Linear Classifiers
A linear classifier for the two-class 0-1 coded problem is given by
x = x"B+ By
with the classifier at xp
1 ifxTB+po >
fﬁO,IB(X) - { 0 if XTB+B0 <

With (x1,y1),-..,(xn, yn) a data set we can minimize the average
empirical 0-1-loss

NN =

N

(Bo, B) = Y 1(yi # f0,6(x0)))

i=1
Not easy, discontinuous, solution not unique. View XTB + B as a local
model of P,(1) and consider

argmin Z —x B — )2

Bo,B i=1
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One-dimensional Normal Variables

Let X be real valued and X|Y = k be N(ux,o?) for k =0,1. If
Pr(Y = k) = m, the Bayes classifier is

[0 i mom() = ma(x)
f(x) = { 1 if mogo(x) < m181(x)

) — { 0 if log(go(x)/81(x)) > log(m /o)
1 if log(go(x)/&1(x)) < log(m /o)

fxy=4 0 F2x(uo—pm)=> 202 log(m1/mo) — 413 + Hp
1 if 2x(po — p1) < 202 log(m1/m0) — ,u% + H(2)
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Linear Discriminant Analysis

Let Y take values in {1,..., K} with

Pr(Y = k) = 7y

with 1 4+ ...+ 7 = 1, and let the conditional distribution of X|Y = k be

N(pk, ) on RP with X regular. That is, the density for X|Y = k is

ge(x) = L 3em) T )

/2ndet(%)”

The conditional probability of Y = k|X = x is

- L Tk8k(X)
Pr(Y = k| X =x) = mgi(x) + ... + mkgi(x)
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The Bayes Classifier

Pr(Y = k| X = x) Tk gk(x)
log = log— +lo
P(Y_/]X_ X) & T %% g
1 1
= log — + §(x = 1) TR = ) = S (¢ = ) TR (x = k)

1
|ogf+2u12 o= i Xk X T e = )

The boundary — the x’s where Pr(Y = k|[X =x) =Pr(Y =/|X =x) —is
a hyperplane. We call this a linear classifier as we can determine the
classification by the computation of the finite number of linear functions
xTE g — ), k1 =1,... K.
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Linear Discriminant Functions

Introducing
_ 1 _
Ou(x) = xTE e = o T + log m

we see that Pr(Y = KIX )
(Y = =X
8 By X =x) k)~ ax)

The decision boundaries are the solutions to the linear equations

and the Bayes classifier is

f(x) = argmax; 0k (x).
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Figure 4.5 — Linear Discrimination
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Estimation

We use the the plug-in principle for estimation. That is, maximum
likelihood estimation of all the parameters in the full model for (X, Y)

W?
i=1
=y 2
Hk = Ne Xi
iryi=k
1 K
r = N—KZ_ (i — ) (xi — i) "
k=1iy,=k

— with the usual centralized estimate of the covariance matrix.
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Lecture exercise

Solve lecture exercise 2.
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Parameter Functions

Fixing the last group K as a reference group we have for k=1,... , K —1
that
log E:((:,/; ;f;(;i)) = log 7% + %u%z_lw - %NZZ_lﬂk
Bro
+xT T ik — i)
Bk
Thus
Pr(Y = k|X = x) = — Pk X fk)

1+ Zf:—ll exp(Bio + xT5))
for k=1,...,K —1. The conditional distribution depends upon
Ty MK_1, 41, - -, bk, 2 through the parameter function

(71-17' oy TTK—1y U1y - - - 7MK72) — (5105 .. '75(K—1)07/615 .. '75K—1)-
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Estimation Methodology — a digression

Non-model based (the direct) approach:
@ Local methods aiming directly for (non-parametric) estimates of e.g.
E(Y|X=x)or P(Y =k| X =x).
Example: Nearest neighbors.
@ Empirical risk minimization: Take F to be a set of predictor functions
and take

~ 1
f= in— g L(y;, f(x;)).
argmin p (vi, F(xi))

feF

Example: Least squares fit of linear regression and classification
models.
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Estimation Methodology — a digression

Introduce a parametrized statistical model (Pp)gco of the generating
probability distribution.

Model based approach

@ The plug-in principle: If 0 is an estimator of 6 and f is the optimal
predictor under Py take f;.
Example: LDA.

@ The conditional plug-in principle: Assume that the conditional
distribution, P, (g), of Y given X = x depends upon 6 through a
parameter function 7: © — ©3. Then fy = f(5) and if 7 is an
estimator of 7 we take f;.

Examples: Model based linear regression and logistic regression.

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning September 18, 2011 11 /18



Quadratic Discriminant Analysis

What if X; 75 25 (K = 2)?

o PrY = KX = x)
EPr Y = I|X = x)

gk(X) — 5/(X)
ox(x) = —% log detX; — %(x - ,uk)Tzzl(x — k) + log(mk).

is a quadratic function. The decision boundaries are the solutions to the
quadratic equations dx(x) = d,(x) and the Bayes classifier is

f(x) = argmax,dx(x).
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Figure 4.6 — Quadratic Discrimination

To get quadratic boundaries one can either do QDA (right) or one can
transform the bivariate variable X = (Xy, X2)" to the five dimensional
variable X" = (X1, X2, X2, X1 X2, X?) and do LDA in R5 (left). The linear
boundary in R® shows up as a quadratic boundary in R2.
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Figure 4.4 — Dimension Reduction

Linear discriminant analysis provides a
direct dimension reduction to the
K-dimensional space. The above figure
shows a further reduction to a 2D
projection chosen to maximize the
spread of the group means.
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Figure 4.9 — Discrimination and Dimension Reduction

How to project to maximize the spread of group means? The usual inner
product in Euclidean space is not optimal — we should use the inner
product given by ¥ !

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning September 18, 2011 15 / 18



Change of Basis Point of View

If ¥ = cVD?VT with D a diagonal matrix with strictly positive entries and
c>0welet x=D"1VTxand jix = D'V T . Thisis a change of basis
given by the matrix D=1V 7. With R a constant not depending on k we
have

1
log Pr(Y = kX =x) = logmk — 5 (x - k) TVDTAVT (x — k) + R
Cc

o ~2
F— il

= logmk — 2

Hence

argmax, Pr(Y = k|X = x) = argmin (||% — fik||> = 2¢ log 7k ) -
k
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LDA as Dimension Reduction Technique

With Wp a “sphering” matrix fulfilling that
> = Wy Wo

the empirical covariance matrix of the “sphered” data X, = Wo_lxk is cl.

o Take M* to be the K x p matrix of class means of the “sphered”
data X.

o Take B* = V*(D*)?(V*)T to be the covariance matrix of M*.

Then the columns in V*, ordered decreasingly according to the diagonal
entries in D*, form an orthonomal basis (canonical variates) in the
“sphered” coordinates.
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Figure 4.8 — Dimension Reduction
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