
Model Selection – Optimization versus Simplicity

There are two opposing philosophies on how to draw inference from empirical data:

• Find the model that fits the data best.

• Keep it simple. Don’t choose a complicated model over a simpler model if the simpler
model suffice (Occam’s razor).

Ideas like maximum-likelihood and empirical loss minimization work by the first principle.

Model selection/test theory work by the second principle to compensate for the fact that an
optimization procedure generally overfits to the given data set.

Model or Predictor Assessment

Another problem of importance is

Having fitted a final predictor f̂ , how will it actually perform?

The training error

ērr =
1

N

N∑
i=1

L(yi, f̂(xi))

generally underestimates EPE(f̂). The expected generalization or test error

Err = E(EPE(f̂))

is the expected EPE.

EPE(f̂) can only really be estimated if we have an independent test data set.

In the book at this point (page 220) they introduce the test error – conditioning on the
training data. This is the same as the expected prediction error for the estimated predictor
f̂ .

Figure 7.1 – The Bias-Variance Tradeoff

Realizations of training error ērr and expected prediction error EPE(f̂) estimated on an
independent test dataset as functions of model complexity. Also the estimates of the expec-
tation of ērr and EPE(f̂) are shown.
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The Bias-Variance Tradeoff for nearest neighbors

Consider the case with Y = f(X) + ε where X and ε are independent, E(ε) = 0 and
V (ε) = σ2.

With f̂k the k-nearest neighbor regressor the expected test error, conditionally on the train-
ing data X1 = x1, . . . , XN = xN , in x0 is

E((Y − f̂k(x0))2 | X = x0) = E((Y − f(x0))2 | X = x0)

+E((f(x0)− E(f̂k(x0)))2 | X = x0)

+E((f̂k(x0)− E(f̂k(x0)))2 | X = x0)

= σ2 +

f(x0)− 1

k

∑
l∈Nk(x0)

f(xl)

2

︸ ︷︷ ︸
Squared bias

+
σ2

k︸︷︷︸
variance

Small choices of k (complex model) will give a large variance and generally a smaller bias,
and vice versa for large choices of k (simple model).

Figure 2.4 – Bias-Variance Tradeoff for k-nearest neighbors

The test error here is an estimate of EPE(f̂) for the estimated predictor based on an inde-
pendent dataset.

The Train-Validate-Test Idea

In a data rich situation we split the data before doing anything else into three subsets.

• On the training data we estimate all parameters besides tuning parameters (model
complexity parameters).

• On the validation data we estimate prediction error for the estimated predictors and
optimize over tuning parameters and models.

• On the test data we estimate the expected prediction error for the chosen predictor –
no model selection here, please.

Problem: We are almost never in a data rich situation.

Can we justify to throw away data that can be used for estimation, and thus reduction of
variance, for the purpose of estimating parameters of secondary importance?

Figure 7.2 – Space of Models
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Digesting Figure 7.2 provides a core understanding of the bias-variance tradeoff between
complex and simple models. This understanding should be obtained in close connection
with reading about the bias-variance decomposition in Section 7.3. One should note that the
nice additive decomposition into a squared bias term and a variance term of the expectation
of the prediction error in x0 is a consequence of the choice of the loss function being the
squared error loss. For the 0-1 loss often used in classification things work out differently,
see Exercise 7.2.

Setup

In the following discussion (X1, Y1), . . . , (XN , YN ) denote N i.i.d. random variables, with
Xi a p-dimensional vector.

A concrete realization is denoted (x1, y1), . . . , (xN , yN ) and we use boldface, e.g. Y =
(Y1, . . . , YN )T and y = (y1, . . . , yN )T to denote vectors.

We can not distinguish in notation between X – the matrix of random variables X1, . . . , XN

– and X – the matrix of a concrete realization x1, . . . , xN .

Mallows’ Cp

With f̂ = Py where P is a projection onto a d-dimensional subspace define

ērr =
1

N

N∑
i=1

(yi − f̂i)
2 =

1

N
||y − f̂ ||2.

By a standard decomposition

1

N
E(||Ynew − f̂ ||2|X) =

1

N
E(||Y − f̂ ||2|X) +

2d

N
σ2

The expected in-sample error

Errin =
1

N
E(||Ynew − f̂ ||2|X)

can thus be estimated by

Cp = ˆErrin = ērr +
2d

N
σ̂2.

Note that Ynew−PY and Y−PYnew have the same conditional distributions given X and
note that Y−PYnew = (I−P )Y +P (Y−Ynew) where the two terms are orthogonal. This
implies that

E(||Ynew − PY||2|X) = E(||Y − PYnew||2|X)

= E(||(I − P )Y||2|X) + E(||P (Y −Ynew)||2|X)

Since the vector Y − Ynew has (conditional) mean 0 and (conditional) covariance matrix
2σ2I the second expectation above equals 2σ2d. One derivation relies on trace computations
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as follows:

E(||P (Y −Ynew)||2|X) = E((Y −Ynew)TPTP (Y −Ynew))|X)

= E(tr(P (Y −Ynew)(Y −Ynew)T )|X)

= tr(PE((Y −Ynew)(Y −Ynew)T |X))

= tr(P2σ2I)

= 2σ2tr(P ) = 2σ2d,

where we have used the trace formula tr(AB) = tr(BA), the projection formula PTP =
P 2 = P , the linearity of the trace, and the fact that tr(P ) = d because P has precisely d
eigenvectors with eigenvalue 1 and N − d eigenvectors with eigenvalue 0.

Mallows’ Cp

Cp = ˆErrin = ērr +
2d

N
σ̂2.

is an equivalent of Mallows’ Cp statistic – with σ̂2 estimated from a “low-bias” model with
p degrees of freedom;

σ̂2 =
1

N − p
||y −Qy||2

where Q is a projection on a p-dimensional space.

If S is a linear smoother, that is, f̂ = Sy, one can generalize Cp as

ˆErrin = ērr +
2trace(S)

N
σ̂2

with σ̂2 estimated from a “low-bias” model, e.g. as

σ̂2 =
1

N − trace(2S0 − S2
0)
||y − S0y||2.

for a “low-bias” smoother S0.

The complete justification of the above generalization of Mallows’ Cp to general smoothers
is sketched in the book and will be treated in theoretical exercises.

Using Cp

The classical use of Cp is when X is N × p of rank p and Q = X(XTX)−1XT .

For any choice of d columns we compute Cp and select the model with the smallest value of
Cp.

This is equivalent to best subset selection for each d followed by choosing d that minimizes

NCp = RSS(d) +
2d

N − p
RSS(p)
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As a function of d the classical definition of Cp,

C̃p =
NCp(N − p)

RSS(p)
−N =

(N − p)RSS(d)

RSS(p)
+ 2d−N,

is a monotonely increasing function of our Cp.

Minimizing Cp or C̃p is equivalent.

The historically correct definition of Mallows’ Cp is as C̃p above in the framework of multiple
linear regression, see e.g. Wikipedia. When used as a model selection tool in this framework
we can just as well consider Cp as we have defined. They select the same model. C̃p
looks related to the F -test statistic of testing a d-dimensional model against the larger
p-dimensional alternative. Indeed,

1

p− d
C̃p = Fd,p + 2

where Fd,p is the F -test statistic. Our Cp is, however, easier to generalize and compare to
other methods.

Generalization Error

Instead of the expected in-sample error we can consider the expected generalization or test
error

Err = E(L(Y, f̂(X))) = E(E(L(Y, f̂(X))|X,Y)) = E(EPE(f̂))

Here (X,Y ) is independent of (X1, Y1), . . . , (XN , YN ) that enter through f̂ .

Err is the expectation over the dataset of the expected prediction error for the estimated
predictor f̂ .

A small value of Err tells us that the estimation methodology is good and will on average
result in estimators with a small EPE. It does not guarantee that a concrete realization, f̂ ,
has a small EPE!

Likelihood Loss

The generalized decision theoretic setup has sample spaces E and F , action space A, decision
rule f : E → A and loss functions L : F ×A → [0,∞). If ha for a ∈ A denotes a collection
of densities on F we define the minus-log-likelihood loss function as

L(y, a) = − log ha(y)

The empirical loss for (x1, y1), . . . , (xN , yN ) when using decision rule f is

1

N

N∑
i=1

L(yi, f(xi)) = − 1

N
log

N∏
i=1

hf(xi)(yi)

Expected prediction error equals the expectation of (conditional) cross entropies.
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EPE(f) =

∫ ∫
− log hf(x)(y)g(y|x)dy︸ ︷︷ ︸

cross entropy

g1(x)dx

The standard example in this context of the need for the general setup as compared to the
setup where A = F and f is simply the predictor is when F is discrete. For instance, if
F = {0, 1} we might want “the action space” to be the set of probability measures on F –
represented as A = [0, 1] and p ∈ [0, 1] is the probability of Y = 1. A “decision” can then
be the computation of f(x) = Pr(Y = 1 | X = x) – the conditional probability that Y = 1
given X = x. What is perhaps more common in this case is that A = R and a “decision” is
the computation of the logit of Pr(Y = 1|X = x), that is,

f(x) = logit(Pr(Y = 1|X = x)) = log
Pr(Y = 1|X = x)

Pr(Y = 0|X = x)

the log-odds of Y = 1 conditionally on X = x.

Akaike’s Information Criteria – AIC

We take A = {fθ(x, ·)}θ∈Θ,x∈E with Θ being d-dimensional and fθ : E × F → [0,∞) such

that fθ(x, ·) is a probability density on F . Let θ̂N denote the MLE.

With likelihood loss we define the equivalent of the expected in-sample error

Errloglik,in = − 1

N

N∑
i=1

E(log fθ̂N (xi, Y
new
i )|X)

Then one derives (difficult) the approximation

Errloglik,in '
1

N
E(lN (θ̂N )) +

d

N

where the minus-log-likelihood function in θ̂N

lN (θ̂N ) = − 1

N

N∑
i=1

log fθ̂N (xi, yi)

is the equivalent of ērr when using likelihood loss.

We let Y1, . . . , YN and Y new
1 , . . . , Y new

N be conditionally independent with the same distribu-
tion given X1 = x1, . . . , XN = xN . The minus-log-likelihood

lN (θ) = −
N∑
i=1

log fθ(xi, Yi)

and the minus-log-likelihood for the new data

l∗N (θ) = −
N∑
i=1

log fθ(xi, Y
new
i ).
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Letting θ̂N denote the MLE for the original dataset and θ̃N the MLE for the new dataset
then a Taylor expansion of l∗N around θ̃N yields

l∗N (θ̂N ) = l∗N (θ̃N ) +
1

2
(θ̂N − θ̃N )TD2lN (θ̃N )(θ̂N − θ̃N ) + remainderN .

Under suitable regularity assumptions there is a θ0 such that

1√
N
DθlN (θ0)T

D→ N(0,K(θ0))

and
1

N
D2
θ lN (θ0)

P→ I(θ0)

and the two esimators are independent and asymptotically N(θ0,
1
N I(θ0)−1K(θ0)I(θ0)−1)-

distributed. Consequently

√
N(θ̂N − θ̃N )

D→ N(0, 2I(θ0)−1K(θ0)I(θ0)−1)

E

(
1

N
l∗N (θ̂N )|X

)
' E

(
1

N
l∗N (θ̃N )|X

)
+

1

N
trace(E

(
N(θ̂N − θ̃N )(θ̂N − θ̃N )T |X

)
I(θ0))

' E

(
1

N
lN (θ̂N )|X

)
+

1

N
trace(I(θ0)−1K(θ0))

E
(

1
N l
∗
N (θ̂N )|X

)
is for the likelihood loss the equivalent of the expected in-sample error

for quadratic loss. If I(θ0) = K(θ0) the trace simplifies to the trace of the d × d identity
matrix and is thus equal to d. This always happens if Θ contains the true parameter. To
make likelihood loss for the Gaussian model (with known variance) equivalent to squared
error loss we usually multiply everything by 2 and define the esimator of twice this expected
in-sample error as

AIC =
2

N
lN (θ̂N ) +

2d

N
.

For a more general quantity that does not rely on the model being true we need to replace
d by trace(I(θ0)−1K(θ0)) with the latter quantity having the obvious draw-back that it
depends upon the unknown matrices I(θ0) and K(θ0), which have to be estimated also.
Simple estimators are

K̂ =
1

N

N∑
i=1

Dθ log fθ̂N (xi, yi)
TDθ log fθ̂N (xi, yi) and Î =

1

N
D2
θ lN (θ̂N )

which gives

NIC =
2

N
lN (θ̂N ) +

2

N
trace(Î−1K̂).

If the distribution of Y given X = x is N(f(x), σ2) for an unknown mean value function
f(x), if we take Θ = Rp, if we assume that σ2 is fixed, and if we let fθ = XT θ then

2σ2lN (θ̂N ) = ||y −Xθ̂N ||2

and we see in this case that σ2AIC = Cp. We derived Cp and thus AIC as a valid model
selection quantity even if the model, as in this general case, is wrong. It is no problem to
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show explicitly (and perhaps surprisingly) in this case that the identity I(θ0) = K(θ0) in fact
holds. Here θ0 is the θ that minimizes E((f(X)−XT θ)2). If we consider logistic regression
instead this result does not hold. For logistic regression let p(x) = Pr(Y = 1|X = x)
denote the true conditional probability and let W denote the N ×N diagonal matrix with
p(xi)(1−p(xi)) in the diagonal. Then it is straight forward to show that I(β0) = XTW (β0)X
but K(β0) = XTWX – which does not depend upone β0 – hence

trace(I(θ0)−1K(θ0)) = trace((XTW (β0)X)−1XTWX).

With

pβ(x) =
exp((1, xt)β

1 + exp((1, xt)β)

the β0 is the minimizer of

E(−p(X) log pβ(X)−(1−p(X)) log(1−pβ(X))) = E(−p(X)(1, XT )β+log(1+exp((1, XT )β))).

One good starting point for a more theoretical treatment of AIC and other aspects of
statistical decision theory and model selection is Pattern Recognition and Neural Networks
by Brian D. Ripley. The more recent book Model selection and model averaging by Gerda
Claeskens and Nils Lid Hjort is also recommended.

AIC

AIC =
2

N
lN (θ̂N ) +

2d

N

We use AIC for model selection by choosing the model among several possible that minimizes
AIC.

Assumptions and extensions:

• The models considered must be true. If they are not, d must in general be replaced by
a more complicated quantity d∗ leading to the model selection criteria

NIC =
2

N
lN (θ̂N ) +

2d∗

N
.

• For linear regression with Gaussian errors and fixed variance d∗ = d even when the
model is wrong, but this does not hold in general, e.g. logistic regression.

• The estimator θ̂N must be the MLE. Extensions to non-MLE and non-likelihood loss
setups are possible with d replaced again by a more complicated d∗.

Practical BIC

With the same framework as for AIC

BIC = 2lN (θ̂N ) + d log(N)

We choose among several models the one with the smallest BIC.
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Up to the scaling by 1/N , BIC is from a practical point of view AIC with 2 replaced by
log(N). The theoretical derivation is, however, completely different.

For N > e2 ' 7.4, BIC penalizes complex models more than simple models compared to
AIC.

All the preceeding computations with AIC and BIC have been done in the framework of
the conditional distribution of Y given X. This framework with the likelihood loss has the
strongest resemblence to the pure prediction-loss statistical decision theoretic framework,
though we have to allow for a more general “action space” to accomodate all situations
of practical interest. We can also consider AIC and BIC in the framework of the joint
distribution of (X,Y ).

Cross-Validation

Let κ : {1, . . . , N} → {1, . . . ,K} and denote by f̂−k for k = 1, . . . ,K the estimator of f
based on the data (xi, yi) with κ(i) 6= k.

The (xi, yi) with κ(i) = k work as a test dataset for f̂−k and

ˆEPE(f̂−k) =
1

Nk

∑
i:κ(i)=k

L(yi, f̂
−k(xi))

with Nk = |{i|κ(i) = k}|

The K-fold κ-cross-validation estimator of Err is the weighted average

CVκ =

K∑
k=1

Nk
N

ˆEPE(f̂−k)

=
1

N

N∑
i=1

L(yi, f̂
−κ(i)(xi))

Figure 7.8 – Err as a Function of N

We should write Err = Err(N) as a function of the sample size. If f̂N , f ∈ F and f minimizes

EPE then EPE(f̂N ) ≥ EPE(f) and

Err(N) = E(L(Y, f̂N (X))) ≥ EPE(f)

If we have a consistent estimator; f̂N → f , then

Err(N)→ EPE(f).
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Cross-Validation

Among several models we will choose the model with smallest CVκ. How to choose κ? How
to choose K?

We aim for N1 = . . . = NK in which case

E(CVκ) = Err(N −N1).

With a steep learning curve at N we need N1 to be small or we underestimate Err.

Extreme case; N -fold or leave-one-out cross-validation with κ(i) = i leads to an almost

unbiased estimator of Err(N), but the strong correlation of the ˆEPE(f̂−i)’s works in the
direction of given a larger variance. Recommendations are that 5- or 10-fold CV is a good
compromise between bias and variance.

The choice of κ is also of some interest. For N -fold cross validation there is just one choice.

It may be recommended that κ is chosen as a random subdivision of the data into groups of
prespecified sizes. If we divide the dataset into groups like {1, . . . , N1}, {N1+1, . . . , N1+N2}
we risk that there is some structure in the data that is related to their current ordering,
which mess up the result. It could be that the data had be grouped somehow or sorted.
But if κ is chosen randomly what makes one choice more appropriate than another? If we
generate just a single, random κ it seems most appropriate to keep the same κ for all models
considered, but we can also generate κ1, . . . , κB and compute the estimator

CV =
1

B

B∑
i=1

CVκi

instead. This estimator removes the arbitrary fluctuations of CVκ that are due to a specific
choice of κ at the expense of doing a considerable amount of extra computations.

The Wrong and The Right Way to Cross-Validate

• Mess with the data to find variables/methods that seem to be useful.

• Estimate parameters using the selected variables/methods and use cross-validation to
choose tuning parameters.

WRONG

Don’t mess with the data before the cross-validation.

Cross-Validation must be out side of all modeling steps, including filtering or variable
selection steps.

The only thing that one is allowed to is to do computations or selections based on the
x-values alone. This could be to rule out x-values that show a very low variance, say, or
different forms of transformations of the x-values.
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Estimates of Expected Prediction Error

If f̂ is estimated based on a data set, we can only get an estimate of EPE(f̂) by an inde-
pendent test set (x1, y1), . . . , (xB , yB) as

ˆEPE(f̂) =
1

B

B∑
b=1

L(yb, f̂(xb)).

Cross-validation provide estimates Êrr of the expected generalization error.

• EPE(f̂) is a random variable with mean Err.

• Êrr is a random variable with mean Err.

Can Êrr be regarded as an approximation/estimate of EPE(f̂)?

Figure 7.15 – The Relation Between Êrr and EPE(f̂)

The simulation study reveals that despite the fact that Êrr is computed by cross-validation
on the same dataset and f̂ is computed, Êrr and EPE(f̂) show almost no relation, and if
there is a relation it is even one with a negative correlation!

Classification and The Confusion Matrix

For a classifier with two groups we can decompose the errors:

Predicted y
Observed y 1 0

1 Pr(Y = 1, f(X) = 1) Pr(Y = 1, f(X) = 0)
0 Pr(Y = 0, f(X) = 1) Pr(Y = 0, f(X) = 0)

This is the confusion matrix and

EPE(f) = Pr(Y = 0, f(X) = 1) + Pr(Y = 1, f(X) = 0).

As with EPE(f̂) the confusion matrix can only be estimated using an independent test

dataset. “Estimates” based on e.g. cross-validation are estimates of E(Pr(Y = k, f̂(X) =
l)).

EXTRA: Linear Smoother Bias-Variance Decomposition

Assumptions: f̂ = SY and conditionally on X the Yi’s are uncorrelated with common
variance σ2.

Then with f = E(Y|X) = E(Ynew|X) and Ynew independent of Y

E(||Ynew − f̂ ||2|X) = E(||Ynew − SY||2|X)

= E(||Ynew − f ||2|X) + ||f − Sf ||2

+E(||S(f −Y)||2|X)

= Nσ2 + ||(I − S)f ||2︸ ︷︷ ︸
Bias(λ)2

+σ2trace(S2)

= σ2(N + trace(S2)) + Bias(λ)2
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where we use that E(f̂ |X) = E(SY|X) = Sf .

To derive the above formula we use the following decomposition for any Ynew:

||Ynew − f̂ ||2 = ||(Ynew − f) + (f − Sf) + (Sf − f̂)||2

= ||Ynew − f ||2 + ||f − Sf ||2 + ||Sf − f̂)||2

+ 2(Ynew − f)T (f − Sf)

+ 2(Ynew − f)T (Sf − f̂)

+ 2(f − Sf)T (Sf − f̂)

The first and third cross-products have zero mean because f is the mean of Ynew and f̂ has
mean Sf . If Ynew ⊥ Y the mean of the second cross-product factorizes and is also zero. It
is also possible to give a formula for the squared bias, which depend on f .

Bias(λ)2 = trace((I − S)2ffT ).

If we take Ynew = Y instead in the decomposition above, the mean of the second cross-
product becomes

2E(Y − f)T (Sf − SY)|X) = −2E(Y − f)TS(Y − f)|X)

= −2E(trace(S(Y − f)(Y − f)T )|X)

= −2trace(SE((Y − f)(Y − f)T |X)︸ ︷︷ ︸
=σ2I

)

= −2σ2trace(S)

EXTRA: Estimation of σ2 using low bias estimates

Take

RSS(f̂) =

N∑
i=1

(yi − f̂i)
2

is a natural estimator of E(||Y − f̂ ||2|X). Its mean is then

σ2(N − (trace(2S− S2)) + Bias(λ)2.

Choosing a low-bias – that is trace(2S − S2 is large – model, we expect Bias(λ)2 to be
negligible and we estimate σ2 as

σ̂2 =
1

N − trace(2S− S2)
RSS(f̂).

From this point of view
trace(2S− S2)

can be justified as the effective degrees of freedom.

Note that for a projection P we have P 2 = P and hence

trace(2P − P 2) = trace(P 2) = trace(P ) = dim(image(P )).

There exists a discussion in the literature on what the most suitable generalization of the
degrees of freedom is. One reference is the book Generalized Additive Models by Hastie
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and Tibshirani. In the context above trace(2S − S2) turned out to play the same role as
the degrees of freedom does in the usual variance estimator in a regression setup. In other
contexts we will see that trace(S) pops out as the relevant replacement of the degrees of
freedom. Historically at least the computation of the trace of S was faster and therefore
preferred. One should perhaps simply remember not to put too must interpretation into the
value of the “effective degrees of freedom” but simply view the number as one-dimensional
quantification of model complexity.
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