
Linear Classifiers
A linear classifier for the two-class 0-1 coded problem is given by

x 7→ xTβ + β0

with the classifier at x0

fβ0,β(x) =

{
1 if xTβ + β0 ≥ 1

2
0 if xTβ + β0 <

1
2

With (x1, y1), . . . , (xN , yN) a data set we can minimize the average
empirical 0-1-loss

(β0, β) 7→
N∑
i=1

1(yi 6= fβ0,β(xi )))

Not easy, discontinuous, solution not unique. View xTβ + β0 as a local
model of Px(1) and consider

argmin
β0,β

N∑
i=1

(yi − xTi β − β0)2.
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One-dimensional Normal Variables

Let X be real valued and X |Y = k be N(µk , σ
2) for k = 0, 1. If

Pr(Y = k) = πk the Bayes classifier is

f (x) =

{
0 if π0g0(x) ≥ π1g1(x)
1 if π0g0(x) < π1g1(x)

Or

f (x) =

{
0 if log(g0(x)/g1(x)) ≥ log(π1/π0)
1 if log(g0(x)/g1(x)) < log(π1/π0)

Or

f (x) =

{
0 if 2x(µ0 − µ1) ≥ 2σ2 log(π1/π0)− µ2

1 + µ2
0

1 if 2x(µ0 − µ1) < 2σ2 log(π1/π0)− µ2
1 + µ2

0
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Linear Discriminant Analysis

Let Y take values in {1, . . . ,K} with

Pr(Y = k) = πk

with π1 + . . .+ πK = 1, and let the conditional distribution of X |Y = k be
N(µk ,Σ) on Rp with Σ regular. That is, the density for X |Y = k is

gk(x) =
1√

2πdet(Σ)
p e
− 1

2
(x−µk )T Σ−1(x−µk ).

The conditional probability of Y = k|X = x is

Pr(Y = k |X = x) =
πkgk(x)

π1g1(x) + . . .+ πkg1(x)
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The Bayes Classifier

log
Pr(Y = k |X = x)

Pr(Y = l |X = x)
= log

πk
πl

+ log
gk(x)

gl(x)

= log
πk
πl

+
1

2
(x − µl)TΣ−1(x − µl)−

1

2
(x − µk)TΣ−1(x − µk)

= log
πk
πl

+
1

2
µTl Σ−1µl −

1

2
µTk Σ−1µk + xTΣ−1(µk − µl)

The boundary – the x ’s where Pr(Y = k|X = x) = Pr(Y = l |X = x) – is
a hyperplane. We call this a linear classifier as we can determine the
classification by the computation of the finite number of linear functions
xTΣ−1(µk − µl), k, l = 1, . . . ,K .
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Linear Discriminant Functions

Introducing

δk(x) = xTΣ−1µk −
1

2
µTk Σ−1µk + log πk

we see that

log
Pr(Y = k |X = x)

Pr(Y = l |X = x)
= δk(x)− δl(x)

The decision boundaries are the solutions to the linear equations

δk(x) = δl(x)

and the Bayes classifier is

f (x) = argmaxkδk(x).
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Figure 4.5 – Linear Discrimination
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Estimation

We use the the plug-in principle for estimation. That is, maximum
likelihood estimation of all the parameters in the full model for (X ,Y )

π̂k =
Nk

N
, Nk =

N∑
i=1

1(yi = k)

µ̂k =
1

Nk

∑
i :yi=k

xi

Σ̂ =
1

N − K

K∑
k=1

∑
i :yi=k

(xi − µ̂k)(xi − µ̂k)T

– with the usual centralized estimate of the covariance matrix.
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Lecture exercise

Solve lecture exercise 2.
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Parameter Functions
Fixing the last group K as a reference group we have for k = 1, . . . ,K − 1
that

log
Pr(Y = k |X = x)

Pr(Y = K |X = x)
= log

πk
πK

+
1

2
µTKΣ−1µK −

1

2
µTk Σ−1µk︸ ︷︷ ︸

βk0

+xT Σ−1(µk − µK )︸ ︷︷ ︸
βk

Thus

Pr(Y = k |X = x) =
exp(βk0 + xTβk)

1 +
∑K−1

l=1 exp(βl0 + xTβl)

for k = 1, . . . ,K − 1. The conditional distribution depends upon
π1, . . . , πK−1, µ1, . . . , µk ,Σ through the parameter function

(π1, . . . , πK−1, µ1, . . . , µK ,Σ) 7→ (β10, . . . , β(K−1)0, β1, . . . , βK−1).
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Estimation Methodology – a digression

Non-model based (the direct) approach:

Local methods aiming directly for (non-parametric) estimates of e.g.
E (Y | X = x) or P(Y = k | X = x).
Example: Nearest neighbors.

Empirical risk minimization: Take F to be a set of predictor functions
and take

f̂ = argmin
f ∈F

1

n

∑
L(yi , f (xi )).

Example: Least squares fit of linear regression and classification
models.
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Estimation Methodology – a digression

Introduce a parametrized statistical model (Pθ)θ∈Θ of the generating
probability distribution.

Model based approach

The plug-in principle: If θ̂ is an estimator of θ and fθ is the optimal
predictor under Pθ take fθ̂.
Example: LDA.

The conditional plug-in principle: Assume that the conditional
distribution, Px ,τ(θ), of Y given X = x depends upon θ through a
parameter function τ : Θ→ Θ2. Then fθ = fτ(θ) and if τ̂ is an
estimator of τ we take fτ̂ .
Examples: Model based linear regression and logistic regression.
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Quadratic Discriminant Analysis

What if Σ1 6= Σ2 (K = 2)?

log
Pr(Y = k |X = x)

Pr(Y = l |X = x)
= δ̄k(x)− δ̄l(x)

where

δ̄k(x) = −1

2
log detΣk −

1

2
(x − µk)TΣ−1

k (x − µk) + log(πk).

is a quadratic function. The decision boundaries are the solutions to the
quadratic equations δ̄k(x) = δ̄l(x) and the Bayes classifier is

f (x) = argmaxk δ̄k(x).
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Figure 4.6 – Quadratic Discrimination

To get quadratic boundaries one can either do QDA (right) or one can
transform the bivariate variable X = (X1,X2)T to the five dimensional
variable X ′ = (X1,X2,X

2
1 ,X1X2,X

2
2 ) and do LDA in R5 (left). The linear

boundary in R5 shows up as a quadratic boundary in R2.
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Figure 4.4 – Dimension Reduction

Linear discriminant analysis provides a
direct dimension reduction to the
K -dimensional space. The above figure
shows a further reduction to a 2D
projection chosen to maximize the
spread of the group means.
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Figure 4.9 – Discrimination and Dimension Reduction

How to project to maximize the spread of group means? The usual inner
product in Euclidean space is not optimal – we should use the inner
product given by Σ−1
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Change of Basis Point of View

If Σ = cVD2V T with D a diagonal matrix with strictly positive entries and
c > 0 we let x̃ = D−1V T x and µ̃k = D−1V Tµk . This is a change of basis
given by the matrix D−1V T . With R a constant not depending on k we
have

log Pr(Y = k |X = x) = log πk −
1

2c
(x − µk)TVD−2V T (x − µk) + R

= log πk −
||x̃ − µ̃k ||2

2c
+ R.

Hence

argmaxkPr(Y = k |X = x) = argmin
k

(
||x̃ − µ̃k ||2 − 2c log πk

)
.
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LDA as Dimension Reduction Technique

With W0 a “sphering” matrix fulfilling that

Σ̂ = cW T
0 W0

the empirical covariance matrix of the “sphered” data x̃k = W−1
0 xk is cI .

Take M∗ to be the K × p matrix of class means of the “sphered”
data x̃k .

Take B∗ = V ∗(D∗)2(V ∗)T to be the covariance matrix of M∗.

Then the columns in V ∗, ordered decreasingly according to the diagonal
entries in D∗, form an orthonomal basis (canonical variates) in the
“sphered” coordinates.
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Figure 4.8 – Dimension Reduction
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