
Welcome ...

...to the course in Statistical Learning, 2011. Lectures: Niels Richard Hansen

• Co-taught with a Statistical Learning course at the University of Copenhagen.

• Evaluation: A final, individual project handed with hand-in deadline via email Mon-
day, October 31.

• Theoretical and practical exercises: During the course I plan to give an number of
small theoretical exercises and practical (mostly R-) exercises that you will solve/work
on in class or for the subsequent lecture. Solutions will be provided. Some of the
exercises are taken from the book or are slightly modified versions of exercises from
the book.

• Teaching material: The Elements of Statistical Learning. Data Mining, Inference, and
Prediction 2nd ed. together with hand-outs from the lectures.

Statistical Learning

What is Statistical Learning?

A merger of classical disciplines in statistics with methodology from areas known as machine
learning, pattern recognition and artificial neural networks.

Major purpose: Prediction – as opposed to .... truth!?

Major point of view: Function approximation, solution of a mathematically formulated
estimation problem – as opposed to algorithms.

The areas mentioned above, machine learning, pattern recognition and artificial neural net-
works have lived their lifes mostly in the non-statistical literature. The theories for learning
– what would be called estimation in the statistical jargon – have been developed mostly by
computer scientists, engineers, physicists and others.

The quite typical approach of statistics to the problem of inductive inference – the learning
from data – is to formulate the problem as a mathematical problem. Then learning means
that we want to find one mathematical model for data generation among a set of candidate
models, and the one found is almost always found as a solution to an estimation equation
or an optimization problems. A typical alternative approach to learning is algorithmic, and
a lot of the algorithms are thought up with the behavior of human beings in mind. Hence
the term “learning” – and hence the widespread use of terminology such as “training data”
and “supervised learning” in machine learning.

Iris data

A classical dataset collected by the botanist Edgar Anderson, 1935, The irises of the Gaspe
Peninsula and studied by statistician R. A. Fisher, 1936, The use of multiple measurements
in taxonomic problems. Available as the iris dataset in the datasets package in R.
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Sepal Petal

Length Width Length Width Species

5.1 3.5 1.4 0.2 setosa

4.9 3.0 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa
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7.0 3.2 4.7 1.4 versicolor

6.4 3.2 4.5 1.5 versicolor

6.9 3.1 4.9 1.5 versicolor
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6.3 3.3 6.0 2.5 virginica

5.8 2.7 5.1 1.9 virginica

7.1 3.0 5.9 2.1 virginica
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.

Figure 1.1 – Prostate Cancer

A classical scenario from statistics. How does the response variable lpsa relate to a number
of other measured or observed quantities – some continuous and some categorical?

Typical approach is regression – the scatter plot might reveal marginal correlations.

Figure 1.2 – Hand Written Digits

A classical problem from pattern recognition. How do we classify an image of a handwritten
number as 0 - 9?

This is the mail sorting problem based on zip codes.

It’s not so easy – is

the fourth 5

a nine or a five?

Figure 1.3 – Microarray Measurements

A problem of current importance. How does the many genes of our cells behave?
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We can measure the activity of thousands of genes simultaneously – the gene expression
levels – and want to know about the relation of gene expression patterns to “status of the
cell” (healthy, sick, cancer, what type of cancer ...)

Classification

The objective in a classification problem is to be able to classify an object into a finite
number of distinct groups based on observed quantities.

With hand written digits we have 10 groups and an 16x16 pixel gray tone image (a vector
in R256).

With microarrays a typical scenario is that we have 2 groups (cancer type A and cancer
type B) and a 10-30 thousand dimensional vector of gene expressions.

Setup – and One Simple Idea

We have observations (x1, y1), . . . , (xN , yN ) with xi ∈ Rp and yi ∈ {0, 1}. We assume that
the data arose as independent and identically distributed samples of a pair (X,Y ) of random
variables.

Assume X = x0 ∈ Rp what is Y ? Let

Nk(x0) = {i | xi is one of the k’th nearest observations}.

Define

p̂(x0) =
1

k

∑
i∈Nk(x0)

yi ∈ [0, 1]

and classify using majority rules

ŷ = f̂(x) =

{
1 if p̂(x0) ≥ 1/2
0 if p̂(x0) < 1/2

In generality we study problems where xi ∈ E and yi ∈ F and where we want to understand
the relation between the two variables. When F = R we mostly talk about regression and
when F is discrete we talk about classification.

Sometimes the assumption of independence can be relaxed without harming the methods
used too seriously, and in other cases – in designed experiments – we can hardly think of
the xi’s as random, in which case we will regard only the yi’s as (conditionally) independent
given the xi’s.

Figure 2.2 – 15-Nearest Neighbor Classifier

A wiggly separation barrier between x0’s classified as zero’s and one’s is characteristic of
nearest neighbors. With k = 15 we get a partition of the space into just two connected
“classification components”.
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Figure 2.3 – 1-Nearest Neighbor Classifier

With k = 1 every observed point has its own “neighborhood of classification”. The result is
a large(r) number of connected classification components.

Linear Classifiers

A classifier is called linear if there is an affine function

x 7→ xTβ + β0

with the classifier at x0

f(x) =

{
1 if xTβ + β0 ≥ 0
0 if xTβ + β0 < 0

There are several examples of important linear classifiers. We encounter

• Linear discriminant analysis (LDA).

• Logistic regression.

• Support vector machines.

Tree based methods is a fourth method that relies on locally linear classifiers.

For K = 2 groups the linear classifier can be seen as a classifier where the two connected
classification components are half spaces in Rp.
With K > 2 groups a linear classifier is a classifier where the sets {x | f(x) = k} = f−1(k)
for k = 1, . . . ,K can be written as the intersection of half spaces. That is, there are
(β1, β0,1), . . . , (βr, β0,r) and corresponding half spaces B1, . . . , Br with Bi = {x | xTβi +
β0,i ≥ 0} such that

f−1(k) =
⋂
i∈Ik

Bi.

Regression

If the y variable is continuous we usually talk about regression. You should all know the
linear regression model

Y = XTβ + β0 + ε

where ε and X are independent, E(ε) = 0 and V (ε) = σ2.

A predictor of Y given x is then a function f : Rp → R. In the linear regression model above

f(x) = E(Y |X = x) = xTβ + β0

is a natural choice of linear predictor.
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Probability Models

Let (X,Y ) be a random variable with values in Rp × E and decompose its distribution P
into the conditional distribution Px of Y given X = x and the marginal distribution P1 of
X. This means

Pr(X ∈ A, Y ∈ B) =

∫
A

Px(B)P1(dx).

If the joint distribution has density g(x, y) w.r.t. ν⊗µ the marginal distribution has density

g1(x) =

∫
g(x, y)µ(dy)

w.r.t. ν, the conditional distribution has density

g(y|x) =
g(x, y)

g1(x)
,

w.r.t. µ and we have Bayes formula g(x, y) = g(y|x)g1(x).

First note that if E is finite with µ the counting measure the conditional densities are just
conditional point probabilities. Otherwise, E will generally be a subset of R and µ is then
the Lebesgue measure.

Formally, the conditional distributions Px, x ∈ Rp, need to form a Markov kernel. On a nice
space like Rp it is always possible to find such a Markov kernel – though the proof of this is
in general non-constructive. Thus there is always a conditional distribution. In the case of
densities the existence is direct and completely constructive as shown above, and for most
practical purposes this is what matters.

Prediction error and the Bayes classifier

If F = {1, . . . ,K} is finite and f : Rp → E is any classifier we define the expected prediction
error as

EPE(f) = P (f(X) 6= Y ) = 1− E(PX(f(X)))

as the proportion of misclassifications or misclassification rate.

The Bayes classifier is the classifier that minimizes the expected prediction error and is
given by

fB(x) = argmaxkPx(k) = argmaxkP (Y = k | X = x)

The Bayes rate
EPE(fB) = 1− E(max

k
PX(k))

is the expected prediction error for the Bayes classifier.

Figure 2.5 – The Bayes Classifier

The example data used for nearest neighbor are simulated and the Bayes classifier can be
calculated exactly.

It can be computed using Bayes formula for k = 0, 1

Pr(Y = k|X = x) =
πkgk(x)

π0g0(x) + π1g1(x)
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and the argmax is found to be

g(x) = argmaxk=0,1πkgk(x).

In the example g0 and g1 are mixtures of 10 Gaussian distributions.

Lecture exercise 1

Let Y ∈ {0, 1} with P (Y = 0) = 0.5 and

X|(Y = k) ∼ N(3k, 1).

Consider classifiers of the form ft(x) = 1(x ≥ t) for t ∈ R.

1. Write an R program that simulates a data set under the model described above with
N = 100 independent observations (xi, yi). Compute and plot the empirical expected
prediction error

t→ 1

N

∑
i=1

1(ft(xi) 6= yi)

as a function of t.

2. Find and plot the theoretical expected prediction error

t→ EPE(ft)

and find the Bayes classifier and Bayes rate.

Lecture exercise 2

With the same setup as above:

1. How to estimate the Bayes classifier from the data set?

2. Show that

P (Y = 1 | X = x) =
eα+βx

1 + eα+βx

for some parameters α, β ∈ R, and show how this can be used to estimate the Bayes
classifier.

3. What happens if
X|(Y = k) ∼ N(3k, 1 + 24k).

Statistical Decision Theory

Question: How do we make optimal decisions of action/prediction under uncertainty?

We need to

• decide how we measure the quality of the decision – loss functions,

• decide how we model the uncertainty – probability measures,

• decide how we weigh together the losses.
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Loss Functions

A loss function in the framework of ordinary regression analysis is a function L : R× R →
[0,∞).

A predictor is a function f : Rp → R. If (x, y) ∈ Rp × R the quality of predicting y as f(x)
is measured by the loss

L(y, f(x)).

Large values are bad! Examples where L(y, ŷ) = V (y − ŷ):

• The squared error loss; V (t) = t2.

• The absolute value loss; V (t) = |t|.

• Huber for c > 0; V (t) = t21(|t| ≤ c) + (2c|t| − c2)1(|t| > c).

• The ε-insensitive loss; V (t) = (|t| − ε)1(|t| > ε).

A more general setup is sometimes needed. We let E and F denote two sets (with suitable
measurable structure) and we let A denote an “action space” (also with suitable measurable
structure). A loss function is a function L : F × A → [0,∞). A decision rule is a map
f : E → A. The loss of making the decision f(x) for the pair (x, y) ∈ E × F is L(y, f(x)).
If X is a random variable with values in E the (conditional) risk, or expected loss, is

R(f, y) = E(L(y, f(X)) | Y = y).

The (unconditional) risk is
R(f) = E(L(Y, f(X))).

and with these definitions we have that R(f) = E(R(f, Y )). But be careful with the nota-
tion. It is tempting to write E(L(y, f(X))) for R(f, y) instead of the explicit conditioning in
Y = y, but this is at best ambiguous, and, in reality, it is the expectation using the marginal
distribution of X.

Weighing the Loss

If L is a loss function, (X,Y ) a random variable and f : Rp → R a predictor then L(Y, f(X))
has a probability distribution on [0,∞).

The typical single number summary is the expected prediction error:

EPE(f) = E(L(Y, f(X))).

Take Home Message: The theory depends upon choices of e.g. loss function, which often
represent mathematically convenient surrogates.

Optimality is not an unconditional quality – a predictor can only be optimal given the choice
of loss function, probability model and how the losses are weighed together.
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Optimal Prediction

We find that

EPE(f) =

∫
L(y, f(x))P (dx, dy)

=

∫ ∫
L(y, f(x))Px(dy)︸ ︷︷ ︸
E(L(Y,f(x))|X=x)

P1(dx).

This quantity is minimized by minimizing the expected loss conditionally on X = x,

f(x) = argmin
ŷ

E(L(Y, ŷ)|X = x).

• Squared error loss; L(y, ŷ) = (y − ŷ)2

f(x) = E(Y |X = x)

• Absolute value loss; L(y, ŷ) = |y − ŷ|

f(x) = median(Y |X = x)

We recall that for a real valued random variable with finite second moment

E(Y − c)2 = E(Y − E(Y ))2 + (E(Y )− c)2 = V (Y ) + (E(Y )− c)2 ≥ V (Y )

with equality if and only if c = E(Y ). This gives the result on the optimal predictor for the
squared error loss.

If Y is a random variable with finite first moment and distribution function F we have that

E|Y − c| =
∫ c

−∞
F (t)dt+

∫ ∞
c

1− F (t)dt

This follows from the general formula that since |Y − c| is a positive random variable then
E|Y − c| =

∫∞
0
P (|Y − c| > t)dt. If it happens that F (c + ε) < 1 − F (c + ε) for an ε > 0

we can decrease both integrals by changing c to c+ ε. Likewise, if F (c− ε) > 1− F (c− ε)
we can decrease both integrals by changing c to c − ε. An optimal choice of c therefore
satisfies F (c+) = F (c) ≥ 1− F (c+) = 1− F (c) and F (c−) ≤ 1− F (c−), or in other words
F (c−) ≤ 1/2 ≤ F (c). By definition this holds only if c is a median.

0-1 loss and the Bayes classifier

The 0-1 loss function is L(k, l) = 1(k 6= l) is very popular with

E(L(Y, f(x))|X = x) = 1− Px(f(x)).

The optimal classifier with the 0-1 loss is the Bayes classifier already introduced and given
by

fB(x) = argmaxkPx(k)
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When we require that f can only take one of the K different values we can regard f to
be a hard classifier. If we in the general formulation of statistical decision theory take
the action space A to be the set of probability vectors on {1, . . . ,K} we allow for predic-
tors/classifiers/decisions f : Rp → A to be probability vectors. These could be called soft
classifiers as they do not pinpoint a single value but provide a distribution on the possible
values. A natural loss function is the minus-log-likelihood

L(y, p) = − log p(y).

With this loss function the conditional expected prediction error is

E(L(Y, f(x))|X = x) = −
K∑
i=1

log f(x)(i)Px(i)

remembering that f(x) = (f(x)(1), . . . , f(x)(K))T is a probability vector. This quantity
is the cross entropy between the probability vector Px and f(x), and it is minimized for
f(x) = Px. From any soft classifier we can get a natural hard classifier by taking fhard(x) =
argmaxif(x)(i). If f(x) = Px then fhard = fB is the Bayes classifier again.

Linear Regression

For (X,Y ) a pair of random variables with values in Rp × R we assume that

E(Y |X) = β0 +

p∑
j=1

Xjβj = (1, XT )β

with β ∈ Rp+1.

This “model” of the conditional expectation is linear in the parameters.

The predictor function for a given β is

fβ(x) = (1, xT )β.

A more practical and relaxed attitude towards linear regression is to say that

E(Y |X) ' β0 +

p∑
j=1

Xjβj = (1, XT )β

where the precision of the approximation of the conditional mean by a linear function is
swept under the carpet. All mathematical derivations rely on assuming that the conditional
mean is exactly linear, but in reality we will almost always regard linear regression as an
approximation. Linearity is for differentiable functions a good local approximation and it
may extend reasonably to the convex hull of the xi’s. But we must make an attempt to
check that by some sort of model control. Having done so, interpolation – prediction for
a new x in the convex hull of the observed xi’s – is usually OK, whereas extrapolation is
always dangerous. Extrapolation is strongly model dependent and we do not have data to
justify that the model is adequate for extrapolation.

9



Least Squares

With X the N × (p+ 1) data matrix, including the column 1, the predicted values for given
β are Xβ.

The residual sum of squares is

RSS(β) =

N∑
i=1

(yi − (1, xTi )β)2 = ||y −Xβ||2.

The least squares estimate of β is

β̂ = argmin
β

RSS(β).

Figure 3.1 – Geometry

The linear regression seeks a p-dimensional, affine representation – a hyperplane – of the
p+ 1-dimensional variable (X,Y ).

The direction of the Y -variable plays a distinctive role – the error of the approximating
hyperplane is measured parallel to this axis.

The Solution – the Calculus Way

Since RSS(β) = (y −Xβ)T (y −Xβ)

DβRSS(β) = −2(y −Xβ)TX

The derivative is a 1 × p dimensional matrix – a row vector. The gradient is ∇βRSS(β) =
DβRSS(β)T .

D2
βRSS(β) = 2XTX.

If X has rank p+1, D2
βRSS(β) is (globally) positive definite and there is a unique minimizer

found by solving DβRSS(β) = 0. The solution is

β̂ = (XTX)−1XTy.

For the differentiation it may be useful to think of RSS as a composition of the function
a(β) = (y − Xβ) from Rp to RN with derivative Dβa(β) = −X and then the function
b(z) = ||z||2 = zT z from RN to R with derivative Dzb(z) = 2zT . Then by the chain rule

DβRSS(β) = Dzb(a(β)))Dβa(β) = −2(y −Xβ)TX

An alternative way to solve the optimization problem is by geometry – in the spirit of Figure
3.2.
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With V = {Xβ | β ∈ Rp} the column space of X the quantity

RSS(β) = ||y −Xβ||2

is minimized whenever Xβ is the orthogonal projection of y onto V . The column space
projection equals

P = X(XTX)−1XT

whenever X has full rank p+ 1. In this case Xβ = Py has the unique solution

β̂ = (XTX)−1XTy.

One verifies that P is, in fact, the projection by verifying three characterizing properties:

PV = V

P 2 = X(XTX)−1XTX(XTX)−1XT = X(XTX)−1XT = P

PT = (X(XTX)−1XT )T = X(XTX)−1XT = P

If X does not have full rank p the projection is still well defined and can be written as

P = X(XTX)−XT

where (XTX)− denotes a generalized inverse. A generalized inverse of a matrix A is a matrix
A− with the property that

AA−A = A

and using this property one easily verifies the same three conditions for the projection. In
this case, however, there is not a unique solution to Xβ = Py.

Distributional Results – Conditionally on X

εi = Yi − (1, Xi)
Tβ

Assumption 1: ε1, . . . , εN are, conditionally on X1, . . . , XN , uncorrelated with mean value
0 and same variance σ2.

σ̂2 =
1

N − p− 1

N∑
i=1

(Yi −Xβ̂)2 =
1

N − p− 1
||Y −Xβ̂||2 =

RSS(β̂)

N − p− 1

Then V (Y|X) = σ2IN

E(β̂|X) = (XTX)−1XTXβ = β

V (β̂|X) = (XTX)−1XTσ2INX(XTX)−1 = σ2(XTX)−1

E(σ̂2|X) = σ2

The expectation of σ̂2 can be computed by noting that E(Yi−Xβ̂) = 0, hence E(RSS(β̂)) is

the sum of the variances of Yi−Xβ̂. Since Y has variance matrix σ2IN the variance matrix
of

Y −Xβ̂ = Y − PY = (I − P )Y

is σ2(I − P )(I − P )T = σ2(I − P ) where we have used that I − P is a projection. The sum
of the diagonal elements equals the dimension of the subspace that I − P is a projection
onto, which is N − p− 1.
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Distributional Results – Conditionally on X

Assumption 2: ε1, . . . , εN conditionally on X1, . . . , XN are i.i.d. N(0, σ2).

β̂ ∼ N(β, σ2(XTX)−1)

(N − p− 1)σ̂2 ∼ σ2χ2
N−p−1.

The standardized Z-score

Zj =
β̂j − βj

σ̂
√

(XTX)−1jj

∼ tN−p−1.

Or more generally for any a ∈ Rp+1

aT β̂ − aTβ
σ̂
√
aT (XTX)−1a

∼ tN−p−1.

Gauss-Markov’s Theorem

Consider linear estimators only
β̃ = CTY

for some N × p matrix C requiring that β = CTXβ for all β.

Theorem 1. Under Assumption 1 the least squares estimator of β has minimal variance
among all linear, unbiased estimators of β.

This means that for any a ∈ Rp, aT β̂ has minimal variance among all estimators of aTβ of
the form aT β̃ where β̃ is a linear, unbiased estimator.

To show this, note that CTX = Ip+1 = XTC. Under Assumption 1

V (β̃|X) = σ2CTC,

and we have

V (β̂ − β̃|X) = V (((XTX)−1XT − CT )Y |X)

= σ2((XTX)−1XT − CT )((XTX)−1XT − CT )T

= σ2(CTC − (XTX)−1)

The matrix CTC − (XTX)−1 is positive semidefinite, i.e. for any a ∈ Rp+1

aT (XTX)−1a ≤ aTCTCa
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Biased Estimators

The mean squared error is
MSEβ(β̃) = Eβ(||β̃ − β||2).

By Gauss-Markov’s Theorem β̂ is optimal for all β among the linear, unbiased estimators.

Allowing for biased – possibly linear – estimators we can achieve improvements of the MSE
for some β – perhaps at the expense of some other β.

The Stein estimator is a non-linear, biased estimator, which under Assumption 2 has uni-
formly smaller MSE than β̂ whenever p ≥ 3.

You can find more information on the Stein estimator, discovered by James Stein, in the
Wikipedia article. The result was not the expectation of the time. In the Gaussian case it
can be hard to imagine that there is an estimator that in terms of MSE performs uniformly
better than β̂. Digging into the result it turns out to be a consequence of the geometry in
Rp in dimensions greater than 3. In terms of MSE the estimator β̂ is inadmissible.

The consequences that people have drawn of the result has somewhat divided the statisti-
cians. Some has seen it as the ultimate argument for the non-sense estimators we can get
as optimal or at least admissible estimators. If β̂ – the MLE in the Gaussian setup – is not
admissible there is something wrong with the concept of admissibility. Another reaction is
that the Stein estimator illustrates that MLE (and perhaps unbiasedness) is problematic
for small sample sizes. To get better performing estimators we should consider biased es-
timators. However, there are some rather arbitrary choices in the formulation of the Stein
estimator, which makes it hard to accept it as an estimator we would use in practice.

We will in the course consider a number of biased estimators. However, the reason is not so
much due to the Stein result. The reason is much more a consequence of a favorable bias-
variance tradeoff when p is large compared to N , which can improve prediction accuracy.

Best Subset

For each k ∈ {0, . . . , p} there are (
p

k

)
different models with k predictors excluding the intercept, and p− k parameters = 0.

There are in total
p∑
k=0

(
p

k

)
= 2p

different models. For the prostate dataset with 28 = 256 possible models we can go through
all models in a split second. With 240 = 1.099.511.627.776 we approach the boundary.

Subset Selection – A Constrained Optimization Problem

Let Lkr for r = 1, . . . ,
(
p
k

)
denote all k-dimensional subspaces of the form

Lkr = {β | p− k coordinates in β = 0}.
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β̂k = argmin
β∈∪rLk

r

RSS(β)

The set ∪rLkr is not convex – local optimality does not imply global optimality.

We can essentially only solve this problem by solving all the
(
p
k

)
subproblems, which are

convex optimization problems.

Conclusion: Subset selection scales computationally badly with the dimension p. Branch-
and-bound algorithms can help a little ...

Figure 3.5 – Best Subset Selection

The residual sum of squares RSS(β̂k) is a monotonely decreasing function in k.

The selected models are in general not nested.

One can not use RSS(β̂k) to select the appropriate subset size only the best model of subset
size k for each k.

Model selection criterias such as AIC and Cross-Validation can be used – these are major
topics later in the course.

Test Based Selection

Set
β̂k,r = argmin

β∈Lk
r

RSS(β)

and fix Lls ⊆ Lkr with l < k.

F =
(N − k)[RSS(β̂l,s)− RSS(β̂k,r)]

(k − l)RSS(β̂k,r)

follows under Assumption 2 an F-distribution with (k−l, N−k) degrees of freedom if β ∈ Lls.

Lkr is preferred over Lls if Pr(. > F ) ≤ 0.05, say – the deviation from Lls is unlikely to be
explained by randomness alone.

Take home message: Test statistics are useful for quantifying if a simple model is inadequate
compared to a complex model, but not for general model searching and selection strategies.

Some of the problems with using test based criteria for model selection are that:

• Non-nested models are in-comparable.

• We only control the type I error for two a priori specified, nested models.

• We do not understand the distributions of multiple a priori non-nested test statistics.
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The control of the type I error for a single test depends on the level α chosen. Using α = 0.05
a rejection of the simple model does not in itself provide overwhelming evidence that the
simple model is inadequate. However, we typically compute a p-value, which we regard as
a quantification of how inadequate the simple model is. In reality, many tests are rejected
with p-values that are very small, and much smaller than the 0.05, in which case we can
say that there is clear evidence against the simple model. If the p-value is close to 0.05, we
must draw our conclusions with greater caution.

Formal statistical tests belong most naturally in the world of confirmatory statistical analysis
where we want to confirm, or document, a specific hypothesis given upfront – for instance
the effect or superiority of a given drug – when compared to a (simpler) null hypothesis.
The theory of hypothesis testing is not developed for model selection.
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