Figure 7.12 — Bootstrapping

Bootstrap aggregation

With B bootstrap datasets and f*b the estimated predictor based on the b’th bootstrap
data set the bootstrapped, or bagged, estimator is

For B — oo . R
foag(®) = BE(f*(2)|2)

where Z is the original data set and f*(x) is a bootstrap estimated predictor.
The conditional expectation is over the random bootstrapped sampling from the data.

Bootstrapping for classification

For classification we can

e aggregate by “majority rules”: Each predictor cast a vote on a class and the class with
most votes is the result.

e aggregate estimated conditional class probabilities by averaging and classify to the
class with the largest aggregated probability.

Majority rules can be implemented by averaging dummy variable encodings in terms of K-
vectors representing the K classes. The resulting probability vector can not be seen as an
estimate of the conditional class probabilities.

Figure 8.9 — Bootstrapped trees

Figure 8.10 — Bagging

Ensembles of Weak Predictors

A weak predictor is a predictor that performs only a little better than random guessing, or
at least a lot worse than the Bayes classifier.

With an ensemble, or collection, of weak predictors fl, ceey fB we seek to combine their
predictions, e.g. as
1B
g L .
gy

hoping to improve performance.

Bootstrap aggregation or Bagging is an example where the ensemble of preditors is obtained
by estimation of the predictor on bootstrapped data sets.

Bagging is treated in Section 8.7 in the book. Note the “weak predictor” is often taken
to mean “simple predictor” where again simple refers to a predictor with few parameters,
which has low variance and besides from special cases considerable bias. There is, however,
nothing that prevent us from considering ensembles of weak predictors where “weak” refers
to high variance as opposed to high bias.

Combining Weak Predictors

Recall that 5
VP (@) = 53 SO VUE) + 55 3 covli(e). fila).

b=1 b£b

The variance is a tradeoff between the variance of the individual predictors and their corre-
lation.

If the weak predictors are pairwise identically distributed then

V(fo(x)) = 0*(x) cov(fi(), fi(x)) = p(x)o*(x)

with p(z) > 5.

V(P () = plajo?(a) + T 2]

To show this equality use the general formula to obtain

; o*(z)

V(P () = . p(z)o?(x)B(B — 1).

B B?

Then reduce the right hand side to the equation above.

Averages of conditional i.i.d. ensembles

Assume that f® = f(Z,1) for iid. random variables I,. Then
e Conditionally on Z the fb’s are i.i.d.
o fB(x) = f(x) = E(f'(z) | Z) for B — oo by LLN.
o V(f*(x)) = cov(f(z), f*(2)).

With o*(x) = V(f'(z)) and p(x) = corr(f! (), f*(x))

V(f=(x)) = o*(z)p().
A proof of the last bullet point is as follows

cov(f(x), f*(2)) = Elcov(f'(x), [2(X) | Z)) + cov(E(f'(x) | Z), E(f*(x) | Z))
=0

= cov(f*(x), [(2)) = V(f*(2)).

It can also be obtained, and is so in the book, by taking the limit of the variance of f B but
this is not justified by LLN alone.

Bagged predictors

Bagged predictors are examples of averages of cond. i.i.d. ensembles.

e The bagged predictor E(f*(z) | Z) will typically not improve on the bias as compared
to f(x) — it is on average not better than the individual bootstrapped predictor f*(x).

e The variance of f* (x), 0%(x), will typically be larger than the variance of f(x)

e If the correlation, p(x), is sufficiently small we hope for a variance reduction of the

bagged estimator as compared to f(z).

If we attempt to de-correlate the individual learners in the ensemble we generally increase
the variance of the learners — we have to find a good balance.

Random Forests

Leo Breiman invented random forests to improve on bagging of trees by de-correlation.

Random forests is a bagging algorithm with the modification that for building the b’th tree
the tree recursion is modified at the splitting step to

1. Sample m indices (variables) from 1,...,p.

2. Compute the optimal split among the m sampled variables.

With m = 1 the random forest is grown by optimally splitting randomly selected variables.
For m = p we get classical bagging for trees.

Figure 15.1

Figure 15.10

<
~—~
~
*
—
8
S~—"
S~—
Il

VIE(f (2) [2) +EV(f*(2) | Z))
|

o?(z)p(z)

Basis expansions, ensemble learners and trees

The basis expansion techniques can be seen as ensemble learning (with or without regular-
ization) where we have specified the base learners a priori and have to learn the weights.

With simple averaging of (weak) learners we specify the weights and build the base learners
adaptively to the data.

For trees we build and combine sequentially and recursively the simplest base learners; the
stumps or single splits.

Are there general ways to search the space of learners and combinations of simple learners?

Stagewise Additive Modeling

With b(-,v) for v € T a parameterized family of basis functions we can seek expansions of

the form
M
> Bunb(@, vm)
m=1

With fixed ,, this is standard, with unrestricted =, this is in general very difficult numer-
ically.

Suggetion: Evolve the expansions in stages where (8., vm) is estimated in step m and then
fixed forever.

Boosting

With any loss function L the Forward Stagewise Additive Model is estimated by the algo-
rithm:

1. Set m = 1 and initialize with fo(z) = 0.

2. Compute
N

(Bma 'Aym) = argminz L(yi7 fm—l(xi) + 56(‘%’,’ '-Y))

By i=1
3. Set frn = fm_1+ me(~,‘ym), m =m + 1 and return to 2.

Note that with squared error loss

L(i, frn—1(xi) + Bb(:,7)) = (4 — frm—1(21)) — Bb(1,7))?

every estimation step is a reestimation on the residuals.

Base Classifiers
With YV € {—1,1} and any classifier G(z) € {—1,1} the misclassification error is

err(G NZ (y; # G(x;)) QNZ

With G a class of classifiers the (unweigted) optimal classifier is

G = argmin err(G)
Geg

With wq,...,wy > 0 the weighted optimal classifier is

G = argmin w;1(y; # G(x;
g ; (yi # G(x:))

A simple class of classifiers is the class of stumps — trees with only two leafs. A stump is
given simply by a pair (i,t) of the splitting variable and the split point, and if we use the
misclassification node impurity the optimization over (i,t) is precisely the optimization we
carry out when we make each greedy step in the algorithm for estimation of trees.

Surrogate Loss Functions
Most important property of the surrogate loss functions is that they are convexifications of
the 0-1-loss.

AdaBoost — Classification with Exponential Loss

With ezponential loss L(y, f(z)) = exp(—yf(x)) and with wgm) = exp(—¥i fm—1(x;))

ZL yzvfm 1(xz) +5G Zw exp yzﬁG(‘rz))
i=1 . N
= (=) > w1y # Gla) + e w™
=1 i=1

The minimizer is G, = argmingcg Zszl wim)l(yi # G(x;)),

Bm _ llog 1 —err,,
2 err,,
The updated weights in step m + 1 are
w™ = ™ exp(—yiBnCim(:)

— W™ exp(2Bm1(yi # G (1)) exp(—Bim).

The weights in the AdaBoost algorithm evolve over time multiplying larger weights in the
m’th step on those pairs (z;,y;) that are misclassified by the classifier in the m’th step.

Figure 10.1 — Schematic AdaBoost
M
G(z) = Z 0 G ()
m=1

1. Initialize with weights w; = 1/N and set m = 1 and fix M.
2. Fit a classifier G,,, using weights w;.

3. Recompute weights as
w; — w; exp(m 1(y; # Gm(x;)))

where «;,, = log((1 — err,,)/err,,) and

N
1
err,, = ——— Zwil(yi # G(xi)).
il wi i=1

4. Stop if m = M or set m — m + 1 and return to 2
Figure 10.2 and 10.3

Boosting using stumps only can outperform even large trees in terms of test error (simula-
tion).

Even when the misclassification error is 0 on the training data it can pay to continue the
boosting and the exponential loss will continue to decrease.

More Boosting

The computational problem in boosting is minimization of

N

Z L(yia fm—l(l‘i) + ,Bb(l‘i,’y)).

i=1
For classification with exponential loss this simplifies to weighted optimal classification.

For regression and squared error loss this is re-estimation based on the residuals.

With the notation N

L(f) = Z L(yi, fi)

i=1

for f = (f1,..., fn) € RY we aim at finding steps hy, ..., hy; and with hg the initial guess
an approximate minimizer of the form

Gradient Boosting
The gradient of L : RY — R is

VL(£) = (9:L(y, fr),--- 0:L(yn, fn)"
Gradient descent algorithms suggest steps from f,,, in the direction of —VL(f,,);
h,, = —p,,VL(f,,).
Problem: —p,, VL(f;,) is most likely not obtainable as a prediction within the class of base

learners — it is not of the form B(b(z1,7),...,b(zxn,v))T.

Solution: Fit a base learner h,, to —VL(f,,) and compute by iteration the expansion

~ M ~
m=0

This is gradient boosting as implemented in the mboost library.

More information on gradient boosting and the mboost R-package can be found in: Pe-
ter Bithlmann and Torsten Hothorn. Boosting Algorithms: Regularization, Prediction and
Model Fitting. Statistical Science 2007, Vol. 22, No. 4, 477-505. There is also an interesting
discussion following the paper.

