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1 Solution of lecture exercise 2

1.1 Question 1

Having determined that the Bayes classifier is of the form ft for some t, one idea for esti-
mating it is to estimate t by minimizing the empirical misclassification rate. We repeat the
simulation here.

> N <- 100

> Y <- rbinom(N, 1, 0.5)

> mu <- c(0, 3)[Y + 1]

> X <- rnorm(N, mu, 1)

The minimization can be done naively in this case by evaluating the empirical misslassifica-
tion rate on a grid and choose the minimizer.

> thres <- seq(-4, 8, 0.01)

> aveMisclas <- function(t) mean((X >= t) != Y)

> misclasEmp <- sapply(thres, aveMisclas)

> thres[which.min(misclasEmp)]

[1] 1.6

> plot(thres, misclasEmp, type = "l", col = "red", ylim = c(0, 0.6),

+ xlab = "Threshold", ylab = "Misclassification rate")
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In the alternative, we can use a more systematic approach and use a general purpose opti-
mizer with the empirical misclassification rate as the objective function.

> optimize(aveMisclas, c(-4, 8))

$minimum

[1] 1.634895

$objective

[1] 0.04

The latter approach may actually not work correctly (it may easily fail to find the true
minimum), because the function is not smooth. In fact, it is discontinuous.
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An alternative approach is to estimate the parameters in the normal distributions instead
and then compute the resulting Bayes classifier for the estimated parameters.

> t <- (mean(X[Y == 1]) + mean(X[Y == 0]))/2

> t

[1] 1.696435

This solution is well behaved computationally, but it does rely on model assumptions.

1.2 Question 2

We can observe that with two classes we have the general formula for the conditional prob-
ability

P (Y = 1 | X = x) =
π1g1(x)

π0g0(x) + π1g1(x)

=
h(x)

1 + h(x)

where

h(x) =
π1g1(x)

π0g0(x)
.

If the gk’s are densities for the normal distribution with equal variance σ2 and mean values
µk we get that

log h(x) = log
π1
π0

+
(x− µ0)2 − (x− µ1)2

2σ2

= log
π1
π0

+
µ2
0 − µ2

1 + 2(µ1 − µ0)x

2σ2

= α+ βx

with α = log π1

π0
+

µ2
0−µ

2
1

2σ2 and β = (µ1−µ0)
σ2 .

This conditional model, with h as given above, is usually called the logistic regression model.
Note that for this model the conditional probability is 0.5 for

x = −α
β
,

which is thus the threshold for the Bayes classifier. For π0 = π1 = 0.5

−α
β

= − µ2
0 − µ2

1

2(µ1 − µ0)
=

(µ0 − µ1)(µ0 + µ1)

2(µ0 − µ1)
=
µ0 + µ1

2

as it is supposed to.

We can fit this conditional model as a logistic regression model using the glm function.

> alphabeta <- coefficients(glm(Y ~ X, family = binomial))

> t <- -alphabeta[1]/alphabeta[2]

> t
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(Intercept)

1.709512

Bonus question: Construct a simulation study where you simulate M = 200 data sets and
fit the threshold t for the Bayes classifier by the three different methods described above.
Compare the resulting distributions.

1.3 Question 3

With unequal variances the simulation can be done as follows.

> N <- 100

> Y <- rbinom(N, 1, 0.5)

> mu <- c(0, 3)[Y + 1]

> sd <- c(1, 5)[Y + 1]

> X <- rnorm(N, mu, sd)

We take a look at the density plots again. An alternative is provided if ggplot2 is not in-
stalled. It shows again the empirical marginal distribution of X and the empirical conditional
distributions of X divided according to the two groups.

> if(require(ggplot2)) {

+ p <- qplot(X, geom = "density") +

+ geom_density(aes(fill = factor(Y)), alpha = 0.5) +

+ geom_density(fill = alpha("green", 0.5)) +

+ scale_fill_discrete("Group")

+ print(p)

+ } else {

+ breaks <- pretty(X, 12)

+ hist(X[Y == 1], breaks, freq = FALSE, ylim = c(0, 0.8),

+ xlim = range(breaks), col = "red", main = "Histogram",

+ xlab = "X")

+ hist(X[Y == 0], breaks, freq = FALSE, col = "blue", add = TRUE)

+ hist(X, breaks, freq = FALSE, add = TRUE, col = rgb(0, 1, 0, 0.7))

+ }
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What should be noted is that large negative values also come from group 1.

The way of computing the average prediction errors for ft does not change, and the theo-
retical computation yields

EPE(ft) = (Φ3,5(t) + 1− Φ0,1(t))/2.

> thres <- seq(-8, 12, 0.01)

> aveMisclas <- function(t) mean((X >= t) != Y)

> misclasEmp <- sapply(thres, aveMisclas)

> theoMisclas <- function(t) (pnorm(t, 3, 5) + 1 - pnorm(t))/2

> misclasTheo <- theoMisclas(thres)

> plot(thres, misclasEmp, type = "l", col = "red", ylim = c(0, 0.6),

+ xlab = "Threshold", ylab = "Misclassification rate")
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> lines(thres, misclasTheo, type = "l", col = "blue")

> z <- (-6 + c(-1,1)*sqrt(36+24*4*(9+50*log(5))))/48

> lines(c(z[1], z[1]), c(0, 0.6))

> lines(c(z[2], z[2]), c(0, 0.6))

> BayesRate <- (pnorm(z[2], 3, 5) - pnorm(z[1], 3, 5) +

+ pnorm(z[1]) + 1 - pnorm(z[2]))/2

> lines(c(-8, 12), c(BayesRate, BayesRate), col = "purple")

−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Threshold

M
is

cl
as

si
fic

at
io

n 
ra

te

Obviously there is a minimizer, which could be found by solving

φ3,5(t) = φ0,1(t)

which amounts to (t − 3)2 + 50 log(5) = 25t2 (be careful to choose the minimizer). The
resulting classifier is, however, not the Bayes classifier. The Bayes classifier is given by

fB(x) = 1(tlower ≤ x ≤ tupper)
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with tlower and tupper the two solutions of the quadratic equation above (−2.0598 and 1.8098,
respectively). The Bayes rate is

(Φ3,5(tupper)− Φ3,5(tlower) + Φ0,1(tlower) + 1− Φ0,1(tupper))/2 = 0.1525

7


	Solution of lecture exercise 2
	Question 1
	Question 2
	Question 3


