
Figure 7.12 – Bootstrapping
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Bootstrap aggregation

With B bootstrap datasets and f̂ ∗b the estimated predictor based on the
b’th bootstrap data set the bootstrapped, or bagged, estimator is

f̂ Bbag(x) =
1

B

B∑
b=1

f̂ ∗b(x)

For B →∞
f̂ Bbag(x)→ E (f̂ ∗(x)|Z)

where Z is the original data set and f̂ ∗(x) is a bootstrap estimated
predictor.

The conditional expectation is over the random bootstrapped sampling
from the data.
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Bootstrapping for classification

For classification we can

aggregate by “majority rules”: Each predictor cast a vote on a class
and the class with most votes is the result.

aggregate estimated conditional class probabilities by averaging and
classify to the class with the largest aggregated probability.

Majority rules can be implemented by averaging dummy variable encodings
in terms of K -vectors representing the K classes. The resulting probability
vector can not be seen as an estimate of the conditional class probabilities.
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Figure 8.9 – Bootstrapped trees
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Figure 8.10 – Bagging
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Ensembles of Weak Predictors

A weak predictor is a predictor that performs only a little better than
random guessing, or at least a lot worse than the Bayes classifier.

With an ensemble, or collection, of weak predictors f̂1, . . . , f̂B we seek to
combine their predictions, e.g. as

f̂ B =
1

B

B∑
b=1

f̂b

hoping to improve performance.

Bootstrap aggregation or Bagging is an example where the ensemble of
preditors is obtained by estimation of the predictor on bootstrapped data
sets.
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Combining Weak Predictors
Recall that

V (f̂ B(x)) =
1

B2

B∑
b=1

V (f̂b(x)) +
1

B2

∑
b 6=b′

cov(f̂b(x), f̂ ′b(x)).

The variance is a tradeoff between the variance of the individual predictors
and their correlation.

If the weak predictors are pairwise identically distributed then

V (f̂b(x)) = σ2(x) cov(f̂b(x), f̂ ′b(x)) = ρ(x)σ2(x)

with ρ(x) ≥ 1
1−B .

V (f̂ B(x)) = ρ(x)σ2(x) +
σ2(x)(1− ρ(x))

B
.
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Averages of conditional i.i.d. ensembles

Assume that f̂ b = f̂ (Z, Ib) for i.i.d. random variables Ib. Then

Conditionally on Z the f̂ b’s are i.i.d.

f̂ B(x)→ f̂∞(x) = E (f̂ 1(x) | Z) for B →∞ by LLN.

V (f̂∞(x)) = cov(f̂ 1(x), f̂ 2(x)).

With σ2(x) = V (f̂ 1(x)) and ρ(x) = corr(f̂ 1(x), f̂ 2(x))

V (f̂∞(x)) = σ2(x)ρ(x).
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Bagged predictors

Bagged predictors are examples of averages of cond. i.i.d. ensembles.

The bagged predictor E (f̂ ∗(x) | Z) will typically not improve on the
bias as compared to f̂ (x) – it is on average not better than the
individual bootstrapped predictor f̂ ∗(x).

The variance of f̂ ∗(x), σ2(x), will typically be larger than the variance
of f̂ (x).

If the correlation, ρ(x), is sufficiently small we hope for a variance
reduction of the bagged estimator as compared to f̂ (x).

If we attempt to de-correlate the individual learners in the ensemble we
generally increase the variance of the learners – we have to find a good
balance.
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Random Forests

Leo Breiman invented random forests to improve on bagging of trees by
de-correlation.

Random forests is a bagging algorithm with the modification that for
building the b’th tree the tree recursion is modified at the splitting step to

1 Sample m indices (variables) from 1, . . . , p.

2 Compute the optimal split among the m sampled variables.

With m = 1 the random forest is grown by optimally splitting randomly
selected variables. For m = p we get classical bagging for trees.
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Figure 15.1
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Figure 15.10

V (f ∗(x)) = V (E (f ∗(x) | Z))︸ ︷︷ ︸
σ2(x)ρ(x)

+E (V (f ∗(x) | Z))
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Basis expansions, ensemble learners and trees

The basis expansion techniques can be seen as ensemble learning (with or
without regularization) where we have specified the base learners a priori
and have to learn the weights.

With simple averaging of (weak) learners we specify the weights and build
the base learners adaptively to the data.

For trees we build and combine sequentially and recursively the simplest
base learners; the stumps or single splits.

Are there general ways to search the space of learners and combinations of
simple learners?
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Stagewise Additive Modeling

With b(·, γ) for γ ∈ Γ a parameterized family of basis functions we can
seek expansions of the form

M∑
m=1

βmb(x , γm)

With fixed γm this is standard, with unrestricted γm this is in general very
difficult numerically.

Suggetion: Evolve the expansions in stages where (βm, γm) is estimated in
step m and then fixed forever.
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Boosting

With any loss function L the Forward Stagewise Additive Model is
estimated by the algorithm:

1 Set m = 1 and initialize with f̂0(x) = 0.

2 Compute

(β̂m, γ̂m) = argmin
β,γ

N∑
i=1

L(yi , f̂m−1(xi ) + βb(xi , γ))

3 Set fm = fm−1 + β̂mb(·, γ̂m), m = m + 1 and return to 2.

Note that with squared error loss

L(yi , f̂m−1(xi ) + βb(xi , γ)) = ((yi − f̂m−1(xi ))− βb(xi , γ))2

every estimation step is a reestimation on the residuals.
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Base Classifiers

With Y ∈ {−1, 1} and any classifier G (x) ∈ {−1, 1} the misclassification
error is

err(G ) =
1

N

N∑
i=1

1(yi 6= G (xi )) =
1

2N

N∑
i=1

(1− yiG (xi ))

With G a class of classifiers the (unweigted) optimal classifier is

Ĝ = argmin
G∈G

err(G )

With w1, . . . ,wN ≥ 0 the weighted optimal classifier is

Ĝ = argmin
G∈G

N∑
i=1

wi1(yi 6= G (xi ))
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Surrogate Loss Functions

Most important property of the surrogate loss functions is that they are
convexifications of the 0-1-loss.
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AdaBoost – Classification with Exponential Loss
With exponential loss L(y , f (x)) = exp(−yf (x)) and with

w
(m)
i = exp(−yi fm−1(xi ))

N∑
i=1

L(yi , f̂m−1(xi ) + βG (xi )) =
N∑
i=1

w
(m)
i exp(−yiβG (xi ))

= (eβ − e−β)
N∑
i=1

w
(m)
i 1(yi 6= G (xi )) + e−β

N∑
i=1

w
(m)
i

The minimizer is Ĝm = argminG∈G
∑N

i=1 w
(m)
i 1(yi 6= G (xi )),

β̂m =
1

2
log

1− errm
errm

The updated weights in step m + 1 are

w
(m+1)
i = w

(m)
i exp(−yi β̂mĜm(xi ))

= w
(m)
i exp(2β̂m1(yi 6= Ĝm(xi ))) exp(−β̂m).

Niels Richard Hansen (Univ. Copenhagen) Statistics Learning October 14, 2011 18 / 22



Figure 10.1 – Schematic AdaBoost

G (x) =
M∑

m=1

αmGm(x)
1 Initialize with weights wi = 1/N

and set m = 1 and fix M.

2 Fit a classifier Gm using weights wi .

3 Recompute weights as

wi ← wi exp(αm1(yi 6= Gm(xi )))

where αm = log((1− errm)/errm)
and

errm =
1∑N

i=1 wi

N∑
i=1

wi1(yi 6= G (xi )).

4 Stop if m = M or set m→ m + 1
and return to 2
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Figure 10.2 and 10.3

Boosting using stumps only can
outperform even large trees in terms of
test error (simulation).

Even when the misclassification error is 0
on the training data it can pay to
continue the boosting and the
exponential loss will continue to
decrease.
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More Boosting
The computational problem in boosting is minimization of

N∑
i=1

L(yi , f̂m−1(xi ) + βb(xi , γ)).

For classification with exponential loss this simplifies to weighted optimal
classification.

For regression and squared error loss this is re-estimation based on the
residuals.
With the notation

L(f) =
N∑
i=1

L(yi , fi )

for f = (f1, . . . , fN) ∈ RN we aim at finding steps h1, . . . ,hM and with h0
the initial guess an approximate minimizer of the form

fM =
M∑

m=0

hm.
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Gradient Boosting

The gradient of L : RN → R is

∇L(f) = (∂zL(y1, f1), . . . , ∂zL(yN , fN))T

Gradient descent algorithms suggest steps from fm in the direction of
−∇L(fm);

hm = −ρm∇L(fm).

Problem: −ρm∇L(fm) is most likely not obtainable as a prediction within
the class of base learners – it is not of the form β(b(x1, γ), . . . , b(xN , γ))T .

Solution: Fit a base learner ĥm to −∇L(fm) and compute by iteration the
expansion

f̂M =
M∑

m=0

ρmĥm.

This is gradient boosting as implemented in the mboost library.
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