Lecture 1 exercise 2
Statistical Learning, 2011

Niels Richard Hansen
September 19, 2011

1 Solution of lecture exercise 2

1.1 Question 1

Having determined that the Bayes classifier is of the form f; for some ¢, one idea for esti-
mating it is to estimate ¢ by minimizing the empirical misclassification rate. We repeat the
simulation here.

> N <= 100

> Y <- rbinom(N, 1, 0.5)
> mu <- c(0, 3)[Y + 1]

> X <- rnorm(N, mu, 1)

The minimization can be done naively in this case by evaluating the empirical misslassifica-
tion rate on a grid and choose the minimizer.

> thres <- seq(-4, 8, 0.01)

> aveMisclas <- function(t) mean((X >= t) !=Y)
> misclasEmp <- sapply(thres, aveMisclas)

> thres[which.min(misclasEmp)]

[1] 1.6
> plot(thres, misclasEmp, type = , col = , ylim = c(0, 0.6),
+ xlab = , ylab = )
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In the alternative, we can use a more systematic approach and use a general purpose opti-
mizer with the empirical misclassification rate as the objective function.

> optimize(aveMisclas, c(-4, 8))
$minimum
[1] 1.634895

$objective
(1] 0.04

The latter approach may actually not work correctly (it may easily fail to find the true
minimum), because the function is not smooth. In fact, it is discontinuous.



An alternative approach is to estimate the parameters in the normal distributions instead
and then compute the resulting Bayes classifier for the estimated parameters.

> t <~ (mean(X[Y == 1]) + mean(X[Y == 0]))/2
>t

[1] 1.696435

This solution is well behaved computationally, but it does rely on model assumptions.

1.2 Question 2

We can observe that with two classes we have the general formula for the conditional prob-
ability
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This conditional model, with h as given above, is usually called the logistic regression model.
Note that for this model the conditional probability is 0.5 for

o
T =——,
B
which is thus the threshold for the Bayes classifier. For myp = 71 = 0.5
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as it is supposed to.
We can fit this conditional model as a logistic regression model using the glm function.
> alphabeta <- coefficients(glm(Y ~ X, family = binomial))

> t <- -alphabeta[1l]/alphabetal[2]
>t



(Intercept)
1.709512

Bonus question: Construct a simulation study where you simulate M = 200 data sets and
fit the threshold ¢ for the Bayes classifier by the three different methods described above.
Compare the resulting distributions.

1.3 Question 3

With unequal variances the simulation can be done as follows.

N <- 100

Y <- rbinom(N, 1, 0.5)
mu <- c(0, 3)[Y + 1]
sd <- c(1, 5)[Y + 1]
X <- rnorm(N, mu, sd)
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We take a look at the density plots again. An alternative is provided if ggplot2 is not in-
stalled. It shows again the empirical marginal distribution of X and the empirical conditional
distributions of X divided according to the two groups.

> if(require(ggplot2)) {

hist(X, breaks, freq = FALSE, add = TRUE, col = rgb(0, 1, 0, 0.7))

+ p <- gplot(X, geom = ) +

+ geom_density(aes(fill = factor(Y)), alpha = 0.5) +

+ geom_density(£fill = alpha( , 0.5)) +

+ scale_fill_discrete( )

+  print(p)

+ } else {

+  Dbreaks <- pretty(X, 12)

+ hist(X[Y == 1], breaks, freq = FALSE, ylim = c(0, 0.8),

+ xlim = range(breaks), col = , main = s
+ xlab = )

+  hist(X[Y == 0], breaks, freq = FALSE, col = , add = TRUE)
+

+

}
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What should be noted is that large negative values also come from group 1.

The way of computing the average prediction errors for f; does not change, and the theo-
retical computation yields

EPE(f;) = (®55()+1—P0a(t))/2.

thres <- seq(-8, 12, 0.01)

aveMisclas <- function(t) mean((X >= t) !=Y)

misclasEmp <- sapply(thres, aveMisclas)

theoMisclas <- function(t) (pnorm(t, 3, 5) + 1 - pnorm(t))/2

misclasTheo <- theoMisclas(thres)

plot(thres, misclasEmp, type = "1", col = "red", ylim = c(0, 0.6),
xlab = "Threshold", ylab = "Misclassification rate")



> lines(thres, misclasTheo, type = , col = )
> z <= (-6 + c(-1,1)*sqrt (36+24x4*(9+50*1log(5)))) /48
> lines(c(z[1], =z[1]1), c(0, 0.6))
> lines(c(z[2], z[2]), c(0, 0.6))
> BayesRate <- (pnorm(z[2], 3, 5) - pnorm(z[1], 3, 5) +
+ pnorm(z[1]) + 1 - pnorm(z[2]))/2
> lines(c(-8, 12), c(BayesRate, BayesRate), col = )
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Obviously there is a minimizer, which could be found by solving

$3,5(t) = do,1(t)

which amounts to (¢ — 3)2 + 50log(5) = 25t (be careful to choose the minimizer). The
resulting classifier is, however, not the Bayes classifier. The Bayes classifier is given by

fB (l‘) = 1(tlower <z < tupper)



with tigwer anid typper the two solutions of the quadratic equation above (—2.0598 and 1.8098,
respectively). The Bayes rate is

(®3,5(tupper) — P3,5(tower) + Po,1(trower) + 1 — Po,1 (fupper))/2 = 0.1525
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