
Parameter transformations – LDA
Fixing the last group K as a reference group we have for k = 1, . . . ,K − 1
that

log
Pr(Y = k |X = x)

Pr(Y = K |X = x)
= log

πk
πK

+
1

2
µTKΣ−1µK −

1

2
µTk Σ−1µk︸ ︷︷ ︸

βk0

+xT Σ−1(µk − µK )︸ ︷︷ ︸
βk

Thus

Pr(Y = k |X = x) =
exp(βk0 + xTβk)

1 +
∑K−1

l=1 exp(βl0 + xTβl)

for k = 1, . . . ,K − 1. The conditional distribution depends upon
π1, . . . , πK−1, µ1, . . . , µk ,Σ through the parameter transformation

(π1, . . . , πK−1, µ1, . . . , µK ,Σ) 7→ (β10, . . . , β(K−1)0, β1, . . . , βK−1).
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Logistic Regression

We consider K = 2 and encode the y -variable as 0 or 1. The logistic
regression model is given by

Pr(Y = 1 | X = x) =
exp((1, xT )β)

1 + exp((1, xT )β)

Hence

Pr(Y = 0 | X = x) = 1− exp((1, xT )β)

1 + exp((1, xT )β)
=

1

1 + exp((1, xT )β)
.

We saw that the conditional distribution of Y given X in the LDA setup is
a logistic regression model.
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Figure 4.12 – South African Heart Disease Data

A typical use of logistic
regression. The response variable
is Myocardial Infarction. The two
cases (0/1) are color coded in the
plot.

The plot reveals pair-wise – and
marginal – effects of the 7
observed variables on MI.

And clear correlations between
obesity and sbp (systolic blood
pressure), say.
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Logistic Regression – Notation

Given a dataset (y1, x1), . . . , (yN , xN) write

p(β) = (pi (β))Ni=1, pi (β) =
exp((1, xTi )β)

1 + exp((1, xTi )β)
.

With h : RN → RN

hi (z) = − log(1 + exp(zi ))

and taking coordinatewise logarithm

log p(β) = Xβ + h(Xβ)

and
log(1− p(β)) = h(Xβ)
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Logistic Regression – The Minus-Log-Likelihood Function

The (conditional) likelihood function of observing y1, . . . , yN given
x1, . . . , xN is

L(β) =
N∏
i=1

pi (β)yi (1− pi (β))1−yi

and the minus-log-likelihood function is

l(β) = −yT (Xβ + h(Xβ))− (1− y)Th(Xβ)

= −yTXβ − 1Th(Xβ)

Observe that Dzh(z) is diagonal with

Dzh(z)ii = − exp(zi )

1 + exp(zi )
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Logistic Regression – The MLE

By differentiation

Dβ l(β) = −yTX− 1TDzh(Xβ)X

= −yTX + p(β)TX

= (p(β)T − yT )X

and
D2
β l(β) = Dβp(β)TX = XTW(β)X

with

W(β) = diag(p(β))diag(1− p(β))

=


p1(β)(1− p1(β)) . . . 0

...
. . .

...
0 . . . pN(β)(1− pN(β))
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Likelihood Equation

The non-linear likelihood estimation equation reads (after transposition)

XTp(β) = XTy

Since D2
β l(β) = XTW(β)X is positive definite whenever X has full rank

p + 1, the minus-log-likelihood function is strictly convex and a minimum
is unique.

There is no solution if the x-values for the two groups can be separated
completely by a hyperplane.
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Logistic Regression – Algorithm
A first order Taylor expansion

p(β) ' p(β0) + W(β0)X(β − β0)

around β0 yields the approximating equation

XTW(β0)Xβ = XTW(β0)(Xβ0 + W(β0)−1(y − p(β0))︸ ︷︷ ︸
adjusted response=z0

).

The solution is precisely the solution of the weighted least squares problem

argmin
β

(z0 − Xβ)TW(β0)(z0 − Xβ)

Iteration yielding a sequence βn, n ≥ 0, is known as the iterative
reweighted least squares algorithm – or IRLS – using the adjusted response

zn = Xβn + W(βn)−1(y − p(βn))

in the (n + 1)’th iteration. The algorithm is equivalent to the
Newton-Raphson algorithm.
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Multinomial Regression and LDA

It is possible to formulate a multinomial version of the binary logistic
regression model.

The algorithm for estimation becomes more complicated.

LDA relies on MLE for the full parameter in the full distribution of (X ,Y ).
Logistic/multinomial regression relies on MLE in the conditional
distribution of Y | X .

Logistic regression makes fewer distributional assumptions. Deviations
from normality could affect LDA in the negative direction.

If the distributional assumptions for LDA are fulfilled, LDA is a little more
efficient.
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Penalized logistic regression

With J : Rp+1 → [0,∞) we can consider the penalized
minus-log-likelihood

l(β) + λJ(β).

If J(β) =
∑p

i=1 β
2
i or J(β) =

∑p
i=1 |βi | there is always a minimizer.

Efficient algorithms (especially for lasso in the R package glmnet) are
based on iterations that solve a penalized weighted least squares problem.
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Large p Small N Problems

When p > N and in particular when p � N new issues arise.

We are never able to estimate all parameters without regularization.
E.g. in a regression there are p parameters but the X-matrix only has
rank N.

Signals can drown in noise.

Big matrices, computational challenges.

As a rule of thumb; choose simple methods over complicated methods
when p � N, regularize and bet on “sparsity”.
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Figure 18.1

Simulation study with Y =
∑p

i=1 βjXj + σε.
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Diagonal or Independence LDA
Recall that the estimated LDA classifier can be determined by

δk(x) = log πk −
1

2
(x − µ̂k)T Σ̂−1(x − µ̂k)

and we classify to argmaxk{δk(x)}.

If
Σ̂ = diag(s2

1 , . . . , s
2
p)

this simplifies to

δk(x) = −
p∑

j=1

(xj − x̄kj)
2

s2
j

+ 2 log πk

where x = (x1, . . . , xp)T and

x̄kj =
1

Nk

∑
i :yi=k

xij

is the average of the j ’th coordinate in the k ’th group.
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Shrunken Centroids
Note that the variance of x̄kj − x̄j is

m2
kσ

2 with m2
k =

1

Nk
− 1

N
.

Introduce the general shrunken centroids

x̄ ′kj = x̄j + mk(sj + s0)g

(
x̄kj − x̄j

mk(sj + s0)

)
with s0 a small, positive constant.

g∆(d) = sign(d)(|d | −∆)+

is known as soft thresholding.

g∆(d) = d1(|d | ≥ ∆)+

as hard thresholding.
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Figure 18.4 – Train and Test Error

The parameter ∆ is a tuning parameter for shrunken centroids. With 43
genes, ∆ = 4.3, we get a training error of 0 – but also a test error of 0.
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Figure 18.4 – Centroid Profiles and Shrunken Centroids
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Figure 18.3 – Heat Map
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Elastic Net
The penalization function

p∑
j=1

α|βj |+ (1− α)β2
j

is known as the elastic net penalty.

For multinomial regression the penalized minus-log-likelihood function is

−
N∑
i=1

log Pr(Y = yi |X = xi ) + λ

K∑
k=1

p∑
j=1

α|βkj |+ (1− α)β2
kj

There is an efficient implementation in the glmnet package for R.

Note that intercepts are not penalized and subject to the constraint that
they sum to 0. All other redundancies in the parameterization are dealt
with by the penalization.
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Regularized Discriminant Analysis

Choosing the estimator

Σ̂(α) = αΣ̂ + (1− α)diag(Σ̂)

for α ∈ [0, 1] we get a regularized covariance estimator usable for LDA.

The rda function in the rda library does this in combination with nearest
shrunken centroids with regularization="R". With
regularization="S" one gets

Σ̂(α) = αΣ̂ + (1− α)Ip

It is a little unclear which of three suggested centroid shrinkage methods
from the paper Guo et al. (2006), see book, that is implemented in the R
package rda.
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Support Vector Classifiers

Support vector machines are popular two class classifiers and have a
reputation for being among the best performing.

With yi ∈ {−1, 1}, xi ∈ Rp and f : Rp → R we compute the predictor of
yi as sign(f (xi )). With f in a reproducing kernel Hilbert space H
estimation is done by minimization of

N∑
i=1

[1− yi f (xi )]+ + λ||f ||2H

Thus the loss function L : {−1, 1} × R→ R is special and given as

L(y , z) = [1− yz ]+ = max{1− yz , 0}
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Support Vector Classifiers – example

Simplest example: H = Rp+1 and f (x) = xTβ + β0 for β ∈ Rp. Hence
the objective is minimization of

N∑
i=1

[1− yi (x
T
i β + β0)]+ + λ

p∑
i=0

β2
i .

This problem can be equivalently formulated as a constraint optimization
problem; minimize

p∑
i=0

β2
i + C

N∑
i=1

ξi

subject to ξi ≥ 0 and yi (x
T
i β + β0) ≥ 1− ξi for i = 1, . . . ,N.
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The kernel trick
A reproducing kernel Hilbert space is characterized by a kernel, K (x , x ′),
which is reproducing:

〈K (·, x),K (·, x ′)〉 = K (x , x ′).

Solutions to the optimization problem above take the form

f (x) =
N∑
i=1

αiK (x , xi ).

The problem reduces to optimization of

N∑
i=1

[1− yi (Kα)i ]+ + λαTKα

where Kij = K (xi , xj).

This is the kernel trick, which can reduce a high-dimensional problem
(dimension p � N) to a reasonable sized problem of dimension N.
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Kernel examples

K (x , x ′) = xT x ′ – the linear kernel.

K (x , x ′) = (1 + γxT x ′)d – the polynomial kernel.

K (x , x ′) = exp(−γ||x − x ′||2) – the radial basis kernel.

K (x , x ′) = tanh(κ1x
T x ′ + κ2) – the sigmoid or neural network kernel.

Except for the linear kernel the kernels have, in addition to the
penalization parameter, one or two other tuning parameters.
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