{1}{2}\left(x-\hat{\mu}_{k}\right)^{T} \hat{\Sigma}^{-1}\left(x-\hat{\mu}_{k}\right)
$$

and we classify to $\operatorname{argmax}_{k}\left\{\delta_{k}(x)\right\}$.

If

$$
\hat{\Sigma}=\operatorname{diag}\left(s_{1}^{2}, \ldots, s_{p}^{2}\right)
$$

this simplifies to

$$
\delta_{k}(x)=-\sum_{j=1}^{p} \frac{\left(x_{j}-\bar{x}_{k j}\right)^{2}}{s_{j}^{2}}+2 \log \pi_{k}
$$

where $x=\left(x_{1}, \ldots, x_{p}\right)^{T}$ and

$$
\bar{x}_{k j}=\frac{1}{N_{k}} \sum_{i: y_{i}=k} x_{i j}
$$

is the average of the $j$ 'th coordinate in the $k$ 'th group.

## Shrunken Centroids

Note that the variance of $\bar{x}_{k j}-\bar{x}_{j}$ is

$$
m_{k}^{2} \sigma^{2} \quad \text { with } \quad m_{k}^{2}=\frac{1}{N_{k}}-\frac{1}{N}
$$

Introduce the general shrunken centroids

$$
\bar{x}_{k j}^{\prime}=\bar{x}_{j}+m_{k}\left(s_{j}+s_{0}\right) g\left(\frac{\bar{x}_{k j}-\bar{x}_{j}}{m_{k}\left(s_{j}+s_{0}\right)}\right)
$$

with $s_{0}$ a small, positive constant.

$$
g_{\Delta}(d)=\operatorname{sign}(d)(|d|-\Delta)_{+}
$$

is known as soft thresholding.

$$
g_{\Delta}(d)=d 1(|d| \geq \Delta)_{+}
$$

as hard thresholding.

## Figure 18.4 - Train and Test Error

The parameter $\Delta$ is a tuning parameter for shrunken centroids. With 43 genes, $\Delta=4.3$, we get a training error of $0-$ but also a test error of 0 .

## Figure 18.4 - Centroid Profiles and Shrunken Centroids

## Figure 18.3 - Heat Map

## Elastic Net

The penalization function

$$
\sum_{j=1}^{p} \alpha\left|\beta_{j}\right|+(1-\alpha) \beta_{j}^{2}
$$

is known as the elastic net penalty.

For multinomial regression the penalized minus-log-likelihood function is

$$
-\sum_{i=1}^{N} \log \operatorname{Pr}\left(Y=y_{i} \mid X=x_{i}\right)+\lambda \sum_{k=1}^{K} \sum_{j=1}^{p} \alpha\left|\beta_{k j}\right|+(1-\alpha) \beta_{k j}^{2}
$$

There is an efficient implementation in the glmnet package for $R$.

Note that intercepts are not penalized and subject to the constraint that they sum to 0 . All other redundancies in the parameterization are dealt with by the penalization.

## Regularized Discriminant Analysis

Choosing the estimator

$$
\hat{\Sigma}(\alpha)=\alpha \hat{\Sigma}+(1-\alpha) \operatorname{diag}(\hat{\Sigma})
$$

for $\alpha \in[0,1]$ we get a regularized covariance estimator usable for LDA.

The rda function in the rda library does this in combination with nearest shrunken centroids with regularization="R". With regularization="S" one gets

$$
\hat{\Sigma}(\alpha)=\alpha \hat{\Sigma}+(1-\alpha) I_{p}
$$

It is a little unclear which of three suggested centroid shrinkage methods from the paper Guo et al. (2006), see book, that is implemented in the R package rda.

## Support Vector Classifiers

Support vector machines are popular two class classifiers and have a reputation for being among the best performing.

With $y_{i} \in\{-1,1\}, x_{i} \in \mathbb{R}^{p}$ and $f: \mathbb{R}^{p} \rightarrow \mathbb{R}$ we compute the predictor of $y_{i}$ as $\operatorname{sign}\left(f\left(x_{i}\right)\right)$. With $f$ in a reproducing kernel Hilbert space $\mathcal{H}$ estimation is done by minimization of

$$
\sum_{i=1}^{N}\left[1-y_{i} f\left(x_{i}\right)\right]_{+}+\lambda\|f\|_{\mathcal{H}}^{2}
$$

Thus the loss function $L:\{-1,1\} \times \mathbb{R} \rightarrow \mathbb{R}$ is special and given as

$$
L(y, z)=[1-y z]_{+}=\max \{1-y z, 0\}
$$

## Support Vector Classifiers - example

Simplest example: $\mathcal{H}=\mathbb{R}^{p+1}$ and $f(x)=x^{T} \beta+\beta_{0}$ for $\beta \in \mathbb{R}^{p}$. Hence the objective is minimization of

$$
\sum_{i=1}^{N}\left[1-y_{i}\left(x_{i}^{T} \beta+\beta_{0}\right)\right]_{+}+\lambda \sum_{i=0}^{p} \beta_{i}^{2} .
$$

This problem can be equivalently formulated as a constraint optimization problem; minimize

$$
\sum_{i=0}^{p} \beta_{i}^{2}+C \sum_{i=1}^{N} \xi_{i}
$$

subject to $\xi_{i} \geq 0$ and $y_{i}\left(x_{i}^{\top} \beta+\beta_{0}\right) \geq 1-\xi_{i}$ for $i=1, \ldots, N$.

## The kernel trick

A reproducing kernel Hilbert space is characterized by a kernel, $K\left(x, x^{\prime}\right)$, which is reproducing:

$$
\left\langle K(\cdot, x), K\left(\cdot, x^{\prime}\right)\right\rangle=K\left(x, x^{\prime}\right) .
$$

Solutions to the optimization problem above take the form

$$
f(x)=\sum_{i=1}^{N} \alpha_{i} K\left(x, x_{i}\right)
$$

The problem reduces to optimization of

$$
\sum_{i=1}^{N}\left[1-y_{i}(\mathbf{K} \alpha)_{i}\right]_{+}+\lambda \alpha^{T} \mathbf{K} \alpha
$$

where $\mathbf{K}_{i j}=K\left(x_{i}, x_{j}\right)$.
This is the kernel trick, which can reduce a high-dimensional problem (dimension $p \gg N$ ) to a reasonable sized problem of dimension $N$.

## Kernel examples

- $K\left(x, x^{\prime}\right)=x^{T} x^{\prime}$ - the linear kernel.
- $K\left(x, x^{\prime}\right)=\left(1+\gamma x^{T} x^{\prime}\right)^{d}$ - the polynomial kernel.
- $K\left(x, x^{\prime}\right)=\exp \left(-\gamma\left\|x-x^{\prime}\right\|^{2}\right)$ - the radial basis kernel.
- $K\left(x, x^{\prime}\right)=\tanh \left(\kappa_{1} x^{T} x^{\prime}+\kappa_{2}\right)-$ the sigmoid or neural network kernel.

Except for the linear kernel the kernels have, in addition to the penalization parameter, one or two other tuning parameters.

