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1 Solution of lecture exercise 1

The simulation can be done as follows.

> N <- 100

> Y <- rbinom(N, 1, 0.5)
> mu <- c(0, 3)[Y + 1]

> X <- rnorm(N, mu, 1)

This is just one way, where we use that rnorm take a vector as mean values.

The following density plot is produced using ggplot2. An alternative is provided if ggplot2 is
not installed. It shows the empirical marginal distribution of X and the empirical conditional
distributions of X divided according to the two groups.

> if (require(ggplot2)) {

+ p <- gplot(X, geom = )+

+ geom_density(aes(fill = factor(Y)), alpha = 0.5) +

+ geom_density(£ill = alpha( , 0.5)) +

+ scale_fill_discrete( )

+  print(p)

+ } else {

+  breaks <- pretty(X, 12)

+  hist(X[Y == 1], breaks, freq = FALSE, ylim = c(0, 0.8),

+ xlim = range(breaks), col = , main = s

+ xlab = )

+  hist(X[Y == 0], breaks, freq = FALSE, col = , add = TRUE)
+ hist(X, breaks, freq = FALSE, add = TRUE, col = rgb(0, 1, 0, 0.7))
+ 7}
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We then compute, for a grid of threshold values, the average prediction error for each of
these threshold values. This is done using the sapply function. Regarding the theoretical
computation we note that, with ®, the distribution function for the normal distribution
with mean p and variance 1,

EPE(f,) = P(X<t|Y=1)/2+P(X>t|Y =0)/2
= (®3(t) + 1 —Do(t))/2.

thres <- seq(-4, 8, 0.01)

aveMisclas <- function(t) mean((X >= t) !=Y)

misclasEmp <- sapply(thres, aveMisclas)

theoMisclas <- function(t) (pnorm(t, 3, 1) + 1 - pnorm(t))/2
misclasTheo <- theoMisclas(thres)

plot(thres, misclasEmp, type = "1", col = "red", ylim = c(0, 0.6),
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+ xlab = , ylab = )
> lines(thres, misclasTheo, type = , col = )
> lines(c(1.5, 1.5), c(0, 0.6))
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With ¢, the density for the normal distribution with mean p and variance 1, the Bayes
classifier is found by solving

¢3(t) = do(t)

which amounts to ¢ = 3/2 (the midpoint between the two means). The resulting classifier,
which is the Bayes classifier, is thus f3/5. The Bayes rate is

(®3(3/2) + 1 — ®p(3/2))/2 = 0.0668
N.B. Note that optimization of EPE over f; can be done by equating the derivative to 0,

which yields the equation above. However, finding this optimum does not guarantee that
we have found the Bayes classifier in general, as the Bayes classifier need not be of the form



ft for any t. In general, for a two-class classification problem the equation

mogo(w) = m1g1()

characterizes the boundary for the Bayes classifier between the values of x, which are clas-
sified as ones, and the values of x, which are classified as zeroes.
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