
Welcome ...
...to the course in Statistical Learning, 2011.
Lectures: Niels Richard Hansen

Co-taught with a Statistical Learning course at the University of
Copenhagen.

Evaluation:
A final, individual project handed with hand-in deadline via email
Monday, October 31.

Theoretical and practical exercises: During the course I plan to give
an number of small theoretical exercises and practical (mostly R-)
exercises that you will solve/work on in class or for the subsequent
lecture. Solutions will be provided. Some of the exercises are taken
from the book or are slightly modified versions of exercises from the
book.

Teaching material: The Elements of Statistical Learning. Data
Mining, Inference, and Prediction 2nd ed. together with hand-outs
from the lectures.
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Statistical Learning

What is Statistical Learning?

A merger of classical disciplines in statistics with methodology from areas
known as machine learning, pattern recognition and artificial neural
networks.

Major purpose: Prediction – as opposed to .... truth!?

Major point of view: Function approximation, solution of a mathematically
formulated estimation problem – as opposed to algorithms.
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Iris data

A classical dataset collected by the botanist Edgar Anderson, 1935, The
irises of the Gaspe Peninsula and studied by statistician R. A. Fisher, 1936,
The use of multiple measurements in taxonomic problems. Available as
the iris dataset in the datasets package in R.

Sepal Petal

Length Width Length Width Species

5.1 3.5 1.4 0.2 setosa

4.9 3.0 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa
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7.0 3.2 4.7 1.4 versicolor

6.4 3.2 4.5 1.5 versicolor

6.9 3.1 4.9 1.5 versicolor
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6.3 3.3 6.0 2.5 virginica

5.8 2.7 5.1 1.9 virginica

7.1 3.0 5.9 2.1 virginica
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Figure 1.1 – Prostate Cancer

A classical scenario from statistics. How
does the response variable lpsa relate to
a number of other measured or observed
quantities – some continuous and some
categorical?

Typical approach is regression – the
scatter plot might reveal marginal
correlations.
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Figure 1.2 – Hand Written Digits

A classical problem from pattern
recognition. How do we classify
an image of a handwritten
number as 0 - 9?

This is the mail sorting problem
based on zip codes.

It’s not so easy – is
a nine or a five?
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Figure 1.3 – Microarray Measurements

A problem of current importance. How does the
many genes of our cells behave?

We can measure the activity of thousands of
genes simultaneously – the gene expression
levels – and want to know about the relation of
gene expression patterns to “status of the cell”
(healthy, sick, cancer, what type of cancer ...)
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Classification

The objective in a classification problem is to be able to classify an object
into a finite number of distinct groups based on observed quantities.

With hand written digits we have 10 groups and an 16x16 pixel gray tone
image (a vector in R256).

With microarrays a typical scenario is that we have 2 groups (cancer type
A and cancer type B) and a 10-30 thousand dimensional vector of gene
expressions.
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Setup – and One Simple Idea

We have observations (x1, y1), . . . , (xN , yN) with xi ∈ Rp and yi ∈ {0, 1}.
We assume that the data arose as independent and identically distributed
samples of a pair (X ,Y ) of random variables.

Assume X = x0 ∈ Rp what is Y ? Let

Nk(x0) = {i | xi is one of the k ’th nearest observations}.

Define

p̂(x0) =
1

k

∑
i∈Nk (x0)

yi ∈ [0, 1]

and classify using majority rules

ŷ = f̂ (x) =

{
1 if p̂(x0) ≥ 1/2
0 if p̂(x0) < 1/2
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Figure 2.2 – 15-Nearest Neighbor Classifier

A wiggly separation barrier between x0’s
classified as zero’s and one’s is
characteristic of nearest neighbors. With
k = 15 we get a partition of the space
into just two connected “classification
components”.
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Figure 2.3 – 1-Nearest Neighbor Classifier

With k = 1 every observed point has its
own “neighborhood of classification”.
The result is a large(r) number of
connected classification components.
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Linear Classifiers

A classifier is called linear if there is an affine function

x 7→ xTβ + β0

with the classifier at x0

f (x) =

{
1 if xTβ + β0 ≥ 0
0 if xTβ + β0 < 0

There are several examples of important linear classifiers. We encounter

Linear discriminant analysis (LDA).

Logistic regression.

Support vector machines.

Tree based methods is a fourth method that relies on locally linear
classifiers.
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Regression

If the y variable is continuous we usually talk about regression. You should
all know the linear regression model

Y = XTβ + β0 + ε

where ε and X are independent, E (ε) = 0 and V (ε) = σ2.

A predictor of Y given x is then a function f : Rp → R. In the linear
regression model above

f (x) = E (Y |X = x) = xTβ + β0

is a natural choice of linear predictor.
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Probability Models
Let (X ,Y ) be a random variable with values in Rp × E and decompose its
distribution P into the conditional distribution Px of Y given X = x and
the marginal distribution P1 of X . This means

Pr(X ∈ A,Y ∈ B) =

∫
A
Px(B)P1(dx).

If the joint distribution has density g(x , y) w.r.t. ν ⊗ µ the marginal
distribution has density

g1(x) =

∫
g(x , y)µ(dy)

w.r.t. ν, the conditional distribution has density

g(y |x) =
g(x , y)

g1(x)
,

w.r.t. µ and we have Bayes formula g(x , y) = g(y |x)g1(x).
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Prediction error and the Bayes classifier

If F = {1, . . . ,K} is finite and f : Rp → E is any classifier we define the
expected prediction error as

EPE(f ) = P(f (X ) 6= Y ) = 1− E (PX (f (X )))

as the proportion of misclassifications or misclassification rate.

The Bayes classifier is the classifier that minimizes the expected prediction
error and is given by

fB(x) = argmaxkPx(k) = argmaxkP(Y = k | X = x)

The Bayes rate
EPE(fB) = 1− E (max

k
PX (k))

is the expected prediction error for the Bayes classifier.
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Figure 2.5 – The Bayes Classifier

The example data used for nearest
neighbor are simulated and the Bayes
classifier can be calculated exactly.

It can be computed using Bayes formula
for k = 0, 1

Pr(Y = k |X = x) =
πkgk(x)

π0g0(x) + π1g1(x)

and the argmax is found to be

g(x) = argmaxk=0,1πkgk(x).

In the example g0 and g1 are mixtures of
10 Gaussian distributions.
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Lecture exercise 1
Let Y ∈ {0, 1} with P(Y = 0) = 0.5 and

X |(Y = k) ∼ N(3k, 1).

Consider classifiers of the form ft(x) = 1(x ≥ t) for t ∈ R.

1 Write an R program that simulates a data set under the model
described above with N = 100 independent observations (xi , yi ).
Compute and plot the empirical expected prediction error

t → 1

N

∑
i=1

1(ft(xi ) 6= yi )

as a function of t.

2 Find and plot the theoretical expected prediction error

t → EPE(ft)

and find the Bayes classifier and Bayes rate.
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Lecture exercise 2

With the same setup as above:

1 How to estimate the Bayes classifier from the data set?

2 Show that

P(Y = 1 | X = x) =
eα+βx

1 + eα+βx

for some parameters α, β ∈ R, and show how this can be used to
estimate the Bayes classifier.

3 What happens if

X |(Y = k) ∼ N(3k , 1 + 24k).
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Statistical Decision Theory

Question: How do we make optimal decisions of action/prediction under
uncertainty?

We need to

decide how we measure the quality of the decision – loss functions,

decide how we model the uncertainty – probability measures,

decide how we weigh together the losses.
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Loss Functions

A loss function in the framework of ordinary regression analysis is a
function L : R× R→ [0,∞).

A predictor is a function f : Rp → R. If (x , y) ∈ Rp × R the quality of
predicting y as f (x) is measured by the loss

L(y , f (x)).

Large values are bad! Examples where L(y , ŷ) = V (y − ŷ):

The squared error loss; V (t) = t2.

The absolute value loss; V (t) = |t|.
Huber for c > 0; V (t) = t21(|t| ≤ c) + (2c |t| − c2)1(|t| > c).

The ε-insensitive loss; V (t) = (|t| − ε)1(|t| > ε).
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Weighing the Loss

If L is a loss function, (X ,Y ) a random variable and f : Rp → R a
predictor then L(Y , f (X )) has a probability distribution on [0,∞).

The typical single number summary is the expected prediction error:

EPE(f ) = E (L(Y , f (X ))).

Take Home Message: The theory depends upon choices of e.g. loss
function, which often represent mathematically convenient surrogates.

Optimality is not an unconditional quality – a predictor can only be
optimal given the choice of loss function, probability model and how the
losses are weighed together.
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Optimal Prediction
We find that

EPE(f ) =

∫
L(y , f (x))P(dx ,dy)

=

∫ ∫
L(y , f (x))Px(dy)︸ ︷︷ ︸
E(L(Y ,f (x))|X=x)

P1(dx).

This quantity is minimized by minimizing the expected loss conditionally
on X = x ,

f (x) = argmin
ŷ

E (L(Y , ŷ)|X = x).

Squared error loss; L(y , ŷ) = (y − ŷ)2

f (x) = E (Y |X = x)

Absolute value loss; L(y , ŷ) = |y − ŷ |
f (x) = median(Y |X = x)
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0-1 loss and the Bayes classifier

The 0-1 loss function is L(k , l) = 1(k 6= l) is very popular with

E (L(Y , f (x))|X = x) = 1− Px(f (x)).

The optimal classifier with the 0-1 loss is the Bayes classifier already
introduced and given by

fB(x) = argmaxkPx(k)
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Linear Regression

For (X ,Y ) a pair of random variables with values in Rp × R we assume
that

E (Y |X ) = β0 +

p∑
j=1

Xjβj = (1,XT )β

with β ∈ Rp+1.

This “model” of the conditional expectation is linear in the parameters.

The predictor function for a given β is

fβ(x) = (1, xT )β.
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Least Squares

With X the N × (p + 1) data matrix, including the column 1, the
predicted values for given β are Xβ.

The residual sum of squares is

RSS(β) =
N∑
i=1

(yi − (1, xTi )β)2 = ||y − Xβ||2.

The least squares estimate of β is

β̂ = argmin
β

RSS(β).
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Figure 3.1 – Geometry

The linear regression seeks a
p-dimensional, affine representation – a
hyperplane – of the p + 1-dimensional
variable (X ,Y ).

The direction of the Y -variable plays a
distinctive role – the error of the
approximating hyperplane is measured
parallel to this axis.
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The Solution – the Calculus Way

Since RSS(β) = (y − Xβ)T (y − Xβ)

DβRSS(β) = −2(y − Xβ)TX

The derivative is a 1× p dimensional matrix – a row vector. The gradient
is ∇βRSS(β) = DβRSS(β)T .

D2
βRSS(β) = 2XTX.

If X has rank p + 1, D2
βRSS(β) is (globally) positive definite and there is a

unique minimizer found by solving DβRSS(β) = 0. The solution is

β̂ = (XTX)−1XTy.
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Distributional Results – Conditionally on X

εi = Yi − (1,Xi )
Tβ

Assumption 1: ε1, . . . , εN are, conditionally on X1, . . . ,XN , uncorrelated
with mean value 0 and same variance σ2.

σ̂2 =
1

N − p − 1

N∑
i=1

(Yi − Xβ̂)2 =
1

N − p − 1
||Y − Xβ̂||2 =

RSS(β̂)

N − p − 1

Then V (Y|X) = σ2IN

E (β̂|X) = (XTX)−1XTXβ = β

V (β̂|X) = (XTX)−1XTσ2INX(XTX)−1 = σ2(XTX)−1

E (σ̂2|X) = σ2
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Distributional Results – Conditionally on X
Assumption 2: ε1, . . . , εN conditionally on X1, . . . ,XN are i.i.d. N(0, σ2).

β̂ ∼ N(β, σ2(XTX)−1)

(N − p − 1)σ̂2 ∼ σ2χ2
N−p−1.

The standardized Z -score

Zj =
β̂j − βj

σ̂
√

(XTX)−1jj

∼ tN−p−1.

Or more generally for any a ∈ Rp+1

aT β̂ − aTβ

σ̂
√

aT (XTX)−1a
∼ tN−p−1.
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Gauss-Markov’s Theorem

Consider linear estimators only

β̃ = CTY

for some N × p matrix C requiring that β = CTXβ for all β.

Theorem

Under Assumption 1 the least squares estimator of β has minimal variance
among all linear, unbiased estimators of β.

This means that for any a ∈ Rp, aT β̂ has minimal variance among all
estimators of aTβ of the form aT β̃ where β̃ is a linear, unbiased estimator.
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Biased Estimators

The mean squared error is

MSEβ(β̃) = Eβ(||β̃ − β||2).

By Gauss-Markov’s Theorem β̂ is optimal for all β among the linear,
unbiased estimators.

Allowing for biased – possibly linear – estimators we can achieve
improvements of the MSE for some β – perhaps at the expense of some
other β.

The Stein estimator is a non-linear, biased estimator, which under
Assumption 2 has uniformly smaller MSE than β̂ whenever p ≥ 3.
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Best Subset

For each k ∈ {0, . . . , p} there are (
p

k

)
different models with k predictors excluding the intercept, and p − k
parameters = 0.

There are in total
p∑

k=0

(
p

k

)
= 2p

different models. For the prostate dataset with 28 = 256 possible models
we can go through all models in a split second. With
240 = 1.099.511.627.776 we approach the boundary.
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Subset Selection – A Constrained Optimization Problem

Let Lkr for r = 1, . . . ,
(p
k

)
denote all k-dimensional subspaces of the form

Lkr = {β | p − k coordinates in β = 0}.

β̂k = argmin
β∈∪rLkr

RSS(β)

The set ∪rLkr is not convex – local optimality does not imply global
optimality.

We can essentially only solve this problem by solving all the
(p
k

)
subproblems, which are convex optimization problems.

Conclusion: Subset selection scales computationally badly with the
dimension p. Branch-and-bound algorithms can help a little ...
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Figure 3.5 – Best Subset Selection

The residual sum of squares RSS(β̂k) is
a monotonely decreasing function in k .

The selected models are in general not
nested.

One can not use RSS(β̂k) to select the
appropriate subset size only the best
model of subset size k for each k .

Model selection criterias such as AIC and
Cross-Validation can be used – these are
major topics later in the course.
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Test Based Selection
Set

β̂k,r = argmin
β∈Lkr

RSS(β)

and fix Lls ⊆ Lkr with l < k.

F =
(N − k)[RSS(β̂l ,s)− RSS(β̂k,r )]

(k − l)RSS(β̂k,r )

follows under Assumption 2 an F-distribution with (k − l ,N − k) degrees
of freedom if β ∈ Lls .

Lkr is preferred over Lls if Pr(. > F ) ≤ 0.05, say – the deviation from Lls is
unlikely to be explained by randomness alone.

Take home message: Test statistics are useful for quantifying if a simple
model is inadequate compared to a complex model, but not for general
model searching and selection strategies.
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