
Parameter transformations – LDA

Fixing the last group K as a reference group we have for k = 1, . . . ,K − 1 that

log
Pr(Y = k|X = x)

Pr(Y = K|X = x)
= log

πk
πK

+
1

2
µTKΣ−1µK −

1

2
µTk Σ−1µk︸ ︷︷ ︸

βk0

+xT Σ−1(µk − µK)︸ ︷︷ ︸
βk

Thus

Pr(Y = k|X = x) =
exp(βk0 + xTβk)

1 +
∑K−1
l=1 exp(βl0 + xTβl)

for k = 1, . . . ,K− 1. The conditional distribution depends upon π1, . . . , πK−1, µ1, . . . , µk,Σ
through the parameter transformation

(π1, . . . , πK−1, µ1, . . . , µK ,Σ) 7→ (β10, . . . , β(K−1)0, β1, . . . , βK−1).

Logistic Regression

We consider K = 2 and encode the y-variable as 0 or 1. The logistic regression model is
given by

Pr(Y = 1 | X = x) =
exp((1, xT )β)

1 + exp((1, xT )β)

Hence

Pr(Y = 0 | X = x) = 1− exp((1, xT )β)

1 + exp((1, xT )β)
=

1

1 + exp((1, xT )β)
.

We saw that the conditional distribution of Y given X in the LDA setup is a logistic
regression model.

Figure 4.12 – South African Heart Disease Data

A typical use of logistic regression. The response variable is Myocardial Infarction. The two
cases (0/1) are color coded in the plot.

The plot reveals pair-wise – and marginal – effects of the 7 observed variables on MI.

And clear correlations between obesity and sbp (systolic blood pressure), say.

Logistic Regression – Notation

Given a dataset (y1, x1), . . . , (yN , xN ) write

p(β) = (pi(β))Ni=1, pi(β) =
exp((1, xTi )β)

1 + exp((1, xTi )β)
.

With h : RN → RN
hi(z) = − log(1 + exp(zi))
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and taking coordinatewise logarithm

log p(β) = Xβ + h(Xβ)

and
log(1− p(β)) = h(Xβ)

Logistic Regression – The Minus-Log-Likelihood Function

The (conditional) likelihood function of observing y1, . . . , yN given x1, . . . , xN is

L(β) =

N∏
i=1

pi(β)yi(1− pi(β))1−yi

and the minus-log-likelihood function is

l(β) = −yT (Xβ + h(Xβ))− (1− y)Th(Xβ)

= −yTXβ − 1Th(Xβ)

Observe that Dzh(z) is diagonal with

Dzh(z)ii = − exp(zi)

1 + exp(zi)

Logistic Regression – The MLE

By differentiation

Dβl(β) = −yTX− 1TDzh(Xβ)X

= −yTX + p(β)TX

= (p(β)T − yT )X

and
D2
βl(β) = Dβp(β)TX = XTW(β)X

with

W(β) = diag(p(β))diag(1− p(β))

=


p1(β)(1− p1(β)) . . . 0

...
. . .

...
0 . . . pN (β)(1− pN (β))


Likelihood Equation

The non-linear likelihood estimation equation reads (after transposition)

XTp(β) = XTy

Since D2
βl(β) = XTW(β)X is positive definite whenever X has full rank p + 1, the minus-

log-likelihood function is strictly convex and a minimum is unique.

There is no solution if the x-values for the two groups can be separated completely by a
hyperplane.
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Logistic Regression – Algorithm

A first order Taylor expansion

p(β) ' p(β0) + W(β0)X(β − β0)

around β0 yields the approximating equation

XTW(β0)Xβ = XTW(β0)(Xβ0 + W(β0)−1(y − p(β0))︸ ︷︷ ︸
adjusted response=z0

).

The solution is precisely the solution of the weighted least squares problem

argmin
β

(z0 −Xβ)TW(β0)(z0 −Xβ)

Iteration yielding a sequence βn, n ≥ 0, is known as the iterative reweighted least squares
algorithm – or IRLS – using the adjusted response

zn = Xβn + W(βn)−1(y − p(βn))

in the (n+ 1)’th iteration. The algorithm is equivalent to the Newton-Raphson algorithm.

Multinomial Regression and LDA

It is possible to formulate a multinomial version of the binary logistic regression model.

The algorithm for estimation becomes more complicated.

LDA relies on MLE for the full parameter in the full distribution of (X,Y ). Logistic/multinomial
regression relies on MLE in the conditional distribution of Y | X.

Logistic regression makes fewer distributional assumptions. Deviations from normality could
affect LDA in the negative direction.

If the distributional assumptions for LDA are fulfilled, LDA is a little more efficient.

Penalized logistic regression

With J : Rp+1 → [0,∞) we can consider the penalized minus-log-likelihood

l(β) + λJ(β).

If J(β) =
∑p
i=1 β

2
i or J(β) =

∑p
i=1 |βi| there is always a minimizer.

Efficient algorithms (especially for lasso in the R package glmnet) are based on iterations
that solve a penalized weighted least squares problem.

As for the two suggested penalty functions above we generally won’t penalize the intercept
parameter. It is optional to center the x-variables before computing the fit, but we can’t get
rid of the intercept parameter as in the least squares case by just centering the y-variables.
It has to stay in the model. It is generally recommended to scale the x-variables to have
unit empirical variance to bring them on a common scale. This is done internally by default
in glmnet, but the resulting parameters are always transformed back to the original scale.

3



Large p Small N Problems

When p > N and in particular when p� N new issues arise.

• We are never able to estimate all parameters without regularization. E.g. in a regres-
sion there are p parameters but the X-matrix only has rank N .

• Signals can drown in noise.

• Big matrices, computational challenges.

As a rule of thumb; choose simple methods over complicated methods when p � N , regu-
larize and bet on “sparsity”.

Figure 18.1

Simulation study with Y =
∑p
i=1 βjXj + σε.

Diagonal or Independence LDA

Recall that the estimated LDA classifier can be determined by

δk(x) = log πk −
1

2
(x− µ̂k)T Σ̂−1(x− µ̂k)

and we classify to argmaxk{δk(x)}.

If
Σ̂ = diag(s2

1, . . . , s
2
p)

this simplifies to

δk(x) = −
p∑
j=1

(xj − x̄kj)2

s2
j

+ 2 log πk

where x = (x1, . . . , xp)
T and

x̄kj =
1

Nk

∑
i:yi=k

xij

is the average of the j’th coordinate in the k’th group.

Shrunken Centroids

Note that the variance of x̄kj − x̄j is

m2
kσ

2 with m2
k =

1

Nk
− 1

N
.

Introduce the general shrunken centroids

x̄′kj = x̄j +mk(sj + s0)g

(
x̄kj − x̄j

mk(sj + s0)

)
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with s0 a small, positive constant.

g∆(d) = sign(d)(|d| −∆)+

is known as soft thresholding.
g∆(d) = d1(|d| ≥ ∆)+

as hard thresholding.

The research report Maximum likelihood classification in macroarray studies by Jens Ledet
Jensen is available here: http://www.imf.au.dk/publications/rr/2006/imf-rr-2006-474.pdf

Figure 18.4 – Train and Test Error

The parameter ∆ is a tuning parameter for shrunken centroids. With 43 genes, ∆ = 4.3,
we get a training error of 0 – but also a test error of 0.

Figure 18.4 – Centroid Profiles and Shrunken Centroids

Figure 18.3 – Heat Map

Elastic Net

The penalization function
p∑
j=1

α|βj |+ (1− α)β2
j

is known as the elastic net penalty.

For multinomial regression the penalized minus-log-likelihood function is

−
N∑
i=1

log Pr(Y = yi|X = xi) + λ

K∑
k=1

p∑
j=1

α|βkj |+ (1− α)β2
kj

There is an efficient implementation in the glmnet package for R.

Note that intercepts are not penalized and subject to the constraint that they sum to 0. All
other redundancies in the parameterization are dealt with by the penalization.
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Regularized Discriminant Analysis

Choosing the estimator
Σ̂(α) = αΣ̂ + (1− α)diag(Σ̂)

for α ∈ [0, 1] we get a regularized covariance estimator usable for LDA.

The rda function in the rda library does this in combination with nearest shrunken centroids
with regularization="R". With regularization="S" one gets

Σ̂(α) = αΣ̂ + (1− α)Ip

It is a little unclear which of three suggested centroid shrinkage methods from the paper
Guo et al. (2006), see book, that is implemented in the R package rda.

The following is a very brief intro to support vector machines. They are covered in more
details in Chapter 12, but we wont read that chapter.

Support Vector Classifiers

Support vector machines are popular two class classifiers and have a reputation for being
among the best performing.

With yi ∈ {−1, 1}, xi ∈ Rp and f : Rp → R we compute the predictor of yi as sign(f(xi)).
With f in a reproducing kernel Hilbert space H estimation is done by minimization of

N∑
i=1

[1− yif(xi)]+ + λ||f ||2H

Thus the loss function L : {−1, 1} × R→ R is special and given as

L(y, z) = [1− yz]+ = max{1− yz, 0}

Support Vector Classifiers – example

Simplest example: H = Rp+1 and f(x) = xTβ + β0 for β ∈ Rp. Hence the objective is
minimization of

N∑
i=1

[1− yi(xTi β + β0)]+ + λ

p∑
i=0

β2
i .

This problem can be equivalently formulated as a constraint optimization problem; minimize

p∑
i=0

β2
i + C

N∑
i=1

ξi

subject to ξi ≥ 0 and yi(x
T
i β + β0) ≥ 1− ξi for i = 1, . . . , N .

Support vector machines are implemented in the R package e1071 as the function svm.
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The kernel trick

A reproducing kernel Hilbert space is characterized by a kernel, K(x, x′), which is reproduc-
ing:

〈K(·, x),K(·, x′)〉 = K(x, x′).

Solutions to the optimization problem above take the form

f(x) =

N∑
i=1

αiK(x, xi).

The problem reduces to optimization of

N∑
i=1

[1− yi(Kα)i]+ + λαTKα

where Kij = K(xi, xj).

This is the kernel trick, which can reduce a high-dimensional problem (dimension p � N)
to a reasonable sized problem of dimension N .

The complete characterization of reproducing kernel Hilbert spaces in terms of the kernel is
that for any function f in the Hilbert space

f(x) = 〈K(·, x), f〉,

that is, function evaluations at a given point are given in terms of inner products withK(·, x).
This implies that if ρ is a function orthogonal to the functions K(·, xi) for i = 1, . . . , N then
ρ(xi) = 〈K(·, xi), ρ〉 = 0. This implies, together with Pythagorus, that solutions to the
optimization problem (for any choice of loss function) have the finite expansion in terms of
the kernel above. In this case, the optimization problem reduces as stated above. Indeed,
the norm of such an f is

||f ||2H = 〈f, f〉

=

N∑
i=1

N∑
j=1

αiαj〈K(·, xi),K(·, xj)〉

=

N∑
i=1

N∑
j=1

αiαjK(xi, xj)

= αTKα.

The solution is typically sparse in α and those xi with αi 6= 0 are called support vectors.

Kernel examples

• K(x, x′) = xTx′ – the linear kernel.

• K(x, x′) = (1 + γxTx′)d – the polynomial kernel.

• K(x, x′) = exp(−γ||x− x′||2) – the radial basis kernel.

• K(x, x′) = tanh(κ1x
Tx′ + κ2) – the sigmoid or neural network kernel.

Except for the linear kernel the kernels have, in addition to the penalization parameter, one
or two other tuning parameters.
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