
Penalized Regression – biased estimators
If J : Rp → [0,∞) is any function we replace the least squares estimate by
the penalized least squares estimate

β̂λ = argmin
β

RSS(β) + λJ(β).

The optimization problem is nicest if J is convex. The parameter λ ≥ 0
determines the tradeoff between the measure of fit to data, RSS, and the
penalty on the parameter, J.

The function J implements a priori preferences of some parameters over
others. It is a frequentists version of a Bayesian incorporation of prior
beliefs.

To a Bayesian we are computing the posterior mode when we use the prior

c(λ/2σ2)−1 exp

(
− λ

2σ2
J(β)

)
, c(λ) =

∫
exp(−λJ(β))dβ

on the mean value parameter β.
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Ridge Regression

If J(β) = βTβ = ||β||2 the penalized estimation method is known as ridge
regression.

We need to optimize

(y − Xβ)T (y − Xβ) + λβTβ.

The function J is strictly convex with J(β)→∞ for ||β|| → ∞. There is
always a unique minimum β̂ridge when λ > 0.
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Lasso

If J(β) =
∑p

i=1 |βi | = ||β||1 the penalized estimation method is known as
lasso = least absolute shrinkage and selection operator.

We need to optimize

(y − Xβ)T (y − Xβ) + λ

p∑
i=1

|βi |.

The function J is convex with J(β)→∞ for ||β|| → ∞. If there is a
unique least squares solution there is a unique minimum β̂lasso.

This is a convex, but non-differentiable optimization problem.
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Systematic choice of λ
With β̂λ the estimator for given λ choose λ by minimizing

λ 7→ EPE(λ)

with EPE(λ) the expected prediction error for the predictor

x 7→ βλ0 +

p∑
i=1

xi β̂
λ
i = (1, xT )β̂λ.

EPE(λ) can be estimated using an independent test/validation data set
(x̃1, ỹ1), . . . , (x̃Ñ , ỹÑ) as

ˆEPE(λ) =
1

Ñ

Ñ∑
i=1

L(ỹi , (1, x̃Ti )β̂λ).
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Lecture exercises

Solve 3.5 and 3.12 in the book
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Restricted Estimation

If C ⊆ Rp the restricted estimator is the estimator

β̂C = argmin
β∈C

(y − Xβ)T (y − Xβ).

The optimization problem is nicest if C is convex. A well known situation
is when C is a subspace parameterized as

C = {Aδ | δ ∈ Rq}

where A is a p × q rank q matrix. The solution is

β̂C = A(ATXTXA)−1ATXTy.
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Duality

If J : Rp → [0,∞) is a function we can define the sub-level sets

CJ(s) = {β | J(β) ≤ s}.

If J is convex then CJ(s) is convex for all s. The function

λ→ s(λ) := J(β̂λ)

is typically a continuous, strictly decreasing function with s(λ)→ 0 for
λ→∞ mapping [0,∞) onto (0, s(0)].

β̂λ = β̂CJ(s(λ))

This gives a dual viewpoint on the penalized estimator as a restricted
estimator and vice versa for level set restrictions.
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Figure 3.11 – Ridge and Lasso as Restricted Estimators

Ridge regression (right) is a constraint optimization problem over a set
with a smooth boundary. Lasso (left) is a constraint optimization problem
over a set where the boundary has corners. The corners give lasso the
selection ability.
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Duality

Penalization can be viewed as an implicit model restriction – but in a data
dependent way through s(λ).

The parameterized family of solutions (β̂CJ(s))s∈(0,s(0)] is identical to the

family (β̂λ)λ≥0.

For lasso, optimization of

(y − Xβ)T (y − Xβ)

subject to ||β||1 ≤ s is a quadratic optimization problem subject to linear
constraints, which is a classical numerical problem.
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Bridge Regression and The Elastic Net

Generalizations include

Bridge regression

J(β) =

p∑
i=1

|βi |q

for q ∈ (0,∞)

q = 2 is ridge regression
q = 1 is lasso
q < 1 is non-convex
q → 0 is best subset selection

The elastic net

J(β) = αβTβ + (1− α)

p∑
i=1

|βi |

for α ∈ [0, 1].
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Figure 3.12 – Bridge and Elastic Net

For q ≤ 1 gives corners and has the selection property. For q < 1 we have
a non-convex problem, q → 0 results in best subset selection. With q = 1
we get selection as well as convexity. The elastic net has selection but
more convexity.
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Figure 3.18 – Comparisons

For a 2 dimensional parameter we can
illustrate how the chosen parameters
behave for different methods and
different choices of
selection/regularization.

Note that only ridge and lasso provide
estimates on the entire curve plottet.
The other three methods provide only
one alternative to the least squares
estimate (4,2).
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