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Introduction.

In recent years geometric considerations and geometry have been used in many con-
texts within statistics.

Statistical models admitting parameterizations fulfilling certain geometric constrains
have been studied to some extend, see for instance Amari (1985) and Barndorff-
Nielsen and Bl@esild (1993), and especially in context to exponential families these
models have great importance.

It might therefore be of interest to study generalizations from a geometric point of
view both of exponential families and of subfamilies of exponential families. This is
done in for example Barndorff-Nielsen and Bl@esild (1993).

The purpose of this article is to discuss such generalizations and especially to discuss
a geometric counterpart to exponential families. This geometric counterpart includes
many statistical models of interest.

The paper is divided into two parts. The first part is a discussion of a geometric
generalization of the well known duality between the mean value parameter and the
canonical parameter of an exponential family. A similar discussion can be found in
Amari (1985). However the discussion here is extended to cover manifolds from a
global point of view in contrast to Amari (1985), where only local properties are
considered.

Moreover it is shown that the duality property can be formulated in three different
ways: existence of a special pair of parameters, a special yoke, or a pair dual torsion-
free flat connections.
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The last part extend and discuss a concept called ’orthogeodesic model’ introduced by
Barndorff-Nielsen and Bl@esild (1993). The extended concept is called ’β-orthogeo-
desic’ and its relation to the above mentioned generalization of exponential families
is elucidated through a structure theorem for β-orthogeodesic models.

Moreover an incorrect proposition in Barndorff-Nielsen and Bl@esild (1993) postu-
lating the equivalence of two different definitions of the othogeodesic property is
corrected and a simple counterexample to the incorrect proposition is given.

Preliminaries.

Only little differential geometrical background and notation will be given here. Spe-
cial notation in context to dual spaces will be introduced and explained when nec-
essary. For a more detailed discussion see for instance Amari (1985) and Lauritzen
(1987).

A Riemannian manifold is a couple (M, i), where M is a differential manifold and
i a positive definite (0,2)-tensor. A statistical manifold is a triple (M, i, T ), where
(M, i) is a Riemannian manifold and T a symmetric (0,3)-tensor on M.

Let {Ωε}ε∈E be an atlas of M, and let ωε be a point in Ωε. Generic components of
ωε = (ω1

ε , ..., ω
d
ε) will be denoted by r, s, t etc, and the coordinate frame ∂/∂ωrε will

be denoted ∂r. We consider ωε as a function from ω−1
ε (Ωε) ⊆ M into Ωε ⊆ Rd, i.e.

ωε : ω−1
ε (Ωε) ⊆ M → Ωε ⊆ Rd, d denoting the dimension of M.

If (M, i, T ) is a statistical manifold, then for all α ∈ R a torsion-free connection
α

∇
on M is given by the Christoffel symbols

α

Γrst=
0

Γrst −
α

2
Trst. (1)

Here
0

Γrst denotes the Christoffel symbols in the Riemannian connection
0

∇ on M.

The family of connections
α

∇ for α ∈ R is called the α-connections. We say that the
family of α-connections is derived from T , and the geometry on M specified by i and
α

∇ will be called the α-geometry derived from T .

The curvature tensor
α

R of the connection
α

∇ may be expressed in terms of the Christof-

fel symbols of
α

∇ as

α

Rrstu= {∂r
α

Γvst −∂s
α

Γvrt}ivu+
α

Γrwu
α

Γwst −
α

Γswu
α

Γwrt . (2)
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The connection
α

∇ is said to be α-flat if
α

R= 0 and this is the case if and only if there

exists coordinates such that
α

Γrst expressed in these coordinates vanish.

Moreover we note that a yoke γ : M × M → R on M (see Bl@esild (1991) for a

definition) given in local coordinates γ(ωε; ω̂ε) defines a family of connections {
α

Γ}α∈R
by

1

Γrst= ∂r∂s∂̂tγ(ωε;ωε),
−1

Γ rst= ∂t∂̂r∂̂sγ(ωε;ωε) and Trst =
1

Γrst −
−1

Γ rst (3)

and (1). Here ∂̂r means differentiation w.r.t. ω̂ε.

Dual systems and geometry.

Let (M, i) denote a Riemannian manifold and let (M, i, T ) denote a statistical man-
ifold.

Amari (1985) discusses Riemannian manifolds, where two special coordinate systems
exist globally such that the condition (5) in the below definition is fulfilled. Here we
extend the discussion to cover the general case, where more than one chart is neces-
sary to cover M, and in such a way that M becomes a ±1-flat statistical manifold.

Definition 1: (M, i) is said to be a dual space if there exist two atlas {Θε}ε∈E and
{Hε}ε∈E such that

θ−1
ε (Θε) = (ηε)−1(Hε) for all ε ∈ E, (4)

< ∂ρ, ∂
σ >= δσρ (5)

for all θε(p) ∈ Θε and ηε(p) ∈ Hε, and such that

θρε1(p) = Kρ
σ(ε1, ε2)θ

σ
ε2(p) +Kρ(ε1, ε2) (6)

and
ηε1ρ (p) = Lσρ(ε1, ε2)η

ε2
σ (p) +Kρ(ε1, ε2)

for p ∈ U ⊆ θ−1
ε1

(Θε1)∩θ−1
ε2

(Θε2), U open and connected, and some matrices Kρ
σ(ε1, ε2)

and Lσρ (ε1, ε2) and vectors Kρ(ε1, ε2) and Kρ(ε1, ε2). 2
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In definition 1 ρ, σ, τ etc denotes generic components of θ and η. They will however
occur as upper indices on θ and lower indices on η. ∂ρ means differentiation w.r.t.
θρε and ∂ρ means differentiation w.r.t. ηερ, i.e. ∂ρ = ∂/∂θρε and ∂ρ = ∂/∂ηερ are the
coordinate frames expressed in θρε and ηερ-coordinates. There will be no ε in general
on ∂ρ and ∂ρ since it causes no confuse.

< ·, · > is the inner product product given by i.

Condition (4) says that Θε and Hε parameterize the same subset of M for any
ε ∈ E. Condition (5) says that the coordinate frames corresponding to θε and ηε

are i-orthogonal to each other, and finally condition (6) says that if some subset of
M is parameterized by more than one chart, then the parameters will be affinely
dependent in both θ and η.

The last condition (6) turns out to be important. We can think of (6) as a homo-
geneity condition on the parameters θ and η.

An atlas {Ωε}ε∈E of a manifold M fulfilling condition (6) will be called an affine
atlas, since all coordinate transformations ω−1

ε1 ◦ωε2 are affine functions from an open
subset of Rd into Rd.

The definition is exemplified below.

Note from (5) that if (6) is fulfilled for the θ-coordinate then its fulfilled for the
η-coordinate as well. From (6) we have

∂ρε2 = Kρ
σ(ε1, ε2)∂

σ
ε1 ,

and hence from (5)

δσρ =< ∂ε2ρ , ∂
σ
ε2 >=< Kρ

τ (ε1, ε2)∂
ε1
τ , η

ε1/υ
σ ∂υε1 >= Kρ

τ (ε1, ε2)η
ε1/τ
σ .

It means η
ε1/τ
σ must be constant and the proof is completed.

Again we will drop the ε-index when there is no ambiguity involved, and we say that
(θε, η

ε)ε∈E or just (θ, η) is a dual system on (M, i).

Note that if (θ, η) is a dual system then so is (η, θ).

The term dual can be explained in either of two ways: If we take ∂ρ as the coordinate
frame of the tangent bundle TM of M then it is seen from (5) that < ∂σ, · > is the
canonical frame in the dual bundle TM∗ to TM, and hence the duality is explained
through the connection to dual vector spaces.
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The other explanation will become apparent later but let us reveal that on each dual
space there exists a pair of flat dual connections, see e.g. Lauritzen (1983) for detailed
discussion of dual connections.

Corollary 1: If (M, 〉) is a dual space then the constants depending on ε in condition
(6) are related in the following way:

Kρ
σ(ε1, ε2)L

τ
ρ(ε1, ε2) = δτσ and Kσ

ρ (ε2, ε1) = Lσρ(ε1, ε2).

Moreover
Kρ
σ(ε1, ε2)K

σ(ε2, ε1) +Kρ(ε1, ε2) = 0,

and
Lσρ(ε1, ε2)Lσ(ε2, ε1) + Lρ(ε1, ε2) = 0.

Proof: The first statement follows from (5) since θρε1/σ = Kρ
σ(ε1, ε2) and η

ε1/σ
ρ =

Lσρ(ε1, ε2). The other statements follows from θε2(θε1(θε2)) = θε2 and ηε2(ηε1(ηε2)) =
ηε2 and (5). 2

Example 1: Let M be S1 = { (cos ξ, sin ξ) | ξ ∈ [0, 2π] }, the unit circle in R2, and
let i be the Euclidean metric induced from R2. The following charts define an atlas
of S1:

ξ1 : { (cos ξ1, sin ξ1) | ξ1 ∈]0, 2π[ } →]0, 2π[, ξ1(cos ξ1, sin ξ1) = ξ1,

ξ2 : { (cos ξ2, sin ξ2) | ξ2 ∈] − π, π[ } →] − π, π[, ξ2(cos ξ2, sin ξ2) = ξ2,

It is easily seen that (ξi, ξi)i∈{1,2} fulfills (4)-(6) and hence is a dual system on S1.

The family of von-Mises distributions equipped with the Fisher information metric
and fixed dispersion parameter κ is diffeomorfic to S1 and our example then shows
us that we can not in general restrict considerations to models covered by a single
chart. 2

Example 2: Let (M, 〉) be a 1-dimensional Riemannian manifold parametrized by
an open interval I of R such that i(t) = 1 for all t ∈ I (which is always possible). Let
θ = θ(t) be a diffeomorfism of I onto θ(I) and let η = η(t) be given by

dη

dt
(t) =

dt

dθ
(θ(t)). (7)
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Since θ = θ(t) is a diffeomorfism then dt
dθ

6= 0 and (7) defines a diffeomorfism from I
onto η(I). Note that ∂θ = dt

dθ
∂t and ∂η = dθ

dt
∂t and hence

< ∂θ, ∂η >=<
dt

dθ
∂t,

dθ

dt
∂t >= 1.

Condition (6) is trivially fulfilled since M is covered by a single chart. This means
that (θ, η) is a dual system on (M, 〉) and especially (t, t) is a dual system (put θ = t).

2

Example 3: Let (M, 〉) an exponential family equipped with the Fisher information
metric and with open canonical parameter space Θ. Put H = η(Θ), η being the mean
value map. Then (θ, η), θ ∈ Θ and η ∈ H, is a dual system on (M, 〉). It follows
from

< ∂ρ, ∂
σ >=< ∂ρ, θ

τ/σ∂τ >= δσρ ,

since < ∂ρ, ∂σ >= iρσ and θτ/σ = iτσ. Again condition (6) is trivially fulfilled since
M is covered by a single chart. 2

The theorem stated below is from Amari (1985), and it is essential in the study of
dual spaces.

Theorem 1: (Amari (1985) p.80) Let θ = (θρ)ρ and η = (ηρ)ρ be two parametri-
zations of an open subset of (M, i). Then

< ∂ρ, ∂
σ >= δρσ (8)

if and only if there exist functions κ of θ and λ of η such that

θρ = ∂ρλ(η) = λ/ρ(η) ηρ = ∂ρκ(θ) = κ/ρ(θ) (9)

iρσ = ∂ρ∂σκ(θ) = ηρ/σ iρσ = ∂ρ∂σλ(η) = θρ/σ (10)

κ(θ) + λ(η) − θρηρ = 0. (11)

If (8) is fulfilled then κ and λ are uniquely given modulo the same constant, i.e.

κ̃(θ) = κ(θ) + k and λ̃(η) = λ(η) − k
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since differentiating (23) w.r.t. θρ must give ηρ, and (11) then gives us λ̃. Moreover

λ is the Legendre transform of κ, and κ the Legendre transform of λ, i.e. λ =
∨
κ and

κ =
∨
λ.

It is however sufficient that iρσ = ∂ρ∂σκ(θ) for some function κ in order to have (8),
and in that case all functions κ̃ fulfilling iρσ = ∂ρ∂σκ̃(θ) are given by

κ̃(θ) = κ(θ) + kρθ
ρ + k (12)

for some constant vector kρ and constant scalar k. All choices of η are then determined
uniquely modulo a translation as seen from (9) and (12). 2

Corollary 2: If (θε, η
ε), ε ∈ E is a dual system on (M, i) then there exists functions

κε and λε such that (9)-(11) are satisfied for all ε ∈ E, and such that with the notation
i definition 1 one has

κε1(θε1) = κε2(θε2) +Kρ(ε1, ε2)θ
ρ
ε1

(13)

and

λε1(η
ε1) = λε2(η

ε2) +Kρ(ε1, ε2)η
ε1
ρ −Kρ(ε1, ε2)Kρ(ε1, ε2) (14)

modulo a constant for all ε1, ε2 ∈ E whenever (θε1, η
ε1) and (θε2, η

ε2) parametrize the
same open connected subset of M. The constant will have different sign for κε and
λε but the same absolute value.

Proof: Assume (θε, η
ε) is a dual system on (M, i). Since (5) per definition is satisfied,

then according to theorem 1 there exists functions κε and λε such that (9)-(11) are
satisfied for all ε ∈ E. Differentiating the right hand side of (13) once w.r.t θρε1 results
in

Lσρ (ε1, ε2)η
ε2
σ (θε2) +Kρ(ε1, ε2) = Lσρ(ε1, ε2)η

ε2
σ +Kρ(ε1, ε2) = ηε1

and differentiating twice w.r.t. θρε1 and θσε1 results in

Lτρ(ε1, ε2)L
υ
σ(ε1, ε2)iτυ(θε2) = iρσ(θε1)

where we have used (9), (10) and θσε2/ρ = Lσρ(ε1, ε2) ((6) and corollary 1). Similarly

for the right hand side of (14), i.e. the right hand sides define functions fulfilling (9)
and (10). Note that (using (6))

κε2(θε2) +Kρ(ε1, ε2)θ
ρ
ε1

+

λε2(η
ε2) +Kρ(ε1, ε2)η

ε1
ρ −Kρ(ε1, ε2)Kρ(ε1, ε2) − θρε1η

ε1
ρ = 0,
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which means that (11) is fulfilled too. According to theorem 1 κε1 and λε1 are uniquely
determined modulo a constant and the proof is completed. 2

Proposition 1: Assume (M, i) is a dual space with dual system (θε, η
ε), ε ∈ E. The

function γ defined on an open subset of M×M containing the diagonal {(p, p)|p ∈
M} into R given in local coordinates θε by

γ(θε; θ̂ε) = θρεη
ε
ρ(θ̂ε) − κε(θε) − λε(η

ε(θ̂ε)) (15)

= θρε η̂
ε
ρ − κε(θε) − λε(η̂

ε)

= (θρε − θ̂ρε)η̂
ε
ρ − κε(θε) + κε(θ̂ε)

fulfills

(a) γ(θε; θ̂ε) ≤ 0 and equality if and only if θε = θ̂ε

(b) ∂ργ(θε; θε) = ∂̃ργ(θε; θε) = 0

(c) ∂σ∂ργ(θε; θε) = −iρσ(θε) ,

where ∂̂ρ means differentiation w.r.t. θ̂ρε . Especially γ is a normed yoke on its domain
in M×M.

Note that γ is globally defined on M×M only if for all points p, q ∈ M there exists
a chart θε such that p, q ∈ θ−1

ε (Θε).

Proof: We must first of all check that γ is welldefined. From (11) it follows that
the two different expressions defining γ are identical. Let θε1 and θε2 be two local
parametrizations of some open subset of M. From (6) we know the relation between
the dual coordinates, and from corollary 2 we know the relation between κ and λ
functions. Expressing γ(θε1; θ̂ε1) in terms of θε2 yields (using (6) and corollary 2, and
dropping the dependence of the constants on ε1 and ε2)

γ(θε1; θ̂ε1) = (Kρ
σθ

σ
ε2

+Kρ)(Lτρ η̂
ε2
τ +Kρ) − κε2(θε2) −Kρθ

ρ
ε1

−λε2(η̂ε2) −Kρη̂ε1ρ −KρKρ

= θρε2 η̂
ε2
ρ − κε2(θε2) − λε2(η̂

ε2)

= γ(θε2; θ̂ε2),

which means that γ is well-defined.

(a), (b), and (c) follows from Amari (1985) p.84.

Since (c) is valid especially on the diagonal θ = θ̂ it means together with (a) and (b),
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that γ is a normed yoke on its domain in M×M. 2

Quite general in statistical contexts a dual system of a dual space (M, 〉) consists of
single charts θ and η and hence γ is a yoke on M.

In the following we will call γ a normed yoke on M derived from the dual system
(θε, η

ε) (neglecting that γ in general only is defined on a subset of M×M).

We will hereafter drop the ε-index unless there can be doubt about the meaning. It
makes the notation simpler to read.

Corollary 3: Assume (M, 〉) is a dual space. The function γc (c for complementary)
defined on the domain of γ in M×M by

γc(θ; θ̂) = γ(θ̂; θ)

is the normed yoke derived from the dual system (η, θ).

Proof: From Bl@esild (1991) p.102 it follows that γc is a yoke, and the corollary is
now a consequence of theorem 1. 2

Assume (θ, η) is a dual system and let κ and λ be given such that (9)-(11) are fulfilled.
We know from the theorem 1, that all other versions of κ̃ and λ̃ are given by κ̃ = κ+k
and λ̃ = λ−k for some constant k . It means κ̃(θ)+ λ̃(η̂) = κ(θ)+λ(η̂), and therefore

Corollary 4: Assume (M, 〉) is a dual space. The normed yoke γ derived from (θ, η)
given in proposition 1 are uniquely determined from (θ, η) alone. 2

Example 4: Let M = (X,P) be an exponential family with open parameter space
and densities w.r.t. some measure µ on t(X) (t denoting the minimal canonical
statistic) given by

dPθ
dµ

(t) = exp{θρtρ − κ(θ)} t ∈ t(X).

Then the normed log-likelihood function restricted to t ∈ η(Θ), η denoting the mean
value map, is a version of the yoke γ derived from the dual system (θ, η) on (M, 〉)
where i is the Fisher information metric (see example 3). It follows from the fact
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that κ differentiated twice w.r.t. θ yields the Fisher information metric and theorem
1. 2

Assume (M, 〉) is a dual space. Let {
α

Γ}α∈R be the family of α-connections derived
from the yoke γ.

In order to use the Einstein’s summation convention we need to adopt a notation
a little unlike the usual notation: when the α-connection symbols are considered as

functions of θ they will be denoted
α

Γρστ and
α

Γρστ and when they are considered as

functions of η they will be denoted
α

Γστρ and
α

Γρστ . It is in line with the convention
that the metric expressed in η-coordinates is denoted iρσ. Furthermore, recall that
∂̂ρ means differentiation w.r.t. θ̂ρ and ∂̂ρ means differentiation w.r.t. η̂ρ.

Proposition 2: The 1-connection derived from γ is 1-flat and θ is a 1-flat parameter.
The -1-connection derived from γ is -1-flat and η is a -1-flat parameter.

Proof: Follows easily from (3) in ’Preliminaries’. 2

Definition 2: (M, i, T ) is called an α-space if the curvature tensor
α

R derived from
α

∇ satisfies
α

R= 0. From Lauritzen (1983) we know that an α-space is a −α-space too.
2

Remark 1: Assume (M, 〉) is a dual space. Put Dρστ = 2(
0

Γρστ −
1

Γρστ ), where
0

Γ

and
1

Γ are the Christoffel symbols of the connections
0

∇ and
1

∇ derived from the yoke
γ. Then (M, i, D) is an ±1-space (proposition 2). D will hereafter refer to the tensor

derived from γ, and
α

Γ to the α-connection derived from γ or equivalently from D. 2

Proposition 3: If (M, i, T ) is an α-space then one can choose an α-flat parameter
θ and a -α-flat parameter η such that (M, i) is a dual space with dual system (θ, η).

Proof: According Amari (1985) th.3.5 p.81 the proposition is true for small neigh-
borhoods around any p ∈ M, i.e. we need only check condition (6). Let θ and ω be
α-flat parameters parameterizing the same connected subset of M. Since θ and ω
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are both α-flat, it follows from the transformation law for connection symbols

α

Gρ
στ= {

α

Gt
rs θ

r
/ρθ

s
/σ + θt/ρσ}ωτ/t,

where
β

G, β ∈ R, refers to the β-connection derived from T , that

θt/ρσω
τ
/t = 0,

and hence it is seen that they are affinely connected. Similar for −α-flat parameters.
2

Proposition 4: Let (M, i, T ) be an α-space such that (M, 〉) is a dual space with

the dual system (θ, η) chosen in such a way that
α

Gρστ= 0 (see proposition 3), where
β

G refers to the β-connection derived from T . Then
0

G=
0

Γ,
α

G=
1

Γ and αT = D.

Proof:
0

G=
0

Γ since the 0-connection depend on i only. Since θ is α-flat one has
α

Gρστ= 0 and from proposition 2 one obtains that
1

Γρστ= 0, i.e.
α

G=
1

Γ. From
0

Γρστ

−1
2
Dρστ =

1

Γρστ=
α

Gρστ=
0

Gρστ −α
2
Tρστ it follows that αT = D. 2

Note that the derived geometry of a 0-space (M, 〉, T ) is particular simple since
0

Γ=
0

G,

D = αT = 0T = 0 and hence
β

Γ= 0 for all β ∈ R.

Collecting the results in proposition 3 and remark 1 we have the following character-
ization of dual spaces:

Proposition 5: If (M, i, T ) is an α-space then (M, i) is a dual space. If (M, i) is a
dual space then (M, i, D) is an 1-space. 2

Proposition 5 can be considered as a reformulation of a problem stated in Amari
(1985) p.1066: ‘If (M, 〉) is a Riemannian manifold is it then possible to associate a
tensor T such that (M, 〉, T ) is α-flat for some α, and if not what is the condition
imposed on i to guarantee this.‘ Proposition 5 tells us that this is possible if and only
if (M, 〉) is a dual space. The reformulation is poor in the sense that we do not have
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(at the moment at least) any effective way to control if (M, 〉) is dual.

Example 5: (example 2 continued) Put I =]0, 1[ and θ = θ(t) = t2. Then dt
dθ

= 1
2
√
θ

and dt
dθ

(θ(t)) = 1
2t

, and if we put η(t) = 1
2
log t = 1

4
log θ then (θ, η) is a dual system

on I. We can choose κθ(θ) to be

κ(θ) =

∫

η(θ)dθ =
1

4
θ log θ − 1

4
θ

and hence γθ given by

γθ(θ; θ̃) =
1

4
θ log θ̃ − 1

4
θ log θ +

1

4
θ − 1

4
θ̃

or in t-coordinate

γθ(t; t̃) =
1

2
t2 log t̃− 1

2
t2 log t +

1

4
t2 − 1

4
t̃2

is the yoke derived from the dual system (θ, η). Similarly we obtain the following
expression for the yoke γt derived from the dual system (t, t) (κt(t) = 1

2
t2)

γt(t; t̃) = tt̃− 1

2
t2 − 1

2
t̃2.

It is easy to see that γθ 6= γt and hence different dual systems might derive different
yokes. From ’Preliminaries’ we see that the ±1-connections derived from γθ are given
by

θ

1

Γttt= 1/t θ

−1

Γ ttt= −1/t

whereas all α-connections derived from γt expressed in t-coordinate are 0 since it is
so in the ±1- and 0-connections. This means that the family of connections derived
from different dual systems not in general are identical. 2

The above example leads to the following definition. We first note that an expression
like γ = γ̃ means that the two functions γ and γ̃ are identical on their common
domain in M×M, and not that they necessarily are defined on the same subset of
M×M.

Definition 3: Let (M, i) be a dual space with dual coordinates (θ, η). The yoke γ
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derived from (θ, η) is said to be D-invariant (D for dual) if the yoke γ̃ derived from
any other choice of dual coordinates (θ̃, η̃) is equal to γ, i.e. γ̃ = γ. 2

Proposition 6: Let (M, i) be a dual space with dual coordinates (θ, η). The yoke γ
derived from (θ, η) is D-invariant if and only if all other dual systems (θ̃, η̃) on (M, i)
is given by

θ̃α = Cα
ρ θ

ρ +Dα η̃α = Aραηρ +Bα (16)

and

Cα
ρA

ρ
β = δαβ .

where α, β etc are generic components of θ̃ and η̃.

Proof: Assume γ is D-invariant and let (θ̃, η̃) be an other dual system. Then

γ(θ; θ′) = γ(θ(θ̃); θ(θ̃′)) = γ̃(θ̃, θ̃′) = θ̃αη̃′α − κ̃(θ̃) − λ̃(η̃)

where κ̃ and λ̃ refer to functions fulfilling (9)-(11) in the dual system (θ̃, η̃). From

proposition 2 it follows that
1

Γαβγ= 0 and
1

Γρστ= 0 and hence θ̃ and θ are affinely
connected (consequence of the transformation law for connection symbols). Similarly
using the −1-connection one obtains that η̃ and η are affinely connected. Finally
since (θ̃, η̃) is a dual system then

δαβ =< ∂α, ∂β >= Cα
ρA

σ
β < ∂ρ, ∂σ >= Cα

ρA
ρ
β.

It proves the first implication. Oppositely, if θ̃ and η̃ are given by (16) then

κ̃(θ̃) = κ(Aα(θ̃
α −Dα)) + θ̃αBα

and
λ̃(η̃) = λ(Cα(η̃α −Bα)) + η̃αD

α − BαD
α

fulfill condition (9)-(11) as is seen by calculation and using the fact that κ(θ)+λ(η)−
θρηρ = 0. The yoke γ̃ derived from (θ̃, η̃) is then given by

γ̃(θ̃; θ̃′) = θ̃αη̃′α − κ̃(θ̃) − λ̃(η̃′)

= (Cα
ρ θ

ρ +Dα)(Aσαη
′
σ +Bα) − κ(Aα(θ̃

α −Dα)) − θ̃αBα

−λ(Cα(η̃′α − Bα)) − η̃′αD
α +BαD

α

= θρη′ρ − κ(θ) − λ(η′)

= γ(θ; θ′),

13



i.e. γ = γ̃ and γ is D-invariant. It proves the second implication, and the proposition
is proved. 2

Proposition 6 is analogous to the structure theorem for minimal representations of
exponential families. The proof given here has the advantage that it first of all is
more general and secondly that it is purely geometric, i.e. that there is no reference
to density functions etc.

Definition 4: Proposition 6 defines an equivalence relation on the class of dual
systems on (M, i) in the following way (∼ means equivalent)

(θ, η) ∼ (θ̃, η̃) ⇔ γ = γ̃.

We say that (θ̃, η̃) is D-invariant in relation to (θ, η) if (θ, η) ∼ (θ̃, η̃). 2

From definition 4 we see that if (θ, η) ∼ (θ̃, η̃) then the α-connections derived from
the yokes γ and γ̃ are identical. We can prove an opposite statement to that: let

{
α

Γ}α∈R be a family of connections derived from a dual s system (θ, η) on (M, i) via

the yoke γ. We call {
α

Γ}α∈R a D-family on (M, i). Then we have:

Proposition 7: Let (M, i) be a dual space, (θ1, η
1) and (θ2, η

2) dual systems on

(M, i), and {1

α

Γ}α∈R and {2

α

Γ}α∈R D-families on (M, i) derived from (θ1, η
1) and

(θ2, η
2). Then

(θ1, η
1) ∼ (θ2, η

2) ⇔ 1

α

Γ= 2

α

Γ for all α ∈ R.

Proof: The implication ⇒ is trivial (definition 4). Assume 1

α

Γ= 2

α

Γ for all α ∈ R. Since

1

1

Γ= 0 in θ1-coordinates (proposition 2) then 2

1

Γ= 0 in θ1-coordinates per assumption.

Similar 1

−1

Γ= 2

−1

Γ= 0 in η1-coordinates. But we too have that 2

1

Γ= 0 in θ2-coordinates

and 2

−1

Γ= 0 in η2-coordinates. It means using the transformation law for connection
symbols that θ1 and θ2 are affinely connected and similar for η1 and η2. Putting

θρ1 = Cρ
σθ

σ
2 +Dρ and η1

ρ = Aσρη
2
σ +Bρ

14



then
< ∂1

ρ , ∂
σ
1 >= δσρ =< ∂2

τ , ∂
υ
2 > Cτ

ρA
σ
υ = Cτ

ρA
σ
τ

since both systems are dual (∂1
ρ means of cause differentiation w.r.t. θρ1 etc). The

result follows now from proposition 6 and definition 4. 2

A note of caution. From proposition 2 we know that θ is a flat parameter in the

1-connection
1

Γ derived from γ and that θ is a flat parameter in the -1-connection c

−1

Γ

derived from γc. It means that
1

Γ= c

−1

Γ . Similarly we obtain
−1

Γ= c

1

Γ and hence will the
family of connections derived from γ equal the family of connections derived from γc

but not in the sense of proposition 7.

β-Orthogeodesic Models.

In the last section we have seen that a dual space behave from a geometric point of
view similarly to an exponential family. Hence we can introduce models analogous to
those studied in Barndorff-Nielsen and Bl@esild (1983,1993) with the dual parameters
θ and η playing the role as the canonical parameter and the mean value parameter
in exponential family theory.

In this section we will be concerned with orthogeodesic models and we will relate then
to dual spaces through a structure theorem analogous to the structure theorem given
in Barndorff-Nielsen and Bl@esild (1993). Before discussing the structure theorem we
will take a look at the definitions of the orthogeodesic property as given in Barndorff-
Nielsen and Bl@esild (1993), generalize these definitions slightly and show that the
definitions not are equivalent as postulated in Barndorff-Nielsen and Bl@esild (1993).

From now on we will assume that M can be covered by single coordinate chart
although our results can be stated similarly without this assumption, but in a more
cumbersome way.

Here follows the two definitions from Barndorff-Nielsen and Bl@esild (1993) slightly
altered: Definition 3.1 and Definition 3.1’ numbered A and A’ respectively. For β = 1
the definitions given below are identical to the definitions given in Barndorff-Nielsen
and Bl@esild (1993).

Definition A: M is said to be β-orthogeodesic relative to the parameterization

15



ω = (χ, ψ) if the following conditions are satisfied:

(o) χ and ψ are variation independent.
(i) χ and ψ are i-orthogonal, i.e. iaj = 0
(ii) The ψ-part of i depends on ψ only, i.e. ijk(χ, ψ) = ijk(ψ).

(iii) For every value of χ and ψ:
β

Γajk= 0.

(iv) For every value of χ and ψ:
β

Γkij= 0.

Let Mχ be the submanifold { p ∈ M | ∃ψ : p = p(χ, ψ) } and let χ

α

Γ denote the
α-connections induced on Mχ from M. Note if (i) is fulfilled, then one has

χ

α

Γijk=
α

Γijk, χ

α

Γijk=
α

Γijk, and χTijk = Tijk = 2(χ
0

Γijk −χ

1

Γijk). (17)

Note that χTijk = Tijk always is fulfilled per definition of the induced tensor (similar
to χijk = ijk).

For the α-curvature tensor χ

α

R of the induced α-connection on Mχ we have

χ

α

Rjklm=
α

Rjklm +(
−α
H jma

α

Hklb −
−α
H jla

α

Hkmb)i
ab, (18)

where
α

Hjka denotes components of the α-shape tensor χ

α

H (see Barndorff-Nielsen and
Bl@esild (1993) (2.13) and (2.27)).
And if (ii) is fulfilled, then

0

Γijk (χ, ψ) =
0

Γijk (ψ), (19)

since the Riemannian connection symbols
0

Γijk is derived from ijk (see e.g. Barndorff-
Nielsen and Bl@esild (1993) (2.4)).
Note, that (i) and (iii) implies that Mχ is β-geodesic, and (i) and (iv) implies that
Mχ is β-flat.
Finally note if definition A is fulfilled with β = 0 then (iii) is a consequence of (i)
and (ii) (see e.g. Barndorff-Nielsen and Bl@esild (1993) (2.4))

Definition A’: M is said to be β-orthogeodesic if the following conditions are sat-
isfied:

16



(o)’ M is a product manifold of the form M = X × Ψ,
where X and Ψ are differentiable manifolds.

(i)’ The factorization of M is i-orthogonal.
(ii)’ For every value of χ the restriction of i to the submanifold Mχ

does not depend on χ.

(iii)’ For every value of χ the submanifold Mχ is β-geodesic,

i.e. the β-shape tensor χ

β

H vanishes identically.
(iv)’ For every value of χ the submanifold Mχ is β-flat,

i.e. the curvature tensor χ

β

R vanishes identically.

If β = 1 the condition (iii)’ is different in formulation to the similar condition (iii)’
in Barndorff-Nielsen and Bl@esild (1993). Condition (iii)’ in Barndorff-Nielsen and
Bl@esild (1993) says:

For every value of χ and some value of α 6= 0 the submanifold Mχ

is α-geodesic, i.e. the α-shape tensor χ

α

H vanishes identically.

According to theorem 4.2 in Barndorff-Nielsen and Bl@esild (1993) the two condi-
tions are equivalent under (i)’ and (ii)’, and the only reason for changing it here is,
that it makes (iii)’ more similar to the other conditions in definition 1’.

If β = 0 then (iii)’ is a consequence of (i)’ and (ii)’ since
0

Γajk=
0

Ha
jk= 0 (see e.g.

Barndorff-Nielsen and Bl@esild (1993) (2.4) p.5 and (2.19)).

We will now discuss to what extent the two definitions A and A’ of the orthogeodesic
property are equivalent. In order to do that, we will first prove two lemmas connect-
ing different statements on geometric quantities to each other.

Lemma 1: If (i)-(iii) in definition A are satisfied, then the following statements are
equivalent:

(a)
α

Γijk=
α

Γijk(ψ) for some α 6= 0 (a’)
α

Γijk=
α

Γijk(ψ) for all α

(b)
α

Γijk=
α

Γijk(ψ) for some α 6= 0 (b’)
α

Γijk=
α

Γijk(ψ) for all α
(c) Tijk = Tijk(ψ)

If β 6= 0 the following conditions are equivalent to the above for all α ∈ R:

(d)
α

Raijk= 0 for some α 6= 0 (d’)
α

Raijk= 0 for all α.
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and in that case one has

(A)
α

Γajk=
α

Γjak=
α

Γjka= 0 for all α, and (B)
α

Γajk=
α

Γjak=
α

Γjka= 0 for all α.

Moreover in analogy with (17) one has (C) χ

α

R=
α

R for all α.

If β = 0 then the equivalences hold only in general if α = β = 0.

Proof: Follows easily using (1) and (2), and will be omitted here. 2

Lemma 2: Assume (i) in definition A is satisfied.

If χ̃
α

R= 0 for some χ̃, then

(a)
α

Γijk=
α

Γijk(ψ),

implies

(e) ∃ reparameterization φ of ψ:
α

Γικλ(χ, φ) = 0 for all χ and φ.

Opposite to that one has

(e) ∃ reparameterization φ of ψ:
α

Γικλ(χ, φ) = 0 for all χ and φ,

implies

(a)
α

Γijk=
α

Γijk(ψ).

Proof: Assume (i) in definition A. Transforming ψ: φ = φ(ψ) it follows from (i) and
the transformation law for connection symbols, that

α

Γιλκ= {
α

Γijk ψ
j
/λψ

k
/κ + ψi/κλ}φι/i , (20)

where ι, κ etc denote indices with respect to φ. Assume (a). If χ̃

α

R= 0 for some χ̃,

then there exists a parameterization φ = φ(ψ) such that: χ̃

α

Γιλκ= 0 (Amari (1985)

p.152), and from (i) and (17)
α

Γιλκ= χ̃

α

Γιλκ= 0. From (20) and (a) one has
α

Γιλκ=
α

Γιλκ (ψ),
i.e. independent of χ. For χ̃ its 0 and hence it is 0 for all χ. This proofs (e). Assume

(e). If there exists a parameterization φ = φ(ψ) such that
α

Γιλκ= 0 for all χ and φ,

then
α

Γijk= {
α

Γιλκ φ
λ
/jφ

κ
/k + φι/jk}ψi/ι = φι/jkψ

i
/ι is a function only of ψ. This proofs (a).

2

Note from (e) that χ̃

α

R= 0, (a) and (i) imply that there exists a reparameterization φ
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of ψ such that
α

Γικλ(χ, φ) = 0 for all χ and φ and hence χ

α

R= 0 for all χ (see (17) and
(2)).

As indicated by lemma 1 there seems to be two different cases: β 6= 0 and β = 0.
Well, so it also turns out. Using lemma 1 and 2 we are now able to prove the equiv-
alence between the definition A and A’ as generally as possible.

Proof: definition A implies definition A’.

The proof is given in Barndorff-Nielsen and Bl@esild (1993) p.1033 with 1 replaced
by β ∈ R, and will not be given here. 2

Proof of the existence of a parameterization, such that definition A’ implies
definition A if one (and hence all) of the conditions (a),(a’),(b),(b’),(c),(d),
and (d’) is fulfilled for some β 6= 0.

From Barndorff-Nielsen and Bl@esild (1993) p.1033 it follows, that definition A’ im-
plies (o)-(iii) in definition A with β = 1 replaced by β 6= 0. It follows from lemma 1
that all conditions are equivalent, since (i)-(iii) are fulfilled. If one of these conditions
is satisfied, it follows from lemma 2, that there exists a parameterization, such that
(iv) is satisfied. 2

Proof of the existence of a parameterization, such that definition A’ im-
plies definition A if β = 0.

Similar to the proof above we need only to prove (iv), and it is a consequence of

lemma 2 with α = 0 and
0

Γijk=
0

Γijk (ψ) (see (19)). 2

Example 6: If M is a conjugate symmetric space (
α

R=
−α
R for all α ∈ R, see Lau-

ritzen (1987) p.186) and (i)’-(iii)’ in definition A’ are satisfied with β 6= 0, then (d)

is satisfied too. It follows from the below argument: calculating
α

Rijka, α ∈ R using
that (i)’-(iii)’ implies (i)-(iii) and lemma 1 we find that (2)

α

Rijka= (∂i
α

Γrjk −∂j
α

Γrik)ira+
α

Γira
α

Γrjk −
α

Γjra
α

Γrik= 0
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since there will be at least one 0 in all terms. Finally since M is conjugate symmetric
α

Rkaij=
α

Rijka= 0 (Lauritzen (1987) p.187), and hence (d). Especially an exponential
family is conjugate symmetric. 2

Example 7: (Counterexample) Let M be a 2-dimensional Riemannian manifold
parameterized by ω = (χ, ψ) and such that (o)-(ii) in definition A is satisfied. Let a
symmetric (0,3)-tensor T on M fulfill

Tψψχ = 0, Tψψψ = f(χ, ψ),

where f for ψ fixed is a non-constant function of χ. Hence it is easily checked that

(M, 〉, T ) is a statistical manifold fulfilling (o)-(iii) with β = 1, but not
1

Γijk=
1

Γijk (ψ),
and hence (iv) is not satisfied with β = 1. It is therefore not possible to reparame-

terize ψ, such that definition A is satisfied. However since dψ = 1 one has χ

1

R= 0 for
all χ, which means that definition A’ is fulfilled. 2

As the example shows the class of models fulfilling definition A’ is bigger than the
class of models fulfilling definition A. It is however convenient to have a coordinate
free characterization of the conditions in definition A, and we therefore want to add
an extra condition to definition A’ in such a way, that definition A and definition A’
with this extra condition are equivalent for all β ∈ R. From the discussion above it
follows that this extra condition must be such that is trivially fulfilled for β = 0 under
(i)’-(iv)’. I therefore propose the following coordinate free characterization (from now
on definition A’ is suspended and the meaning of the word β-orthogeodesic will be
the one given in definition A):

Definition B’: M is said to be β-orthogeodesic if the following conditions are sat-
isfied:

(o)’ M is a product manifold of the form M = X × Ψ,
where X and Ψ are differentiable manifolds.

(i)’ The factorization of M is i-orthogonal.
(ii)’ For every value of χ the restriction of i to the submanifold Mχ

does not depend on χ.
(iii)’ For every value of χ the submanifold Mχ is β-geodesic,

i.e. the β-shape tensor χ

β

H vanishes identically.

20



(iv)’ For every value of χ the submanifold Mχ is β-flat,

i.e. the curvature tensor χ

β

R vanishes identically.
(v)’ For every value of χ the restriction of βT to the submanifold Mχ

does not depend on χ.

Here βT means the (0,3)-tensor with components βTrst. Note that the first four con-
ditions are equivalent to the conditions i definition A’. Note too that (v)’ is trivially
fulfilled if β = 0.

If definition B’ is satisfied with β 6= 0 then there exists a reparameterization φ of
ψ, such that definition A is satisfied (follows from lemma 1 and 2). The other way
round goes as well. If definition A is fulfilled then by lemma 1 and (2), definition B’
is satisfied too. We have proved the following statement:

Proposition 8: There exists a reparameterization φ of ψ, such that definition A and
definition B’ are equivalent. 2

We note that if M is a conjugate symmetric space fulfilling definition A’ then (v) is
satisfied too, since definition A’ implies that there exists a reparameterization such
that definition A is fulfilled (example 6) and definition A implies definition B’. It
means especially that (v) is satisfied.

Finally I will like to point out that if β 6= 0 then (M, i, T ) = (M, i, βT ) since T is just

multiplied by a constant factor (see (1)). Put α̃ = α/β and let
α̃

G be the connections
derived from (M, i, βT ) in the sense of (1). Then

α̃

Grst=
0

Grst −
α̃

2
(βTrst) =

0

Grst −
α/β

2
(βTrst) =

0

Grst −
α

2
Trst =

α

Γrst

and especially
1

G=
β

Γ. We can therefore without loss of generality assume β = 1 if
β 6= 0 in definition A and B’. In this sense we are left with only two cases: β = 1 and
β = 0. We will however not limit ourself to this simplification from reasons given in
the next example.
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Example 8: Often β-orthogeodesic statistical models can be considered as subman-
ifolds of a bigger family: e.g. the family of all location-scale t-distributions with ν
degrees of freedom Pν = {t(µ, σ; ν)|µ ∈ R, σ > 0}, where µ is the location param-
eter and σ the scale parameter, is a submanifold of the family of all t-distributions
P = {t(µ, σ; ν)|µ ∈ R, σ > 0, ν > 0}. It is shown in the example part below that Pν

is β-orthogeodesic for some β dependent of ν in the expected induced geometry. It
means that we can not rescale the skewness tensor T on P in any way to make P ν

1-orthogeodesic for all ν in the induced geometries. 2

We can also prove a statement that gives a correspondence between β- and −β-
orthogeodesic models:

Proposition 9: Assume M is β-orthogeodesic in the sense of definition B’. Then
M is also −β-orthogeodesic.

Proof: If β = 0 then the statement is trivial. Assume β 6= 0. Conditions (o)’-(ii)’ are
independent of β, and are therefore fulfilled. Clearly the condition (v)’ is satisfied as
well. From (i)’, (ii)’, and the definition of the Riemannian connection it follows that
the submanifold Mχ is 0-geodesic, and from Lauritzen (1987) p.188 it follows that
Mχ is −β-geodesic, since it is both 0- and β-geodesic. This proofs (iii)’. Finally note
from (17) that the induced α-geometries, α ∈ R makes Mχ a statistical manifold,

since χ

α

Γ=
α

Γ(χ, ·) and hence

χ

α

Γijk=
α

Γijk(χ, ·) =
0

Γijk(χ, ·) −
α

2
Tijk(χ, ·) = χ

α

Γijk −
α

2
Tijk(χ, ·).

Since χ

β

R= 0 it follows from Lauritzen (1987) p.186 that Mχ is conjugate symmetric,

and therefore χ

−β
R= 0. It proofs (iv)’, and in conclusion M is −β-orthogeodesic. 2

The Structure Theorem for β-spaces.

In this part we will prove a structure theorem for a subclass of the family of sta-
tistical manifolds similar in geometric nature to exponential families. The structure
theorem is a generalization of a similar structure theorem given in Barndorff-Nielsen
and Bl@esild (1993), but it has the advantage that there is no reference to underlying
probability measures.
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Let M be a β-space (see definition 2), and let (θ, η) be a dual system chosen accord-
ing to proposition 3.

Indices ρ, σ etc will refer to θ in the β-connection and to η in the −β-connection.
If M is β-orthogeodesic and hence also −β-orthogeodesic (see proposition 9), then
i, j etc refer to the β-flat parameter ψ for Mχ, and to the −β-flat parameter π for
Mχ. Moreover indices occur as upper indices in θ and ψ, whereas they occur as lower
indices in η and π. Put υ = (χ, π). Generic components of ν are denoted υr, υs etc,
and it means that generic components of χ have lower indices when χ is considered a
subparameter of υ and upper indices when considered a subparameter of ω = (χ, ψ).
Finally when the α-connection symbols are considered as functions of υ they will be

denoted
α

Γstr and
α

Γrst (similarly to η).

We are now ready to prove the following structure theorem for β-spaces. Since ψ al-
ways can be reparameterized such that definition A is fulfilled if M is β-orthogeodesic
relative to (χ, ψ), we will characterize β-orthogeodesic models in the sense of defini-
tion A.

Structure theorem for β-spaces:

Assume M is a β-space.

Then M is β-orthogeodesic in the sense of definition A relative to the parame-
terization ω = (χ, ψ) if and only if χ and ψ are variation independent and there
exists scalars α(ψ) and γ(χ), vectors Bρ(χ) and Dρ(χ), matrices Ai

ρ(χ) and Cρ
i (χ),

such that the following conditions are satisfied:

(a) θρ(χ, ψ) = ψiCρ
i (χ) +Dρ(χ)

(b) ηρ(χ, ψ) = α/j(ψ)Ajρ(χ) +Bρ(χ)
(c) κ(χ, ψ) = α(ψ) + γ(χ) + ψiCρ

i (χ)Bρ(χ)

(d) Ajρ(χ)Cρ
i (χ) = δji

(e) Ajρ(χ)Cρ
i/a(χ) = 0

(f) Ajρ(χ)Dρ
/a(χ) = 0

(g) Bρ/a(χ)Cρ
i (χ) = 0

(h) γ/a(χ) = Bρ(χ)Dρ
/a(χ).

The vectors Bρ(χ) and Dρ(χ), matrices Ai
ρ(χ) and Cρ

i (χ) and scalars α(ψ) and γ(χ)
are called a β-orthogeodesic representation of M.

Proof: Assume M is β-orthogeodesic in the sense of definition A relative to the para-
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meterization ω = (χ, ψ). Proposition 9 tells us that M is −β-orthogeodesic, and
let υ = (χ, π) be a corresponding parameterization fulfilling definition A. (iii)-(iv) in
definition A implies that

0 =
β

Γrjk= {
β

Γρστ θ
σ
/jθ

τ
/k + θρ/jk}ωr/ρ,

and (indices are moved)

0 =
−β
Γjkr = {

−β
Γστρ η/jσ η

/k
τ + η/jkρ }υ/ρr .

Since 0 =
β

Γρστ=
−β
Γστρ (θ and η are ±β-flat) one has 0 = θρ/jkω

r
/ρ = η

/jk
ρ υ

/ρ
r , or by

multiplication with θσ/r and η
/r
σ : 0 = θρ/jk = η

/jk
ρ . We can therefore find matrices and

vectors, such that

θρ(χ, ψ) = ψiCρ
i (χ) +Dρ(χ), (21)

i.e. (a) is satisfied, and

ηρ(χ, π) = πjÃ
j
ρ(χ) +Bρ(χ). (22)

Inserting θρ/jk = 0 in

κ/jk = κ/ρσθ
ρ
/jθ

σ
/k + κ/ρθ

ρ
/jk,

it follows from (10) and (ii) that

κ/jk = κ/ρσθ
ρ
/jθ

σ
/k = iρσθ

ρ
/jθ

σ
/k = ijk(ψ),

i.e. there exists scalars α(ψ) and γ(χ) and a vector βi(χ), such that

κ(χ, ψ) = α(ψ) + γ(χ) + ψiβi(χ). (23)

From (9) ηρ = ∂ρκ one has ηρ = ∂ρκ = ωr/ρ∂rκ, and by multiplication with θρ/s

ηρθ
ρ
/s = ∂sκ. (24)

Putting s = i it follows ((21), (22), and (23))

{πjÃjρ(χ) +Bρ(χ)}Cρ
i (χ) = πjÃ

j
ρ(χ)Cρ

i (χ) +Bρ(χ)Cρ
i (χ) = α/i(ψ) + βi(χ).

Differentiating this expression w.r.t. πj one obtains

∂jα/i(ψ(π)) = Ãjρ(χ)Cρ
i (χ),
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and since the left side does not depend on χ it follows that Ãjρ(χ)Cρ
i (χ) is constant

as a function of χ, and therefore Bρ(χ)Cρ
i (χ) = βi(χ) + α/i(ψ) − πjK

j
i where Kj

i =

Ãjρ(χ)Cρ
i (χ). Again the left side is independent of ψ and hence Bρ(χ)Cρ

i (χ) = βi(χ)+
Ki for some constant Ki. We can assume Ki equals 0, since we can put ’α(ψ) :=
α(ψ) − ψiKi’ in (23). In that case we obtain from above

α/i(ψ) = πjÃ
j
ρ(χ)Cρ

i (χ).

Since ijk = α/jk(ψ) is positive definite (and therefore det α/jk(ψ) 6= 0) φ = α/∗(ψ)
and ψ are in one-to-one correspondence (at least locally), and hence in one-to-one
correspondence with π as well (locally). From α/i(ψ) = πjÃ

j
ρ(χ)Cρ

i (χ) we then

conclude, that det Ãjρ(χ)Cρ
i (χ) 6= 0, since otherwise the correspondence between

φ and π will not be one-to-one. Moreover we can find an invertible matrix M k
j , such

that Mk
j Ã

j
ρ(χ)Cρ

i (χ) = δki (as shown above Ãjρ(χ)Cρ
i (χ) is independent of χ). Put

Akρ(χ) = Mk
j Ã

j
ρ(χ) and π̃k = πiN

i
k with N = M−1. It then follows from the above,

(22) and (23), that

Ajρ(χ)Cρ
i (χ) = M j

k Ã
k
ρ(χ)Cρ

i (χ) = δji , (25)

α/i(ψ) = πjÃ
j
ρ(χ)Cρ

i (χ) = π̃jA
j
ρ(χ)Cρ

i (χ) = π̃i , (26)

ηρ(χ, ψ) = πjÃ
j
ρ(χ) +Bρ(χ) = α/j(ψ)Ajρ(χ) +Bρ(χ), (27)

and

κ(χ, ψ) = α(ψ) + γ(χ) + ψiCρ
i (χ)Bρ(χ). (28)

This proofs (b), (c), and (d).

From (i) in definition A and (10) one has

κ/ia = κ/ρσθ
ρ
/iθ

σ
/a + κ/ρθ

ρ
/ia = iai + κ/ρθ

ρ
/ia = κ/ρθ

ρ
/ia,

and using (28), (9), (27), and θρ/ia = Cρ
i/a(χ) (see (21)) it follows that

Cρ
i/a(χ)Bρ(χ) + Cρ

i (χ)Bρ/a(χ) = {α/j(ψ)Ajρ(χ) +Bρ(χ)}Cρ
i/a(χ),

or after reduction
Cρ
i (χ)Bρ/a(χ) = α/j(ψ)Ajρ(χ)Cρ

i/a(χ).
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Assume Aj
ρ(χ)Cρ

i/a(χ) 6= 0. Since ψ and α/∗(ψ) vary in open subsets of Rdψ , the

image of α/∗(Ψ) under Aj
ρ(χ)Cρ

i/a(χ) will be different from the zero-space. Hence we
can find ψ1 and ψ2, such that

α/j(ψ1)A
j
ρ(χ)Cρ

i/a(χ) 6= α/j(ψ2)A
j
ρ(χ)Cρ

i/a(χ),

in contradiction to the fact that α/j(ψ)Ajρ(χ)Cρ
i/a(χ) = Cρ

i (χ)Bρ/a(χ) is independent

of χ. Consequently Aj
ρ(χ)Cρ

i/a(χ) = 0 and Cρ
i (χ)Bρ/a(χ) = 0. It proofs (e) and (g).

Putting s = a in (24) one has, using (21), (27), (28), and (g), that

{α/j(ψ)Ajρ(χ) +Bρ(χ)}{ψiCρ
i/a(χ) +Dρ

/a(χ)} = γ/a(χ) + ψiCρ
i (χ)Bρ/a(χ),

and after a reduction and using (e), that

α/j(ψ)Ajρ(χ)Dρ
/a(χ) = γ/a(χ) − Bρ(χ)Dρ

/a(χ).

Using the same argument as above, we conclude that both Aj
ρ(χ)Dρ

/a(χ) and γ/a(χ)−
Bρ(χ)Dρ

/a(χ) are 0. It proofs (f) and (h), and the proof of the ’only if’ part of the
theorem is complete.

Assume there exists scalars, vectors, and matrices such that (a)-(h) are fulfilled. We
have to prove (o)-(iv) in definition A. (o) is assumed to be valid. From (10) one has

irs = iρσθ
ρ
/rθ

σ
/s = κ/ρσθ

ρ
/rθ

σ
/s = ηρ/σθ

ρ
/rθ

σ
/s = ηρ/tω

t
/σθ

ρ
/rθ

σ
/s = ηρ/sθ

ρ
/r. (29)

If r = j and s = a (29) becomes ((a), (b), (e), and (f))

ija = ηρ/jθ
ρ
/a = α/ij(ψ)Aiρ(χ){ψkCρ

k/a(χ) +Dρ
/a(χ)} = 0,

and (i) is satisfied. Similarly, if r = j and s = k (29) becomes ((a), (b), and (d))

ijk = ηρ/jθ
ρ
/k = α/ij(ψ)Aiρ(χ)Cρ

k(χ) = α/jk(ψ),

and (ii) is satisfied. From (a) one has

β

Γrjk= {
β

Γρστ θ
σ
/jθ

τ
/k + θρ/jk}ωr/ρ = 0.

It proves (iii) and (iv), and the proof of the theorem is completed. 2

From the second part of the proof we note, that only (a), (b), (d), (e), and (f) are

26



used.

From (d) and (e) it follows that (e’) Aj
ρ/a(χ)Cρ

i (χ) = 0, and from (29), (a), (b), (e’),

and (g) one has

iaj = ηρ/aθ
ρ
/j = {α/i(ψ)Aiρ/a(χ) +Bρ/a(χ)}Cρ

j (χ) = 0.

It gives us that (a), (b), (d), (e’), and (g) are sufficient to ensure, that M is β-
orthogeodesic in the sense of definition A relative to ω = (χ, ψ).

Corollary 1 to the structure theorem:

Assume M is a β-space.

Then M is β-orthogeodesic in the sense of definition A relative to the parame-
terization ω = (χ, ψ) if and only if χ and ψ are variation independent and there
exists a scalar α(ψ), vectors Bρ(χ) and Dρ(χ), and matrices Ai

ρ(χ) and Cρ
i (χ), such

that either

the conditions (a), (b), (d), (e), and (f) or the conditions (a), (b), (d), (e’), and (g)
are satisfied.

Furthermore, if one set of the conditions above are satisfied then so are the rest of the
conditions (a)-(g). Moreover λ, the Legendre transform of κ, considered as a function
of ω = (χ, ψ) is given by

(c’) λ(χ, ψ) = β(ψ) + δ(χ) + α/j(ψ)Ajρ(χ)Dρ(χ),

where β(ψ) = ψjα/j(ψ) − α(ψ) =
∨
α (ψ) is the Legendre transform of α, and δ(χ) =

Dρ(χ)Bρ(χ) − γ(χ).

Proof: See the remark before the corollary. The last assertion is seen to be valid by
insertion in (11). 2

Corollary 2 to the structure theorem:

Assume M is a β-space.

Then M is β-orthogeodesic in the sense of definition A relative to the parame-
terization ω = (χ, ψ) if and only if M is −β-orthogeodesic in the sense of defini-
tion A relative to the parameterization ν = (χ, π) with π = α/∗(ψ). Moreover the
scalars, vectors and matrices can be chosen to be: α(π) := β(ψ(π)), γ(χ) := δ(χ);
Bρ(χ) := Dρ(χ), Dρ(χ) := Bρ(χ) and C i

ρ(χ) := Aρ
i (χ), Aρj (χ) := Cj

ρ(χ) (with nota-
tion from ’Corollary 1 to the structure theorem’).
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Proof: Since M is a β-space, it is a −β-space too and (η, θ) are −β-dual coordinates
too. From the ’Structure theorem for β-spaces’ we have the existence of matrices etc,
such that

ηρ(χ, π) = πjA
j
ρ(χ) +Bρ(χ),

and
θρ(χ, π) = ψi(π)Cρ

i (χ) +Dρ(χ),

i.e. (a) is satisfied and (b) is satisfied if ψi(π) = f /i(π) for some function f . Since
(d)-(g) is satisfied too, it follows from ’Corollary 1 to the structure theorem’ that
M is −β-orthogeodesic relative to the parameterization ν = (χ, π) if f exists. Put
f(π) = β(ψ(π)) = β(π) = ψi(π)πi − α(ψ(π)). Then

β/j(π) = ψi/j(π)πi + ψj(π) − α/i(ψ)ψi/j(π)

= ψi/j(π)πi + ψj(π) − πiψ
i/j(π) = ψj(π),

so f fits the demand, and M is −β-orthogeodesic relative to the parameterization
υ = (χ, π). The proof is now easily completed using symmetry arguments. 2

We might now introduce more specific models similarly to those discussed in Barn-
dorff-Nielsen and Bl@esild (1983). It seems however not possibly to keep the distinc-
tion between τ -parallel and θ-parallel models in the setting discussed here, since the
distinction made in Barndorff-Nielsen and Bl@esild (1983) arises from probabilistic
properties of the model, and not from properties originating in geometry. From a
geometric point of view there is no difference between θ and η.

Moreover it might be pointed out that the statistical importance of the models dis-
cussed in this article do not seem to have the same importance as in the case of
exponential families.

Statistical Examples.

This part contains examples of statistical β-orthogeodesic models. The models will
be equipped with the expected geometry, since calculations are easily performed in
this geometry in contrast to e.g. the observed geometry. Some of these models turn
out to be β-spaces as well, but many ’nice’ β-orthogeodesic models do not share this
property. It will become clear after reading this.
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Location-Scale Models: We will focus on location-scale models on the real axes. In
Barndorff-Nielsen and Bl@esild (1993) example 3.1 it is shown that all these (under
regularity conditions) are 1-orthogeodesic models, and it is easy to see that they are
β-orthogeodesic for all β ∈ R. But will they be β-spaces too for some β ∈ R?

Let f : R → R be a symmetric density around 0 w.r.t. to some measure λ on R
fulfilling: λ(A) = λ(−A) for all Borel sets A ⊆ R+. The Lebesgue measure on R
fulfills this constrain, and in most examples λ will be the Lebesgue measure.

Put s(x) = x−µ
σ

, µ ∈ R and σ > 0, and let

G =

{

1

σ
f(s(·))|µ ∈ R, σ > 0

}

be the position-scale model generated from f .

Note that if the support of f is a compact interval (which is symmetric around 0,
since f is symmetric), then the densities in G will have different supports and they
will not be equivalent.

Assume f is twice differentiable except perhaps in a finite number of points, and that
differentiation w.r.t. σ and µ commutes with integration w.r.t. λ.

Put g = log f and define In;k = In;k(f) by

In;k =

∫

J

{1 + yg
′

(y)}ng′

(y)kf(y) dλ(y),

where J is the support of f , and g
′

means differentiation w.r.t. y. Assume I1;0 = I0;1 =
0 and |In;k| < +∞ for (n; k) = (2; 0), (n; k) = (0; 2), (n; k) = (3; 0), (n; k) = (1; 2).

With the above assumptions we have the following expressions for i,
α

Γ and
α

R.

iσσ =
1

σ2
I2;0 iσµ = 0 iµµ =

1

σ2
I0;2 (30)

α

Γσσσ= − 1

σ3

{

I2;0 −
α

2
I3;0

} α

Γσσµ=
α

Γµσσ=
α

Γσµσ=
α

Γµµµ= 0 (31)

α

Γσµµ=
α

Γµσµ= − 1

σ3

{

I0;2 −
α

2
I1;2

} α

Γµµσ=
1

σ3

{

I0;2 +
α

2
I1;2

}

α

Γσσσ= − 1

σ

{

1 − α

2

I3;0
I2;0

}

α

Γµσσ=
α

Γσµσ=
α

Γσσµ=
α

Γµµµ= 0 (32)
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α

Γµσµ=
α

Γµµσ= − 1

σ

{

1 − α

2

I1;2
I0;2

}

α

Γσµµ=
1

σ

{

I0;2
I2;0

+
α

2

I1;2
I2;0

}

Tσσσ = − 1

σ3
I3;0 Tσµµ = − 1

σ3
I1;2 Tσσµ = Tµµµ = 0 (33)

α

Rµσσµ= − 1

σ4

{

I0;2 +

(

I3;0
I2;0

I0;2 − 2I1;2

)

α

2
+

(

I2
1;2

I0;2
− I3;0
I2;0

I1;2

)

α2

4

}

(34)

α

Rµσµσ=
1

σ4

{

I0;2 −
(

I3;0
I2;0

I0;2 − 2I1;2

)

α

2
+

(

I2
1;2

I0;2
− I3;0
I2;0

I1;2

)

α2

4

}

α

Rσµσµ= −
α

Rµσσµ

α

Rσµµσ= −
α

Rµσµσ

α

Rrstu= 0 otherwise.

We note the following lemmas:

Lemma 3: G is a conjugate symmetric space if and only if

I3;0
I2;0

I0;2 − 2I1;2 = 0. (35)

Proof: A conjugate symmetric space fulfills per definition
α

R=
−α
R for all α ∈ R. The

lemma then follows from (34). 2

Lemma 4: If there exists β ∈ R:
β

R= 0 then

I2
1;2

I0;2
− I3;0
I2;0

I1;2 < 0. (36)

Assume (35) and (36). Then
β

R= 0 is satisfied with

β = ±2
I0;2
I1;2

. (37)

Proof: Note that β 6= 0 since I0;2 > 0 (see (34)). If
β

R= 0 then G is conjugate
symmetric and (35) is valid. Since I2;0 > 0 (the Fisher information is assumed
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positive definite) then the first part of the lemma is a consequence of (34). From (34)
using (35) we see that β satisfy

0 = I0;2 +

(

I2
1;2

I0;2
− I3;0
I2;0

I1;2

)

β2

4
= I0;2 +

I1;2
I0;2

(

I1;2 −
I3;0
I2;0

I0;2

)

β2

4
.

Adding and subtracting I1;2 inside the brackets and using (35) yields

0 = I0;2 −
Is1;2
I0;2

β2

4

and the result follows easily. 2

Lemma 4 can be reformulated in a more informative way. Note first since I0;2 > 0
that condition (36) can be rewritten as

I3;0
I2;0

I0;2I1;2 − I2
1;2 > 0.

Since I1;2 occurs in both terms the condition can only be fulfilled if I1;2 6= 0. Opposite
to that (see (35))

if I1;2 > 0 then
I3;0
I2;0

I0;2 − I1;2 > 0,

and

if I1;2 < 0 then
I3;0
I2;0

I0;2 − I1;2 < 0,

or if we combine these two statements:

if I1;2 6= 0 then
I3;0
I2;0

I0;2I1;2 − I2
1;2 > 0.

I.e. we have shown:

Lemma 5: If there exists β ∈ R:
β

R= 0 then I1;2 6= 0. And if (35) is satisfied then
the opposite implication is valid too. 2

Let us remark that the class of location-scale models fulfilling the assumptions made
in the beginning is now divided into three subclasses, three types:

(1) Models which do not satisfy (35).
(2) Models which satisfy (36) but not (35).
(3) Models which satisfy (36) and (35).
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None of these types is empty and concrete examples of each type will be given below.

Assume now
β

R= 0. Note from (35) that I3;0I0;2
I2;0I1;2

= 2, and therefore with

β = −2
I0;2
I1;2

we have (32)

β

Γσσσ= − 3

σ
and

β

Γµµσ=
β

Γµσµ= − 2

σ
. (38)

The other symbols β-connection symbols are 0. Putting σ = ψ−1/2 one obtains using
the transformation law for connection symbols

β

Γψψψ= 0 and
β

Γµµψ=
β

Γµψµ=
1

ψ
. (39)

The remaining symbols are still 0. Similarly, the −β-connection symbols are in (µ, ψ)-
coordinates given by

−β
Γψψψ= − 2

ψ
and

−β
Γψµµ= − 4

ψ2

I0;2
I2;0

, (40)

and the remaining are 0.

When G is a β-space we will find β-dual coordinates and express these in terms of
the β-orthogeodesic coordinates ω = (µ, ψ) as described in the ’Structure theorem
for β-spaces’. Generally we shall solve the equations

β

Γrst= {
β

Γρστ θ
σ
/sθ

τ
/t + θρst}ωr/ρ = θρ/stω

r
/ρ,

since
β

Γρστ= 0 in β-flat coordinates θ. We have similar equations in η- and ω-
coordinates using the −β-connection. These are however often hard to solve and
in concrete examples it can be of great help to have a qualified guess. There is no
uniqueness since affine transformations of θ still will be a 1-flat parameter. Here it ob-
vious that we can choose θ = ψ(µ,−1/2) since as seen from (39) upper β-connection
symbols are independent of the model considered, and we know that the chosen θ
works for the normal distribution. Here we can choose

α(ψ) = −1

4
I2;0 logψ γ(µ) = 0 (41)
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A(µ) = (0,−2) C(µ) = (µ,−1/2) B(µ) = I0;2(µ, µ
2) D(µ) = (0, 0)

θ(µ, ψ) = ψ(µ,−1/2) η(µ, ψ) = − 1

4ψ
I2;0(0,−2) + I0;2(µ, µ

2) (42)

κ(µ, ψ) = −1

4
I2;0 logψ +

1

2
I0;2ψµ

2 (43)

and

λ(µ, ψ) =
1

4
I2;0 logψ − 1

4
I2;0.

All the models discussed here are however dual spaces. To see this first transform µ
into µ =

√

2I1/I2ν. Then we have the following expression for i in (ν, σ)-coordinates:

iσσ =
1

σ2
I1, iσν = 0, iνν =

2

σ2
I1,

i.e. a scalar multiplum of the metric expressed in (µ, σ) on the family of one dimen-
sional normal distributions. Since the dual coordinates of N can be chosen to be (the
canonical parameter and the mean value parameter)

θ(ν, σ) =
1

σ2
(µ,−1/2), and η(ν, σ) = σ2(0, 1) + (µ, µ2),

then we can choose a dual system on M in the following way

θ(ν, σ) =
1

I1σ2
(µ,−1/2), and η(ν, σ) = σ2(0, 1) + (µ, µ2).

If we make a transformation of the densities similar to the transformation of µ,
x =

√

2I1/I2y, then (ν, σ) still have interpretion as a location and a scale parameter.

As mentioned above the class of location-scale models fulfilling the assumptions made
in the beginning is divided into three types:

(1) Models which do not satisfy (35).
(2) Models which satisfy (36) but not (35).
(3) Models which satisfy (36) and (35).

I will no give some concrete examples showing that none of these classes are empty,
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and that models which in some sense are quite similar to the class of normal distri-
butions may have quite poor geometrical properties.

The spherical distribution: Let fν be the density w.r.t. Lebesque measure on
(−1, 1) of the spherical distribution Sph(ν) with parameter ν > −1, i.e.

fν(y) =
Γ(1 + ν/2)√
πΓ(1/2 + ν/2)

(1 − y2)(ν−1)/2, y ∈ (−1, 1)

The assumptions concerning the density function fν and the integrals In;k mentioned
in the beginning of this section are satisfied for ν > 5, and from formula 3.251.1 in
Gradshteyn and Ryzhik (1980),

1

λ
B(

µ

λ
) =

∫ 1

0

xµ−1(1 − xλ)ν−1 dx µ, νλ > 0,

we have

I1;0 = I0;1 = 0 I2;0 =
2ν

ν − 3
I0;2 =

ν(ν − 1)

ν − 3

I3;0 = − 8ν(ν + 1)

(ν − 3)(ν − 5)
I1;2 = − 2ν(ν2 − 1)

(ν − 3)(ν − 5)
.

If ν > 5 then I1;2 6= 0 (< 0), and

I3;0
I2;0

I0;2 − 2I1;2 = 0.

It means both (35) and (36) are satisfied, and the families Gν are

±ν − 5

ν + 1
− spaces,

and thus examples of type (3) models. 2

A class of error distributions: Let fν be the density E(ν), ν > 0 (E stands for
error) w.r.t. the Lebesgue measure on R given by

fν(y) = ν
1

Γ(1/(2ν))
exp{−(y2)ν}, y ∈ R.
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Note if ν = 1 then f1 is the normal density with mean 0 and variance 1/2. The
assumptions concerning the density function fν and the integrals In;k mentioned in
the beginning of this section are satisfied for ν > 1/2, and from formula 3.478.1 in
Gradshteyn and Ryzhik (1980),

1

p
Γ(
q

p
) =

∫ ∞

0

xq−1 exp(−xp) dx q, p > 0,

we have
I1;0 = I0;1 = 0 I0;2 = 2ν I3;0 = −8ν2

I2;0 = 4ν2 Γ(2 − 1/(2ν))

Γ(1/(2ν))
I1;2 = −8ν2(2ν − 1)

Γ(2 − 1/(2ν))

Γ(1/(2ν))
.

Moreover it is seen that

I3;0
I2;0

I0;2 − 2I1;2 = 16ν2(ν − 1)
Γ(2 − 1/(2ν))

Γ(1/(2ν))
.

Consequently, lemma 1 implies that the family Gν is only a conjugate symmetric
space if ν = 1 (the family generated by N(0, 1/2)), and hence also a β-space only if
ν = β = 1. Thus the family E(ν) (ν 6= 1) is an example of models of type (1). 2

The t-distribution: Let fν be density of the t-distribution with ν > 0 degrees of
freedom, i.e.

f(y) =
1√

νB(1/2, 1/2ν)

{

1 +
y2

ν

}−1/2(ν+1)

,

The assumptions concerning the density function fν and the integrals In;k mentioned
in the beginning of this section are satisfied for all ν > 0, and from formula 8.380.3
in Gradshteyn and Ryzhik (1980),

B(x, y) = 2

∫ ∞

0

t2x−1

(1 + t2)x+y
dt x, y > 0,

we have

I1;0 = I0;1 = 0 I2;0 =
2ν

ν + 3
I0;2 =

ν + 1

ν + 3

I3;0 = − 8ν(ν − 1)

(ν + 3)(ν + 5)
I1;2 = − 2(ν2 − 1)

(ν + 3)(ν + 5)
.
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For all ν > 0 we have
I3;0
I2;0

I0;2 − 2I1;2 = 0,

and all families Gν are therefore conjugate symmetric. It is seen too, that I1;2 6= 0 if
and only if ν 6= 1, i.e. if ν 6= 1 then the families Gν are

±ν + 5

ν − 1
− spaces,

and of type (3). If ν = 1 (the Cauchy-distribution) then the generated family is an
example of type (2). Note too if ν tends to infinity then ± ν+5

ν−1
tends to ±1, which is

consistent with the fact that the family of normal distributions is ±1-flat. 2

The t-distribution revisited: Let P be the location-scale family corresponding to
the family of all t-distributions, i.e.

P = {t(µ, σ; ν)|µ ∈ R, σ > 0, ν > 0},

where t(µ, σ; ν) is the density given by

t(µ, σ; ν)(x) =
1

σ
√
νB(1/2, 1/2ν)

{

1 +
(x− µ)2

νσ2

}−1/2(ν+1)

.

From the previous example, calculations and formula 8.380.3 in Gradshteyn and
Ryzhik (1980) we have the following expressions for the Fisher information metric on
P:

iσσ =
2ν

σ2(ν + 3)
iµσ = 0 iµµ =

ν + 1

σ2(ν + 3)
(44)

iσν = − 2

σ(ν + 1)(ν + 3)
iµν = 0 iνν = iνν(ν),

where iνν(ν) is some function only dependent of ν involving derivatives ofB(1/2, 1/2ν).
The specific form of iνν(ν) is not important. Let τ̃ : R × R+ × R+ → R× R+ × R+

be the reparametrization of P defined by

τ̃(µ, σ, ν) = (µ, τ(σ, ν), ν)

and

τ(σ, ν) = σ
ν + 1

ν
.
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We then have that
σ(τ, ν) = τ

ν

ν + 1

and

iντ = iνσσ/τ + iσσσ/νσ/τ = − 2

σ(ν + 1)(ν + 3)
σ/τ +

2ν

σ2(ν + 3)
σ/νσ/τ = 0.

In the (µ, τ, ν)-parameter i is given by

iττ =
2ν

τ 2(ν + 3)
iµτ = 0 iµµ =

(ν + 1)3

τ 2ν2(ν + 3)
(45)

iτν = 0 iµν = 0 iνν = iνν(ν),

i.e. i is diagonal in τ̃ -coordinates. Furthermore since τ for ν fixed just is a rescalation
of σ then (µ, τ) parametrize Pν for all ν. This means that the expected geometry on
Pν in (µ, τ)-coordinates is given by

ν

α

Γrst=
α

Γrst (46)

for r, s, t ∈ {µ, τ}. Again since the transformation (µ, τ) 7→ (µ, σ) is a rescalation of
σ then (µ, τ) is a β-orthogeodesic parametrization of Pν for some β dependent of ν,
because (µ, σ) is a β-orthogeodesic parametrization (see previous example and (46)).
Moreover Pν is β-flat (ν 6= 1) in the induced geometry (see previous example).

This means that P is a foliation of β-flat β-orthogeodesic leaves Pν (except for ν 6= 1).
As seen from (45) P is not β-orthogeodesic for any β relative to the parameter
(χ, ψ) = (ν, (µ, τ)) since the (µ, τ)-part of the metric depends on ν.

In (µ, τ)-coordinates the densities are given by

t(µ, τ ; ν)(x) =
ν + 1

τν3/2B(1/2, 1/2ν)

{

1 +
(ν + 1)2(x− µ)2

ν3τ 2

}−1/2(ν+1)

.

Note that the families Pν in (µ, τ)-coordinates are location-scale models too. 2
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