Linear Classifiers

A linear classifier for the two-class 0-1 coded problem is given by

$$x \mapsto x^T \beta + \beta_0$$

with the classifier at x_0

$$f_{\beta_0,\beta}(x) = \begin{cases} 1 & \text{if } x^T \beta + \beta_0 \ge \frac{1}{2} \\ 0 & \text{if } x^T \beta + \beta_0 < \frac{1}{2} \end{cases}$$

With $(x_1, y_1), \ldots, (x_N, y_N)$ a data set we can minimize the average empirical 0-1-loss

$$(\beta_0,\beta)\mapsto \sum_{i=1}^N \mathbb{1}(y_i\neq f_{\beta_0,\beta}(x_i)))$$

Not easy, discontinuous, solution not unique. View $x^T\beta + \beta_0$ as a local model of $P_x(1)$ and consider

$$\underset{\beta_{0},\beta}{\operatorname{argmin}}\sum_{i=1}^{N}(y_{i}-x_{i}^{T}\beta-\beta_{0})^{2}.$$

Niels Richard Hansen (Univ. Copenhagen)

One-dimensional Normal Variables

Let X be real valued and X|Y = k be $N(\mu_k, \sigma^2)$ for k = 0, 1. If $Pr(Y = k) = \pi_k$ the Bayes classifier is

$$f(x) = \begin{cases} 0 & \text{if } \pi_0 g_0(x) \ge \pi_1 g_1(x) \\ 1 & \text{if } \pi_0 g_0(x) < \pi_1 g_1(x) \end{cases}$$

1	٦	
L)	r
~	-	

$$f(x) = \left\{egin{array}{ll} 0 & ext{if } \log(g_0(x)/g_1(x)) \geq \log(\pi_1/\pi_0) \ 1 & ext{if } \log(g_0(x)/g_1(x)) < \log(\pi_1/\pi_0) \end{array}
ight.$$

Or

$$f(x) = \begin{cases} 0 & \text{if } 2x(\mu_0 - \mu_1) \ge 2\sigma^2 \log(\pi_1/\pi_0) - \mu_1^2 + \mu_0^2 \\ 1 & \text{if } 2x(\mu_0 - \mu_1) < 2\sigma^2 \log(\pi_1/\pi_0) - \mu_1^2 + \mu_0^2 \end{cases}$$

Niels Richard Hansen (Univ. Copenhagen)

Linear Discriminant Analysis

Let Y take values in $\{1, \ldots, K\}$ with

$$\Pr(Y=k)=\pi_k$$

with $\pi_1 + \ldots + \pi_K = 1$, and let the conditional distribution of X|Y = k be $N(\mu_k, \Sigma)$ on \mathbb{R}^p with Σ regular. That is, the density for X|Y = k is

$$g_k(x) = \frac{1}{\sqrt{2\pi \det(\boldsymbol{\Sigma})^p}} e^{-\frac{1}{2}(x-\mu_k)^T \boldsymbol{\Sigma}^{-1}(x-\mu_k)}.$$

The conditional probability of Y = k | X = x is

$$\Pr(Y = k | X = x) = \frac{\pi_k g_k(x)}{\pi_1 g_1(x) + \ldots + \pi_k g_1(x)}$$

Niels Richard Hansen (Univ. Copenhagen)

The Bayes Classifier

$$\log \frac{\Pr(Y = k | X = x)}{\Pr(Y = l | X = x)} = \log \frac{\pi_k}{\pi_l} + \log \frac{g_k(x)}{g_l(x)}$$

= $\log \frac{\pi_k}{\pi_l} + \frac{1}{2} (x - \mu_l)^T \Sigma^{-1} (x - \mu_l) - \frac{1}{2} (x - \mu_k)^T \Sigma^{-1} (x - \mu_k)$
= $\log \frac{\pi_k}{\pi_l} + \frac{1}{2} \mu_l^T \Sigma^{-1} \mu_l - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + x^T \Sigma^{-1} (\mu_k - \mu_l)$

The boundary – the x's where $\Pr(Y = k | X = x) = \Pr(Y = l | X = x)$ – is a hyperplane. We call this a linear classifier as we can determine the classification by the computation of the finite number of linear functions $x^T \Sigma^{-1}(\mu_k - \mu_l)$, k, l = 1, ..., K.

Niels Richard Hansen (Univ. Copenhagen)

Linear Discriminant Functions

Introducing

$$\delta_k(x) = x^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

we see that

$$\log \frac{\Pr(Y = k | X = x)}{\Pr(Y = l | X = x)} = \delta_k(x) - \delta_l(x)$$

The decision boundaries are the solutions to the linear equations

$$\delta_k(x) = \delta_l(x)$$

and the Bayes classifier is

 $f(x) = \operatorname{argmax}_k \delta_k(x).$

Niels Richard Hansen (Univ. Copenhagen)

Figure 4.5 – Linear Discrimination

Niels Richard Hansen (Univ. Copenhagen)

Estimation

We use the the plug-in principle for estimation. That is, maximum likelihood estimation of all the parameters in the full model for (X, Y)

$$\hat{\pi}_{k} = \frac{N_{k}}{N}, \quad N_{k} = \sum_{i=1}^{N} \mathbb{1}(y_{i} = k)$$
$$\hat{\mu}_{k} = \frac{1}{N_{k}} \sum_{i:y_{i} = k} x_{i}$$
$$\hat{\Sigma} = \frac{1}{N - K} \sum_{k=1}^{K} \sum_{i:y_{i} = k} (x_{i} - \hat{\mu}_{k}) (x_{i} - \hat{\mu}_{k})^{T}$$

- with the usual centralized estimate of the covariance matrix.

Niels Richard Hansen (Univ. Copenhagen)

Solve lecture exercise 2.

Niels Richard Hansen (Univ. Copenhagen)

Statistics Learning

September 18, 2011 8 / 18

Parameter Functions

Fixing the last group K as a reference group we have for $k = 1, \ldots, K - 1$ that

$$\log \frac{\Pr(Y=k|X=x)}{\Pr(Y=K|X=x)} = \underbrace{\log \frac{\pi_k}{\pi_K} + \frac{1}{2}\mu_K^T \Sigma^{-1} \mu_K - \frac{1}{2}\mu_k^T \Sigma^{-1} \mu_k}_{+x^T \underbrace{\sum_{k=0}^{-1} (\mu_k - \mu_k)}_{\beta_k}}$$

Thus

$$\Pr(Y = k | X = x) = \frac{\exp(\beta_{k0} + x^T \beta_k)}{1 + \sum_{l=1}^{K-1} \exp(\beta_{l0} + x^T \beta_l)}$$

for k = 1, ..., K - 1. The conditional distribution depends upon $\pi_1, ..., \pi_{K-1}, \mu_1, ..., \mu_k, \Sigma$ through the parameter function

$$(\pi_1,\ldots,\pi_{K-1},\mu_1,\ldots,\mu_K,\Sigma)\mapsto (\beta_{10},\ldots,\beta_{(K-1)0},\beta_1,\ldots,\beta_{K-1}).$$

Niels Richard Hansen (Univ. Copenhagen)

Estimation Methodology - a digression

Non-model based (the direct) approach:

- Local methods aiming directly for (non-parametric) estimates of e.g.
 E(Y | X = x) or P(Y = k | X = x).
 Example: Nearest neighbors.
- Empirical risk minimization: Take \mathcal{F} to be a set of predictor functions and take

$$\hat{f} = \operatorname*{argmin}_{f \in \mathcal{F}} \frac{1}{n} \sum L(y_i, f(x_i)).$$

Example: Least squares fit of linear regression and classification models.

Estimation Methodology – a digression

Introduce a parametrized statistical model $(P_{\theta})_{\theta \in \Theta}$ of the generating probability distribution.

Model based approach

- The plug-in principle: If θ̂ is an estimator of θ and f_θ is the optimal predictor under P_θ take f_θ̂.
 Example: LDA.
- The conditional plug-in principle: Assume that the conditional distribution, $P_{x,\tau(\theta)}$, of Y given X = x depends upon θ through a parameter function $\tau : \Theta \to \Theta_2$. Then $f_{\theta} = f_{\tau(\theta)}$ and if $\hat{\tau}$ is an estimator of τ we take $f_{\hat{\tau}}$.

Examples: Model based linear regression and logistic regression.

Niels Richard Hansen (Univ. Copenhagen)

Quadratic Discriminant Analysis

What if
$$\Sigma_1 \neq \Sigma_2$$
 ($K = 2$)?

$$\log \frac{\Pr(Y = k | X = x)}{\Pr(Y = l | X = x)} = \overline{\delta}_k(x) - \overline{\delta}_l(x)$$

where

$$ar{\delta}_k(x) = -rac{1}{2}\log ext{det} \Sigma_k - rac{1}{2}(x-\mu_k)^T \Sigma_k^{-1}(x-\mu_k) + \log(\pi_k).$$

is a quadratic function. The decision boundaries are the solutions to the quadratic equations $\bar{\delta}_k(x) = \bar{\delta}_l(x)$ and the Bayes classifier is

$$f(x) = \operatorname{argmax}_k \overline{\delta}_k(x).$$

Niels Richard Hansen (Univ. Copenhagen)

Figure 4.6 – Quadratic Discrimination

To get quadratic boundaries one can either do QDA (right) or one can transform the bivariate variable $X = (X_1, X_2)^T$ to the five dimensional variable $X' = (X_1, X_2, X_1^2, X_1 X_2, X_2^2)$ and do LDA in \mathbb{R}^5 (left). The linear boundary in \mathbb{R}^5 shows up as a quadratic boundary in \mathbb{R}^2 .

Figure 4.4 – Dimension Reduction

Linear discriminant analysis provides a direct dimension reduction to the *K*-dimensional space. The above figure shows a further reduction to a 2D projection chosen to maximize the spread of the group means.

Figure 4.9 – Discrimination and Dimension Reduction

How to project to maximize the spread of group means? The usual inner product in Euclidean space is not optimal – we should use the inner product given by Σ^{-1}

Change of Basis Point of View

If $\Sigma = cVD^2V^T$ with D a diagonal matrix with strictly positive entries and c > 0 we let $\tilde{x} = D^{-1}V^Tx$ and $\tilde{\mu}_k = D^{-1}V^T\mu_k$. This is a change of basis given by the matrix $D^{-1}V^T$. With R a constant not depending on k we have

$$\log \Pr(Y = k | X = x) = \log \pi_k - \frac{1}{2c} (x - \mu_k)^T V D^{-2} V^T (x - \mu_k) + R$$
$$= \log \pi_k - \frac{||\tilde{x} - \tilde{\mu}_k||^2}{2c} + R.$$

Hence

$$\operatorname{argmax}_{k} \operatorname{Pr}(Y = k | X = x) = \operatorname{argmin}_{k} \left(||\tilde{x} - \tilde{\mu}_{k}||^{2} - 2c \log \pi_{k} \right).$$

Niels Richard Hansen (Univ. Copenhagen)

LDA as Dimension Reduction Technique

With W_0 a "sphering" matrix fulfilling that

$$\hat{\boldsymbol{\Sigma}} = \boldsymbol{c} \boldsymbol{W}_{0}^{\mathcal{T}} \boldsymbol{W}_{0}$$

the empirical covariance matrix of the "sphered" data $\tilde{x}_k = W_0^{-1} x_k$ is cl.

- Take M* to be the K × p matrix of class means of the "sphered" data x
 _k.
- Take $B^* = V^*(D^*)^2(V^*)^T$ to be the covariance matrix of M^* .

Then the columns in V^* , ordered decreasingly according to the diagonal entries in D^* , form an orthonomal basis (canonical variates) in the "sphered" coordinates.

Figure 4.8 – Dimension Reduction

Niels Richard Hansen (Univ. Copenhagen)

Statistics Learning

September 18, 2011 18 / 18