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The lda function is in the MASS package. In this example we will use the ggplot2 package.

> library(MASS)

> library(ggplot2)

Reading the data.

> vowels <- read.table("http://www-stat-

class.stanford.edu/%7Etibs/ElemStatLearn/datasets/vowel.train",

+ row.names = 1,

+ head = TRUE,

+ sep = ",")

> vowelsY <- vowels[, 1]

> vowelsX <- as.matrix(vowels[, -1])

> xbar <- colMeans(vowelsX)

Computations of the group means. Note that the 11 groups are all of equal size (48 ob-
servations per group), which makes all the prior class probabilities equal. If the prior class
probabilities are not taken equal, the final classifier will have to be modified accordingly by
a class specific additive term.

> A <- model.matrix( ~ y - 1, data = data.frame(y = factor(vowelsY)))

> M <- solve(t(A) %*% A, t(A) %*% vowelsX)

> AM <- A %*% M

> n <- dim(A)[1] ## For later use

> ng <- dim(A)[2] ## For later use

We can then proceed as outlined in ESL, page 114, to compute a coordinate system for
projection and classification. The computations of the W0 (WT

0 W0 = W−1) and V ∗ matrices
are most easily achieved by using the singular value decomposition to be dealt with later in
the course.

> svdX <- svd(vowelsX - AM)

> W0 <- svdX$v %*% diag(1/svdX$d)

> Vstar <- svd(scale(M, center = xbar, scale = FALSE) %*% W0)$v

> scalings <- W0 %*% Vstar

The resulting scaling variables can be used for computing the classifications. Note that using

1



the centering variable to be xbar above, instead of the mean of M, makes no difference if the
class priors are equal as in this case. In general, it does make a difference. If we center with
any affine combination of the rows in M we will always get a V ∗ matrix with columns that
span the same space, but their exact form will depend on the chosen centering.

> predictors <- vowelsX %*% scalings

> means <- M %*% scalings

> dist <- matrix(0, n, ng)

> for(i in 1:ng)

+ dist[, i] <- rowSums(scale(predictors, means[i, ], scale = FALSE)^2)

> prior <- colMeans(A)

> ## Predicted values on training data

> yHat <- apply(scale(dist, center = 2*log(prior)/(n-ng), scale = FALSE),

+ 1, which.min)

The predicted values above are based on computing the distance to the nearest class mean in
the transformed basis where the inner product is proportional to the standard inner product.
When K < p this is, in general, a good idea. Note that it is in the final computation above
that the prior class probabilities have to enter, if they differ. In the alternative, we can
compute the nearest class mean in the original basis but with an inner product based on the
empirical covariance matrix.

> Wm1 = solve(crossprod((vowelsX - AM)))

> dist2 <- matrix(0, n, ng)

> for(i in 1:ng) {

+ XmM <- scale(vowelsX, M[i, ], scale = FALSE)

+ dist2[, i] <- rowSums(XmM * (XmM %*% Wm1))

+ }

> max(abs(dist2 - dist))

[1] 2.220446e-16

Why all the mess with the scalings if the above code can just as easily produce the distances
to the class means? One point is that once the scalings are computed we only need to
compute K inner products (scales like Kp) and K standard norms (scales like Kp) to make
one classification. Using the standard basis we need to compute a matrix product (scales like
p2), which is slower. Another point is for visualization where the projection onto the first
few scalings can provide some insight into the separation of the classes in the p-dimensional
space.

Note that any orthonormal basis for the column space of the centered M will work as the
V ∗ matrix for computation of distances and for classification, but that the specific choices of
scalings above (in that particular order) are known as the canonical variates and projection
onto this basis gives canonical coordinates.

The MASS package provides an implementation of LDA that is pretty easy to use, and which
hides most of the messy stuff.

> vowelsLda <- lda(y ~ ., data = vowels)

> sqrt(n - ng)*scalings/vowelsLda$scaling
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LD1 LD2 LD3 LD4 LD5 LD6 LD7 LD8 LD9 LD10

x.1 1 1 1 1 1 1 1 1 -1 -1

x.2 1 1 1 1 1 1 1 1 -1 -1

x.3 1 1 1 1 1 1 1 1 -1 -1

x.4 1 1 1 1 1 1 1 1 -1 -1

x.5 1 1 1 1 1 1 1 1 -1 -1

x.6 1 1 1 1 1 1 1 1 -1 -1

x.7 1 1 1 1 1 1 1 1 -1 -1

x.8 1 1 1 1 1 1 1 1 -1 -1

x.9 1 1 1 1 1 1 1 1 -1 -1

x.10 1 1 1 1 1 1 1 1 -1 -1

In this example, the scalings produced above and from lda agree up to the sign (the v-vectors
produced by the singular value decomposition do not have a unique sign). The predictions
also agree.

> all.equal(predict(vowelsLda, vowels)$class, as.factor(yHat))

[1] TRUE

In general, when the class priors are not equal, the scalings that lda returns are based on a
different V ∗ matrix, which is computed from a weighted covariance matrix of M . The row
weights are the square roots of the class priors. It’s just a slightly different basis that is
chosen to emphasize large groups over smaller small groups.

Plot of the projection onto the canonical coordinates using the results computed by the lda

function. The data and the group means have been centered before the projection. This
does not change the figure except for a translation. It seems to be common when plotting
projections onto the canonical coordinates to always plot the projections of the centered
values.

> vowelsXCentered <- scale(vowelsX, scale = FALSE)

> ldaMeans <- scale(vowelsLda$mean, scale = FALSE) %*%

+ vowelsLda$scaling[, c(1, 2)]

> p <- qplot(vowelsXCentered %*% vowelsLda$scaling[, 1],

+ vowelsXCentered %*% vowelsLda$scaling[, 2]) +

+ geom_point(aes(colour = factor(vowelsY))) +

+ geom_point(aes(x = ldaMeans[, 1], y = ldaMeans[, 2], fill =

factor(1:11)),

+ shape=23, size=8) +

+ scale_colour_discrete(legend = FALSE) +

+ scale_fill_discrete(legend = FALSE) +

+ xlab("Canonical Coordinate 1") +

+ ylab("Canonical Coordinate 2")
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Canonical Coordinate 1
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A less fancy version of the same figure.

> plot(vowelsLda, dimen = 2)

> points(ldaMeans[, 1], ldaMeans[, 2], cex = 5, pch=20)
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