
Linear Classifiers

A linear classifier for the two-class 0-1 coded problem is given by

x 7→ xTβ + β0

with the classifier at x0

fβ0,β(x) =

{
1 if xTβ + β0 ≥ 1

2
0 if xTβ + β0 <

1
2

With (x1, y1), . . . , (xN , yN ) a data set we can minimize the average empirical 0-1-loss

(β0, β) 7→
N∑
i=1

1(yi 6= fβ0,β(xi)))

Not easy, discontinuous, solution not unique. View xTβ + β0 as a local model of Px(1) and
consider

argmin
β0,β

N∑
i=1

(yi − xTi β − β0)2.

By a local model we mean that xTβ + β0 can certainly not be a sensible global model
of a conditional probability, but it may serve reasonably well in the convex hull of the
x-observations – even if it gets negative or larger than 1. From a classification point of
view, what matters is that it is a good approximation around those x where Px(1) ' 1/2.
The model is generalizable to K classes by dummy variable encoding, see Section 4.2 in
the book. However, for K ≥ 3 one runs into a problem called masking, which makes the
resulting classifier less attractive in its current form. Including derived variables, that is,
variable transforms of the xi’s, may solve the problem, but we will not pursue this here.

One-dimensional Normal Variables

Let X be real valued and X|Y = k be N(µk, σ
2) for k = 0, 1. If Pr(Y = k) = πk the Bayes

classifier is

f(x) =

{
0 if π0g0(x) ≥ π1g1(x)
1 if π0g0(x) < π1g1(x)

Or

f(x) =

{
0 if log(g0(x)/g1(x)) ≥ log(π1/π0)
1 if log(g0(x)/g1(x)) < log(π1/π0)

Or

f(x) =

{
0 if 2x(µ0 − µ1) ≥ 2σ2 log(π1/π0)− µ2

1 + µ2
0

1 if 2x(µ0 − µ1) < 2σ2 log(π1/π0)− µ2
1 + µ2

0

Linear Discriminant Analysis

Let Y take values in {1, . . . ,K} with

Pr(Y = k) = πk
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with π1 + . . .+ πK = 1, and let the conditional distribution of X|Y = k be N(µk,Σ) on Rp
with Σ regular. That is, the density for X|Y = k is

gk(x) =
1√

2πdet(Σ)
p e
− 1

2 (x−µk)T Σ−1(x−µk).

The conditional probability of Y = k|X = x is

Pr(Y = k|X = x) =
πkgk(x)

π1g1(x) + . . .+ πkg1(x)

The Bayes Classifier

log
Pr(Y = k|X = x)

Pr(Y = l|X = x)
= log

πk
πl

+ log
gk(x)

gl(x)

= log
πk
πl

+
1

2
(x− µl)TΣ−1(x− µl)−

1

2
(x− µk)TΣ−1(x− µk)

= log
πk
πl

+
1

2
µTl Σ−1µl −

1

2
µTk Σ−1µk + xTΣ−1(µk − µl)

The boundary – the x’s where Pr(Y = k|X = x) = Pr(Y = l|X = x) – is a hyperplane. We
call this a linear classifier as we can determine the classification by the computation of the
finite number of linear functions xTΣ−1(µk − µl), k, l = 1, . . . ,K.

Linear Discriminant Functions

Introducing

δk(x) = xTΣ−1µk −
1

2
µTk Σ−1µk + log πk

we see that

log
Pr(Y = k|X = x)

Pr(Y = l|X = x)
= δk(x)− δl(x)

The decision boundaries are the solutions to the linear equations

δk(x) = δl(x)

and the Bayes classifier is
f(x) = argmaxkδk(x).

Figure 4.5 – Linear Discrimination
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Estimation

We use the the plug-in principle for estimation. That is, maximum likelihood estimation of
all the parameters in the full model for (X,Y )

π̂k =
Nk
N
, Nk =

N∑
i=1

1(yi = k)

µ̂k =
1

Nk

∑
i:yi=k

xi

Σ̂ =
1

N −K

K∑
k=1

∑
i:yi=k

(xi − µ̂k)(xi − µ̂k)T

– with the usual centralized estimate of the covariance matrix.

With an N ×K design matrix A given by

Ai,j =

{
1 if yi = j
0 if yi 6= j

the projection onto its column space is P = A(ATA)−1AT , and we can write

µ̂T = (ATA)−1ATX

Σ̂ =
1

N −K
(X− PX)T (X− PX)

=
1

N −K
XT (IN − P )X.

Lecture exercise

Solve lecture exercise 2.

Parameter Functions

Fixing the last group K as a reference group we have for k = 1, . . . ,K − 1 that

log
Pr(Y = k|X = x)

Pr(Y = K|X = x)
= log

πk
πK

+
1

2
µTKΣ−1µK −

1

2
µTk Σ−1µk︸ ︷︷ ︸

βk0

+xT Σ−1(µk − µK)︸ ︷︷ ︸
βk

Thus

Pr(Y = k|X = x) =
exp(βk0 + xTβk)

1 +
∑K−1
l=1 exp(βl0 + xTβl)

for k = 1, . . . ,K− 1. The conditional distribution depends upon π1, . . . , πK−1, µ1, . . . , µk,Σ
through the parameter function

(π1, . . . , πK−1, µ1, . . . , µK ,Σ) 7→ (β10, . . . , β(K−1)0, β1, . . . , βK−1).

The model for the conditional distribution above is the logistic regression model that we will
deal with in the lecture in one week.
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Estimation Methodology – a digression

Non-model based (the direct) approach:

• Local methods aiming directly for (non-parametric) estimates of e.g. E(Y | X = x) or
P (Y = k | X = x). Example: Nearest neighbors.

• Empirical risk minimization: Take F to be a set of predictor functions and take

f̂ = argmin
f∈F

1

n

∑
L(yi, f(xi)).

Example: Least squares fit of linear regression and classification models.

Estimation Methodology – a digression

Introduce a parametrized statistical model (Pθ)θ∈Θ of the generating probability distribu-
tion.

Model based approach

• The plug-in principle: If θ̂ is an estimator of θ and fθ is the optimal predictor under
Pθ take fθ̂. Example: LDA.

• The conditional plug-in principle: Assume that the conditional distribution, Px,τ(θ),
of Y given X = x depends upon θ through a parameter function τ : Θ → Θ2. Then
fθ = fτ(θ) and if τ̂ is an estimator of τ we take fτ̂ . Examples: Model based linear
regression and logistic regression.

Note that in the machine learning terminology the full model Pθ and the resulting fθ are
referred to collectively as a generative model whereas the conditional model Px,τ and re-
sulting fτ are referred to as a discriminative model – and sometimes the non-model based
appraoches are bundled with the conditional model based approaches in the class of dis-
criminative models. We will not use the terminology.

A further discussion can be found in the hand-out from Lecture 1.

Quadratic Discriminant Analysis

What if Σ1 6= Σ2 (K = 2)?

log
Pr(Y = k|X = x)

Pr(Y = l|X = x)
= δ̄k(x)− δ̄l(x)

where

δ̄k(x) = −1

2
log detΣk −

1

2
(x− µk)TΣ−1

k (x− µk) + log(πk).

is a quadratic function. The decision boundaries are the solutions to the quadratic equations
δ̄k(x) = δ̄l(x) and the Bayes classifier is

f(x) = argmaxk δ̄k(x).
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Figure 4.6 – Quadratic Discrimination

To get quadratic boundaries one can either do QDA (right) or one can transform the bivariate
variable X = (X1, X2)T to the five dimensional variable X ′ = (X1, X2, X

2
1 , X1X2, X

2
2 ) and

do LDA in R5 (left). The linear boundary in R5 shows up as a quadratic boundary in R2.

If the linear boundary R5 is given by

βTX ′ + β0 = β1X1 + β2X2 + β3X
2
1 + β4X1X2 + β5X

2
2 = 0

we see that in terms of X1 and X2 this is a quadratic equation. Note that due to the
transformation X 7→ X ′ there is no chance that X ′ can be 5-dimensional, regular normal
distribution. The methodology can, however, still be useful.

Figure 4.4 – Dimension Reduction

Linear discriminant analysis provides a direct dimension reduction to the K-dimensional
space. The above figure shows a further reduction to a 2D projection chosen to maximize
the spread of the group means.

Figure 4.9 – Discrimination and Dimension Reduction

How to project to maximize the spread of group means? The usual inner product in Eu-
clidean space is not optimal – we should use the inner product given by Σ−1

Change of Basis Point of View

If Σ = cV D2V T with D a diagonal matrix with strictly positive entries and c > 0 we let
x̃ = D−1V Tx and µ̃k = D−1V Tµk. This is a change of basis given by the matrix D−1V T .
With R a constant not depending on k we have

log Pr(Y = k|X = x) = log πk −
1

2c
(x− µk)TV D−2V T (x− µk) +R

= log πk −
||x̃− µ̃k||2

2c
+R.

Hence
argmaxkPr(Y = k|X = x) = argmin

k

(
||x̃− µ̃k||2 − 2c log πk

)
.

If A denotes the affine space spanned by µ̃1, . . . , µ̃K and Q the projection onto that space
we have that Qx̃− µ̃k ⊥ x̃−Qx̃ and we see that

argmaxkPr(Y = k|X = x) = argmin
k
||Qx̃− µ̃k||2 − 2c log πk.
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Assuming that A = µ0 +span{v∗1 , . . . , v∗K} where v∗1 , . . . , v
∗
K constitute and othonormal basis

in the usual inner product and µ0 ∈ A we find that

Qx̃ = µ0 +

K∑
k=1

(x̃T v∗k)v∗k

and

||Qx̃− µ̃k||2 =

K∑
i=1

(x̃T v∗i − µ̃Tk v∗i )2

=

K∑
i=1

(xTV D−1v∗i − µTk V D−1v∗i )2

Thus a practical solution for computing the classifier is to first compute one such orthonormal
basis v∗1 , . . . , v

∗
K and then compute the vectors

LDk = V D−1v∗k.

For a given x is we use the formula above to compute the distance from x̃ to µ̃k for each
k = 1, . . . ,K and classify to the group k with the smallest distance – modulo the correction
given by −2c log πk. If all groups are equally probably we can ignore this correction, and
otherwize it has the effect of adding a larger number to the least probable groups.

The next construction for a given dataset provides one such choice of orthonomal basis where
we seek (for plotting purposes) to sequentially maximize the discrimination of the group
means for each choice of basis vector. Thus the first vectors provide the best discrimination
of the group means and the last provides the least discrimination.

LDA as Dimension Reduction Technique

With W0 a “sphering” matrix fulfilling that

Σ̂ = cWT
0 W0

the empirical covariance matrix of the “sphered” data x̃k = W−1
0 xk is cI.

• Take M∗ to be the K × p matrix of class means of the “sphered” data x̃k.

• Take B∗ = V ∗(D∗)2(V ∗)T to be the covariance matrix of M∗.

Then the columns in V ∗, ordered decreasingly according to the diagonal entries in D∗, form
an orthonomal basis (canonical variates) in the “sphered” coordinates.

In general, I would say that the B∗ matrix should be based on a centering of M∗ using the
global column mean of X, which is a weighted average of the column means of M∗ with
weights Kπ̂k. If the class priors are equal, this is the same as the column means of M∗.

The so-called “sphering” of the data, and the choice of W0, is not unique. If we apply any
orthogonal transformation to the data after one “sphering”, we still get a data matrix with
the empirical covariance matrix proportional to the unit matrix.

Figure 4.8 – Dimension Reduction
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