
Model Selection – Optimization versus Simplicity

There are two opposing philosophies on how to draw inference from
empirical data:

Find the model that fits the data best.

Keep it simple. Don’t choose a complicated model over a simpler
model if the simpler model suffice (Occam’s razor).

Ideas like maximum-likelihood and empirical loss minimization work by the
first principle.

Model selection/test theory work by the second principle to compensate
for the fact that an optimization procedure generally overfits to the given
data set.
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Model or Predictor Assessment

Another problem of importance is

Having fitted a final predictor f̂ , how will it actually perform?

The training error

ērr =
1

N

N∑
i=1

L(yi , f̂ (xi ))

generally underestimates EPE(f̂ ). The expected generalization or test error

Err = E (EPE(f̂ ))

is the expected EPE.

EPE(f̂ ) can only really be estimated if we have an independent test data
set.
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Figure 7.1 – The Bias-Variance Tradeoff

Realizations of training error ērr and expected prediction error EPE(f̂ )
estimated on an independent test dataset as functions of model complexity.
Also the estimates of the expectation of ērr and EPE(f̂ ) are shown.
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The Bias-Variance Tradeoff for nearest neighbors
Consider the case with Y = f (X ) + ε where X and ε are independent,
E (ε) = 0 and V (ε) = σ2.

With f̂k the k-nearest neighbor regressor the expected test error,
conditionally on the training data X1 = x1, . . . ,XN = xN , in x0 is

E ((Y − f̂k(x0))2 | X = x0) = E ((Y − f (x0))2 | X = x0)

+E ((f (x0)− E (f̂k(x0)))2 | X = x0)

+E ((f̂k(x0)− E (f̂k(x0)))2 | X = x0)

= σ2 +

f (x0)− 1

k

∑
l∈Nk (x0)

f (xl)

2

︸ ︷︷ ︸
Squared bias

+
σ2

k︸︷︷︸
variance

Small choices of k (complex model) will give a large variance and generally
a smaller bias, and vice versa for large choices of k (simple model).

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning September 20, 2011 4 / 24



Figure 2.4 – Bias-Variance Tradeoff for k-nearest neighbors

The test error here is an estimate of
EPE(f̂ ) for the estimated predictor based
on an independent dataset.
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The Train-Validate-Test Idea

In a data rich situation we split the data before doing anything else into
three subsets.

On the training data we estimate all parameters besides tuning
parameters (model complexity parameters).

On the validation data we estimate prediction error for the estimated
predictors and optimize over tuning parameters and models.

On the test data we estimate the expected prediction error for the
chosen predictor – no model selection here, please.

Problem: We are almost never in a data rich situation.

Can we justify to throw away data that can be used for estimation, and
thus reduction of variance, for the purpose of estimating parameters of
secondary importance?
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Figure 7.2 – Space of Models
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Setup

In the following discussion (X1,Y1), . . . , (XN ,YN) denote N i.i.d. random
variables, with Xi a p-dimensional vector.

A concrete realization is denoted (x1, y1), . . . , (xN , yN) and we use
boldface, e.g. Y = (Y1, . . . ,YN)T and y = (y1, . . . , yN)T to denote
vectors.

We can not distinguish in notation between X – the matrix of random
variables X1, . . . ,XN – and X – the matrix of a concrete realization
x1, . . . , xN .
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Mallows’ Cp

With f̂ = Py where P is a projection onto a d-dimensional subspace define

ērr =
1

N

N∑
i=1

(yi − f̂i )
2 =

1

N
||y − f̂||2.

By a standard decomposition

1

N
E (||Ynew − f̂||2|X) =

1

N
E (||Y − f̂||2|X) +

2d

N
σ2

The expected in-sample error

Errin =
1

N
E (||Ynew − f̂||2|X)

can thus be estimated by

Cp = ˆErrin = ērr +
2d

N
σ̂2.
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Mallows’ Cp

Cp = ˆErrin = ērr +
2d

N
σ̂2.

is an equivalent of Mallows’ Cp statistic – with σ̂2 estimated from a
“low-bias” model with p degrees of freedom;

σ̂2 =
1

N − p
||y − Qy||2

where Q is a projection on a p-dimensional space.

If S is a linear smoother, that is, f̂ = Sy, one can generalize Cp as

ˆErrin = ērr +
2trace(S)

N
σ̂2

with σ̂2 estimated from a “low-bias” model, e.g. as

σ̂2 =
1

N − trace(2S0 − S2
0)
||y − S0y||2.

for a “low-bias” smoother S0.
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Using Cp

The classical use of Cp is when X is N × p of rank p and
Q = X(XTX)−1XT .

For any choice of d columns we compute Cp and select the model with the
smallest value of Cp.

This is equivalent to best subset selection for each d followed by choosing
d that minimizes

NCp = RSS(d) +
2d

N − p
RSS(p)

As a function of d the classical definition of Cp,

C̃p =
NCp(N − p)

RSS(p)
− N =

(N − p)RSS(d)

RSS(p)
+ 2d − N,

is a monotonely increasing function of our Cp.

Minimizing Cp or C̃p is equivalent.
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Generalization Error

Instead of the expected in-sample error we can consider the expected
generalization or test error

Err = E (L(Y , f̂ (X ))) = E (E (L(Y , f̂ (X ))|X,Y)) = E (EPE(f̂ ))

Here (X ,Y ) is independent of (X1,Y1), . . . , (XN ,YN) that enter through
f̂ .

Err is the expectation over the dataset of the expected prediction error for
the estimated predictor f̂ .

A small value of Err tells us that the estimation methodology is good and
will on average result in estimators with a small EPE. It does not
guarantee that a concrete realization, f̂ , has a small EPE!
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Likelihood Loss
The generalized decision theoretic setup has sample spaces E and F ,
action space A, decision rule f : E → A and loss functions
L : F ×A → [0,∞). If ha for a ∈ A denotes a collection of densities on F
we define the minus-log-likelihood loss function as

L(y , a) = − log ha(y)

The empirical loss for (x1, y1), . . . , (xN , yN) when using decision rule f is

1

N

N∑
i=1

L(yi , f (xi )) = − 1

N
log

N∏
i=1

hf (xi )(yi )

Expected prediction error equals the expectation of (conditional) cross
entropies.

EPE(f ) =

∫ ∫
− log hf (x)(y)g(y |x)dy︸ ︷︷ ︸

cross entropy

g1(x)dx
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Akaike’s Information Criteria – AIC
We take A = {fθ(x , ·)}θ∈Θ,x∈E with Θ being d-dimensional and

fθ : E × F → [0,∞) such that fθ(x , ·) is a probability density on F . Let θ̂N
denote the MLE.

With likelihood loss we define the equivalent of the expected in-sample
error

Errloglik,in = − 1

N

N∑
i=1

E (log fθ̂N (xi ,Y
new
i )|X)

Then one derives (difficult) the approximation

Errloglik,in '
1

N
E (lN(θ̂N)) +

d

N

where the minus-log-likelihood function in θ̂N

lN(θ̂N) = − 1

N

N∑
i=1

log fθ̂N (xi , yi )

is the equivalent of ērr when using likelihood loss.
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AIC

AIC =
2

N
lN(θ̂N) +

2d

N
We use AIC for model selection by choosing the model among several
possible that minimizes AIC.

Assumptions and extensions:

The models considered must be true. If they are not, d must in
general be replaced by a more complicated quantity d∗ leading to the
model selection criteria

NIC =
2

N
lN(θ̂N) +

2d∗

N
.

For linear regression with Gaussian errors and fixed variance d∗ = d
even when the model is wrong, but this does not hold in general, e.g.
logistic regression.
The estimator θ̂N must be the MLE. Extensions to non-MLE and
non-likelihood loss setups are possible with d replaced again by a
more complicated d∗.
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Practical BIC

With the same framework as for AIC

BIC = 2lN(θ̂N) + d log(N)

We choose among several models the one with the smallest BIC.

Up to the scaling by 1/N, BIC is from a practical point of view AIC with 2
replaced by log(N). The theoretical derivation is, however, completely
different.

For N > e2 ' 7.4, BIC penalizes complex models more than simple models
compared to AIC.
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Cross-Validation
Let κ : {1, . . . ,N} → {1, . . . ,K} and denote by f̂ −k for k = 1, . . . ,K the
estimator of f based on the data (xi , yi ) with κ(i) 6= k .

The (xi , yi ) with κ(i) = k work as a test dataset for f̂ −k and

ˆEPE(f̂ −k) =
1

Nk

∑
i :κ(i)=k

L(yi , f̂
−k(xi ))

with Nk = |{i |κ(i) = k}|

The K -fold κ-cross-validation estimator of Err is the weighted average

CVκ =
K∑

k=1

Nk

N
ˆEPE(f̂ −k)

=
1

N

N∑
i=1

L(yi , f̂
−κ(i)(xi ))
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Figure 7.8 – Err as a Function of N

We should write Err = Err(N) as a
function of the sample size. If f̂N , f ∈ F
and f minimizes EPE then
EPE(f̂N) ≥ EPE(f ) and

Err(N) = E (L(Y , f̂N(X ))) ≥ EPE(f )

If we have a consistent estimator;
f̂N → f , then

Err(N)→ EPE(f ).
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Cross-Validation

Among several models we will choose the model with smallest CVκ. How
to choose κ? How to choose K?

We aim for N1 = . . . = NK in which case

E (CVκ) = Err(N − N1).

With a steep learning curve at N we need N1 to be small or we
underestimate Err.

Extreme case; N-fold or leave-one-out cross-validation with κ(i) = i leads
to an almost unbiased estimator of Err(N), but the strong correlation of
the ˆEPE(f̂ −i )’s works in the direction of given a larger variance.
Recommendations are that 5- or 10-fold CV is a good compromise
between bias and variance.
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The Wrong and The Right Way to Cross-Validate

Mess with the data to find variables/methods that seem to be useful.

Estimate parameters using the selected variables/methods and use
cross-validation to choose tuning parameters.

WRONG

Don’t mess with the data before the cross-validation.

Cross-Validation must be out side of all modeling steps, including filtering
or variable selection steps.
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Estimates of Expected Prediction Error

If f̂ is estimated based on a data set, we can only get an estimate of
EPE(f̂ ) by an independent test set (x1, y1), . . . , (xB , yB) as

ˆEPE(f̂ ) =
1

B

B∑
b=1

L(yb, f̂ (xb)).

Cross-validation provide estimates Êrr of the expected generalization error.

EPE(f̂ ) is a random variable with mean Err.

Êrr is a random variable with mean Err.

Can Êrr be regarded as an approximation/estimate of EPE(f̂ )?
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Figure 7.15 – The Relation Between Êrr and EPE(f̂ )
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Classification and The Confusion Matrix

For a classifier with two groups we can decompose the errors:
Predicted y

Observed y 1 0

1 Pr(Y = 1, f (X ) = 1) Pr(Y = 1, f (X ) = 0)
0 Pr(Y = 0, f (X ) = 1) Pr(Y = 0, f (X ) = 0)

This is the confusion matrix and

EPE(f ) = Pr(Y = 0, f (X ) = 1) + Pr(Y = 1, f (X ) = 0).

As with EPE(f̂ ) the confusion matrix can only be estimated using an
independent test dataset. “Estimates” based on e.g. cross-validation are
estimates of E (Pr(Y = k, f̂ (X ) = l)).

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning September 20, 2011 23 / 24



EXTRA: Linear Smoother Bias-Variance Decomposition

Assumptions: f̂ = SY and conditionally on X the Yi ’s are uncorrelated
with common variance σ2.
Then with f = E (Y|X) = E (Ynew|X) and Ynew independent of Y

E (||Ynew − f̂||2|X) = E (||Ynew − SY||2|X)

= E (||Ynew − f||2|X) + ||f − Sf||2

+E (||S(f − Y)||2|X)

= Nσ2 + ||(I − S)f||2︸ ︷︷ ︸
Bias(λ)2

+σ2trace(S2)

= σ2(N + trace(S2)) + Bias(λ)2

where we use that E (f̂|X) = E (SY|X) = Sf.
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EXTRA: Estimation of σ2 using low bias estimates
Take

RSS(f̂) =
N∑
i=1

(yi − f̂i )
2

is a natural estimator of E (||Y − f̂||2|X). Its mean is then

σ2(N − (trace(2S− S2)) + Bias(λ)2.

Choosing a low-bias – that is trace(2S− S2 is large – model, we expect
Bias(λ)2 to be negligible and we estimate σ2 as

σ̂2 =
1

N − trace(2S− S2)
RSS(f̂).

From this point of view
trace(2S− S2)

can be justified as the effective degrees of freedom.
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