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Mathematical models are an important tool to explain and com-
prehend complex phenomena, and unparalleled computational
advances enable us to easily explore them without any or little
understanding of their global properties. In fact, the likelihood of
the data under complex stochastic models is often analytically or
numerically intractable in many areas of sciences. This makes it
even more important to simultaneously investigate the adequacy
of these models—in absolute terms, against the data, rather than
relative to the performance of other models—but no such proce-
dure has been formally discussed when the likelihood is intractable.
We provide a statistical interpretation to current developments in
likelihood-free Bayesian inference that explicitly accounts for dis-
crepancies between the model and the data, termed Approximate
Bayesian Computation under model uncertainty (ABCμ). We aug-
ment the likelihood of the data with unknown error terms that
correspond to freely chosen checking functions, and provide Monte
Carlo strategies for sampling from the associated joint posterior
distribution without the need of evaluating the likelihood. We
discuss the benefit of incorporating model diagnostics within an
ABC framework, and demonstrate how this method diagnoses
model mismatch and guides model refinement by contrasting three
qualitative models of protein network evolution to the protein
interaction datasets of Helicobacter pylori and Treponema pal-
lidum. Our results make a number of model deficiencies explicit,
and suggest that the T. pallidum network topology is inconsistent
with evolution dominated by link turnover or lateral gene transfer
alone.

Bayesian inference | intractable likelihoods | Markov chain Monte Carlo |
Approximate Bayesian Computation | model uncertainty

I n the quest to comprehend complex observations, hypothe-
ses about underlying mechanisms are formalized in terms of

precise mathematical models (1). Much of statistical reasoning
then proceeds in an iterative process between data acquisition,
data analysis, and model development (2). At the ith iteration,
the interpretation of observed data x0 in terms of some tar-
get parameters θ conditional on a tentative, probabilistic model
Mi has a long tradition in Bayesian inference (3). The focus is
typically on the posterior density f (θ | x0, Mi), which is related
to the likelihood f (x0 | θ , Mi) and the prior πθ (θ | Mi) via Bayes’
Theorem:

f (θ | x0, Mi) = f (x0 | θ , Mi)πθ (θ | Mi)/f (x0). [1]

To explore whether the current model Mi is consonant with x0, and
to guide further model development, Bayesian predictive diagnos-
tics (4, 5) ask whether x0 can be viewed as a random observation
from a predictive distribution m(x|Mi) in terms of a chosen discrep-
ancy function ρ(x, x0), x ∼ m; interpretation of such diagnostics
has been the subject of lively debate (6, 7). Application of this
machinery for complex models is provided by the workhorses
of Bayesian inference (8), such as Markov Chain Monte Carlo
(MCMC), as long as the likelihood is readily evaluable up to a
normalizing constant.

In many areas of science, such as econometrics (9), molecu-
lar genetics (10), epidemiology (11), and evolutionary systems
biology (12), the likelihood is sometimes intractable. Neverthe-
less, given a value of θ , it is typically easy to simulate data from
f (·|θ , Mi). Approximate Bayesian Computation (ABC), reviewed
in ref. 10, proposes to infer θ by comparing simulated data x to
the observed data x0, in terms of a (real-valued) univariate dis-
crepancy ρ that combines a set of (computationally tractable)
summaries S = (S1, . . . , Sk, . . . , SK ). In its simplest form, values
of θ for which the discrepancies are within τ ≥ 0 are retained to
define the “approximate likelihood”

tτ(θ) = 1
τ

∫
111{|ρ(S(x), S(x0))| ≤ τ/2}f (x|θ , Mi)dx [2]

in the sense that as τ → 0, tτ(θ) should approach the likelihood
of the summaries, f (S(x0)|θ , Mi); see Fig.1A and the supporting
information (SI) Appendix, subsection S1.2. ABC may be embed-
ded into Bayesian methods to formally select one model from a
specified collection of models, or to average them (13–15); see Fig.
1B. However, relative comparisons between models do not convey
whether models correspond adequately to the observed data and,
without exploring the adequacy of models to explain the data, the
meaning of reporting θ from Eq. 2 remains unclear, see Fig. 2.

We continue in believing that “all models are wrong but
some are useful” (2), which prompts us to interpret several
ρk(Sk(x), Sk(x0)) as realizations of real-valued error terms, denoted
by εεε = (ε1, . . . , εK ) (16). Error terms are not observed, and must be
estimated from the data; we develop a theoretical framework and
provide an algorithm, ABCμ, for this purpose when the likelihood
is intractable. We intentionally focus on the posterior distributions
of components of εεε to make probabilistic statements of mismatch
between the model and the data (17) and hence to facilitate model
criticism, as summarized in Fig. 1C.

Postgenomic data such as protein interaction networks (PINs)
are now available for a growing number of organisms, (e.g., refs.
18 and 19). They offer a new perspective on the function of all
organisms, and are, in addition to individual gene or genomic
approaches, increasingly useful to elucidate the evolution of living
systems, (e.g., refs. 12, 20, and 21), despite being noisy, incom-
plete, and static descriptions of the real, transient protein net-
work (22). To elucidate the network evolution of prokaryotes,
we here analyze the compatibility of the Treponema pallidum
and Helicobacter pylori PIN datasets with a set of competing
models inspired by fundamentally different modes of network
evolution.
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Fig. 1. Comparison of ABC versus our implementation of likelihood-free
inference, on a fictitious PIN dataset x0, fictitious models with a single, com-
mon parameter θ , and one summary, DIAM, with observed value 13. The
points represent posterior samples of θ and DIAM and resemble more a
“bouncy castle” than a likelihood surface. (A) In “standard” ABC, inference
proceeds by retaining those samples (blue triangles) for which the realized
errors are smaller than τ (here, τ = 2), and are taken to approximate the
posterior density of θ (Top). (B) In “standard” ABC, different models (blue,
red, yellow) may be compared based on the number of retained samples
under one model relative to that number under all other models (Top Left),
for instance, in terms of the log odds ratio (Top Right), here indicating that
model M3 performs best. (C) We propose to use the generated data to a
fuller extent by augmenting the likelihood (vertical dimension, ε). Discrepan-
cies between the data and the models are made explicit in terms of posterior
quantities of ε.

ABC under Model Uncertainty∗

Joint Posterior Density of Model Parameters and Summary Errors. For
the purpose of model criticism in situations where the likelihood
is intractable, define the unknown error ε as the random variable
with conditional probability distribution

Pθ , x0 (ε ≤ e) =
∫

X
111{ρ(S(x), S(x0)) ≤ e}f (x|θ , Mi)dx†. [3]

Next, we assume that Pθ , x0 (ε ≤ e) has a density ξθ , x0 with respect
to an appropriate measure for ρ.† It is natural to suggest using this
quantity as an augmented likelihood for x0 under ρ while adhering
to the current model,

θ , ε → fρ(x0|θ , ε, Mi) = ξθ , x0 (ε). [4]

We thus capture the direct information brought by the discrep-
ancies ρ on θ and/or model Mi in a scalar value. For a given
prior πθ ,ε(θ , ε|Mi), we embrace two aspects of statistical reasoning,

∗For ease of exposition, we start with a scalar error term ε corresponding to a univariate
discrepancy ρ, and later generalize to multidimensional error terms. In ABC, a set S of
summaries is commonly combined into the univariate ρ; at a first reading it may help to
think of S as a single summary. In particular, it may be useful to take f (x|θ , Mi ) as the
one-dimensional Gaussian density with mean θ and fixed variance, and ρ(S(x), S(x0)) as
the difference x − x0.

†We denote the Indicator function with 111, and particular limits of a sequence of functions
with δ (see Eq. S1 in SI Appendix, S1.1). If ρ is continuous, ξθ , x0 is taken with respect to the
Lebesgue measure; in many applications, X is a finite set and ξθ , x0 is then understood
with respect to a counting measure.

parameter inference and model criticism, simultaneously by the
joint posterior density

fρ(θ , ε|x0, Mi) = ξθ , x0 (ε)πθ ,ε(θ , ε|Mi)/fρ(x0|Mi), [5]

using the data once.‡ In practice, we take πθ ,ε = πε×πθ ,§ reflecting
our inability to quantify a priori model adequacy for a value of θ .
The posterior relationship Eq. 5 exploits the dependence between
model error and model parameterization. ABC only infers model
parameterization from realized model errors after simulation and
does not question the adequacy of the likelihood model.

The simplest algorithm to sample from Eq. 5 is:
Std-ABCμ1 Sample θ ∼ πθ (θ | Mi), simulate x ∼ f (· | θ , Mi) and
compute ε = ρ(S(x), S(x0)).
Std-ABCμ2 Accept (θ , ε) with probability proportional to
πε(ε | Mi), and go to Std-ABCμ1.

Interpretation of the Marginals: Parameter Inference and Model
Criticism. The thrust of this article is to recognize the utility of
the unknown error ε for model criticism. By design, nonzero val-
ues of ρ indicate discrepancies between the model and the data,
so that intuitively, only if the model matches the data, we expect
the mode of ξθ , x0 (ε) to be on average zero for some value of θ
if the summaries behave sufficiently well. Parameter inference
based on the marginal posterior distribution fρ(θ |x0, Mi) is justified
in an “approximate likelihood” sense, because, under regular-
ity assumptions (SI Appendix, S1.1) on ξθ , x0 (ε) which we assume
throughout this section,

fρ(θ |x0, Mi) ∝
∫

πε(ρ(S(x), S(x0))|Mi)f (x|θ , Mi)πθ (θ |Mi)dx. [6]

Setting πε(ε|Mi) = 111{|ε| ≤ τ/2}/τ, we recover the “standard”
ABC approximation Eq. 2; please see SI Appendix, S1.2 for more
details and examples. We can interpret the variety of ABC kernels
as exerting a particular prior belief on the adequacy of the current
model (23). In agreement with methods of ABC (SI Appendix,
S1.2), we always choose a prior πε(ε|Mi) with mode at zero to
accommodate a prior belief that the model is plausible. For the
purpose of parameter inference, it is sufficient to “plug-in” real-
ized errors in Eq. 6, but here we also focus on the marginal
posterior error fρ(ε|x0, Mi). For the prior predictive error density
Lρ(ε) = ∫

δ{ρ(S(x), S(x0)) = ε}π(x|Mi)dx we have that

fρ(ε|x0, Mi) = Lρ(ε)πε(ε|Mi)/fρ(x0|Mi) [7]

(see SI Appendix S1.1). Hence, fρ(ε|x0, Mi) can be understood as
an error density under the prior predictive distribution that is
weighted according to error magnitude. Small error boosts the
prior belief for a particular value of θ , see Eq. 6. We thus pre-
fer model criticism based on Eq. 7 rather than Lρ(ε) as it focuses
on those θ actually inferred from the perspective of Eq. 5, and
attenuates the dependence of Lρ(ε) on πθ (θ |Mi). This dependence
is undesirable in that a faultless model could appear question-
able under unfortunate prior choice (SI Appendix, S1.3). For the
practitioner, we provide a computationally feasible method for
model criticism within the prior predictive setting as an alterna-
tive to using data-splitting techniques that are here difficult or too
expensive to construct (5, 7, 17).

Multidimensional Error Terms εεε. The complexity of the settings to
which ABC is typically applied makes it difficult to think of a uni-
versal discrepancy function ρ. The joint posterior distribution of
multiple errors εεε = (ε1, . . . , εK ), corresponding to K discrepancies

‡Our developments are subject to the integrability of Eq. 5.
§For clarity, we subscript πθ and πε to denote the priors in θ and ε, respectively. From

now on, we drop the conditioning of πε on θ . Finally, we denote with π(x|Mi ) the prior
predictive density

∫
f (x|θ , Mi )π(θ |Mi )dθ .
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Fig. 2. N (θ , 1) toy example to illustrate our approach to diagnose model
mismatch with posterior densities of multiple error terms when the likeli-
hood is intractable. Suppose we have obtained a dataset x0 of 200 inde-
pendent samples. We believe each sample of x0 to be generated from
f (·|θ , M1) = N (θ , 1) with θ unknown, whereas in reality x0 is exponential with
rate θt = 0.2 (denoted with Mt ). By construction, the sample mean (MEAN)
is a sufficient statistic to estimate both θ and θt . To illustrate one iteration of
ABCμ, suppose we sample θ = 3, εMEAN = −0.94 from the priors (respectively,
uniform and exponential). We generate 50 errors xb − x0 (A, red points for
xb ∼ f (·|θ = 3, M1)), estimate the associated error density ξ̂(·;xxx) (A, black
line) with a biweight kernel, and compute ξ̂(εMEAN;xxx) (A, blue point). Using
algorithm ABCμ, we estimated posterior quantities of θ and ε under various
summary statistics. Summarizing x only with MEAN, the method indicates
no model mismatch (B, row 1, column 2; 95% high posterior density interval
(HPD)) and θ is estimated as if x0 were indeed N (1/θt , 1) (B, row 1, columen 1;
posterior mean). Reminding ourselves that likelihood-free inference is honest
in that inference is here based on xb − x0, we see that the algorithm samples
correctly from Eq. 9. Observing that under M1 the standard deviation (SD) is 1
independently of θ and that SD is 1/θt under Mt , we recognize that progress
is possible when a comprehensive set of summaries is employed. Repeating
our method based on MEAN, SD, and the 0.25 quantile (QU0.25), targetting
Eq. 9, we find that all error terms indicate model mismatch (B, row 2, column
2-4; and C, posterior error densities for 4 runs of ABCμ starting from overdis-
persed initial values (colored solid lines) versus the (dashed) prior πεκ (εκ|Mi)).
If posterior quantities of comprehensive error terms clearly diagnose model
mismatch as in this example, we recommend questioning the interpretability
of θ |x0 in terms of the likelihood model. For reference, we applied standard
(Rejection) ABC to this example; conditioning on the summaries MEAN, SD,
and QU0.25, we find that the numerical estimates of θ |x0 agree between ABC
and ABCμ (with τ fixed as in B, third row).

ρk(Sk(x), Sk(x0)) (SI Appendix, S1.4), facilitates to diagnose model
mismatch more systematically and comprehensively; we have

fρ(θ , εεε | x0, Mi) ∝ ξθ , x0 (εεε)πθ (θ | Mi)πε(εεε | Mi). [8]

In the ABC literature, it has been recognized that attempt-
ing to match jointly a set of summaries is too conserva-
tive, and instead a linear combination of summaries is typi-
cally employed (14). Nonetheless, we believe that each sum-
mary captures aspects of model discrepancy. To control sev-
eral summaries stringently for accurate and robust parame-
ter inference (12), mink ξk,θ , x0 (εk) here supersedes ξθ , x0 (εεε)
(see Materials and Methods, section 3, and SI Appendix, S1.6).

Algorithm. The major impediment in ABC—that the likelihood
surface is turned into a “bouncy castle,” see Fig. 1—is in the
multivariate case exacerbated by the fact that the unknown
error terms are correlated by design, and easily outnumber the
θ ’s. To obtain a smoothed, stabilized approximation to ξk,θ , x0 (ξk)
that better controls the volatility of the simulated datasets, we
employ kernel density estimates ξ̂k(εk; x) := 1/(Bhk)

∑B
b=1 K([εk−

Table 1. Acceptance rate and average mixing quality in θ

Algorithm B acc.prob Burn-in 103 neff(θ)
n

neff(θ)
CPU hr

ABC-MCMC (26) 1 0.002 105 0.7 13.4
Zoom-ABC-MCMC (12) 50/1 0.002 800 0.7 23.8
AUX-ABC (27) 1 0.01 105 0.6 4.5
ABCμ with asymmetric

walk in ε, Eq. S12 50 0.36 771 25.6 24.6

Performance results are obtained from inference from the H. pylori PIN
dataset; tuning parameters have been optimized for each algorithm sep-
arately (SI Appendix, S1.15). The effective sample size neff is taken as an
indicator of mixing quality across n iterations (SI Appendix, S1.14). Impor-
tantly, neff(θ)/CPU hr must be compared relative to the achieved absolute
errors (see further SI Appendix, Table S2). Higher acceptance rates are not
necessarily desirable. As a rule of thumb, we found that, here, rates >0.45
reduced the effective sample size.

ρk(Sk(xb), Sk(x0))]/hk) in line with ABC (SI Appendix, S1.5). In
theory, this corresponds to replacing ξθ , x0 (εεε) in Eq. 8 with
mink

∫
h−1

k K((εk − vk)/hk)ξθ , x0 (v)dv. In practice (SI Appendix,
S1.7), we set B = 50 and attain under technical modifications
(see Material and Methods, section 3) a smoothing approximaion

f̂ρρρ(θ , εεε,xxx|x0, Mi) ∝ πθ (θ |Mi)πεεε(εεε|Mi) min
k

ξ̂k(εk;xxx)f (xxx|θ , Mi) [9]

on the auxiliary space (θ , εεε,xxx). Various Monte Carlo strategies
(8, 24) may be devised to sample from Eq. 9 (SI Appendix,
S1.8); our MCMC implementation (SI Appendix, S1.9), particu-
larly addresses the codependencies of ρk with a careful choice of
q(εεε → εεε′). Suppose an initial sample (θ , εεε) and prior specifications
(SI Appendix, S1.10);

ABCμ1 if now at θ , move to θ ′ according to q(θ → θ ′)
(SI Appendix, S1.12).

ABCμ2 Generate xxx′ ∼ f (·|θ ′, Mi), and construct ξ̂k(·; xxx′) for all
k. If now at εεε, move to εεε′ according to q(εεε → εεε′). We guide
this proposal with ξ̂k(·; xxx) and ξ̂k(·; xxx′) (SI Appendix, S1.12).

ABCμ3 Accept (θ ′, εεε′, xxx′) with probability

min

{
1,

π(θ ′, εεε′|Mi)q(θ ′ → θ)q(εεε′ → εεε)
π(θ , εεε|Mi)q(θ → θ ′)q(εεε → εεε′)

× mink ξ̂k(ε′
k;xxx′)

mink ξ̂k(εk;xxx)

}
,

and otherwise stay at (θ , εεε,xxx), then return to ABCμ1.

Please see Materials and Methods, section 4, for a technical dis-
cussion and Tables 1 and 2 for a comparison of the efficiency of
ABCμ with related samplers.

Model Criticism by Revealing Model Inconsistency Across Discrepan-
cies. For large datasets and/or complex models, the discrepancies
ρk are often codependent (5, 17). Our approach to model crit-
icism capitalizes on the fact that the co-dependencies among

Table 2. Mixing quality of the unknown error terms

103neff/n for ε of the summaries

Algorithm B WR DIA CC ND FRAG

AUX-ABC (27) with GRW in ε 1 0.1 0.23 0.13 0.07 0.05
ABCμ with GRW in ε 50 10.6 3.1 14.9 3.1 2.6
ABCμ with asymmetric

walk in ε, Eq. S12 50 140 41.7 48.1 71.6 101

Mixing quality is quantified with the effective sample size neff for each
error εk (ABCμ) or random mismatch threshold (AUX-ABC), standardized per
1,000 iterations; tuning parameters have been optimized for each algorithm
(SI Appendix, S1.15).
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Fig. 3. Numerical estimates, obtained from ABCμ, of the approximate pos-
terior error densities f̂ρρρ(εk |x0, Mi) combined with 50% box plots (black bars)
for 2 of 7 summaries to quantify departures of 3 competing models of net-
work evolution to the T. pallidum PIN dataset; PAPr employs sampling scheme
RS1, whereas all others use sampling scheme RS2. ODBOX of PAPr is miniatur-
ized by a factor of 5 to improve the visualization of differences across models
for RS2. Whereas PAPr and PAP depart in ODBOX from the data, DD+LNK+PA
departs (slightly) in ND from the observed PIN, suggesting that only DDA+PA
provides an adequate fit the T. pallidum dataset.

Sk(x) under the predictive distribution π(x|Mi) are typically dif-
ferent from those among Sk(x0) if the model is not adequate,
revealing model inconsistency in terms of conflicting, codependent
summaries. As exemplified in Fig. 2, only a comprehensive set of
summaries may enable model criticism; it is our view that choos-
ing comprehensive summaries and discrepancy functions is crucial
to ensure the approximation quality of Eq. 6 to the likelihood
(12) as well as for model criticism based on posterior densities
of summary errors (Eq. 7). To explore model adequacy, we rec-
ommend investigating various posterior quantities of f̂ρρρ(εεε|x0, Mi)
and using centrality measures such as high probability density
(HPD) intervals; we remark at this point that marginal prop-
erties are in our setting typically not independent and caution
against the overinterpretation of marginal diagnostics (see further
Fig. 3).

Example: Criticizing Models of PIN Evolution
The structure of PINs derives from multiple stochastic processes
over evolutionary timescales, and a number of mechanisms, based
on randomly growing graphs, have been proposed to capture
aspects of network growth (ref. 29 and references therein). We
briefly motivate three models of network evolution. Recent com-
prehensive analyses across 181 prokaryotic genomes suggest that
lateral gene transfer probably occurs at a low rate, but that, cumu-
latively, ≈80% of all genes in a prokaryotic genome are involved

in lateral gene transfer (30); model PAP
¶

is inspired by this sce-
nario as it proposes network evolution in terms of attachment
processes only (Materials and Methods, section 2). At least 40%
of genes in prokaryotes appear to be products of gene dupli-
cation (31). Model DDA+PA (Materials and Methods, section
2) is designed to quantify the potential role of duplication and
divergence in network evolution (12). At least for eukaryotes,
the formation or degeneration of functional links between pro-
teins (link turnover) is estimated to occur at a fast rate of ≈10−5

changed interactions per My per protein pair (20). We extend
model DDA+PA into Model DD+LNK+PA (Materials and Meth-
ods, section 2), which includes link turnover in terms of preferen-
tial loss and gain of protein interactions. Crucially, ABC enables
us to account for data incompleteness. Previously, we modeled
missing data by randomly sampling proteins from the simulated
data (RS1) (12). Here, we examine an alternative model that ran-
domly samples from those proteins that have an interaction in the
simulated data (RS2). (For the former, we add “r” to the model
acronyms.) Necessarily, all models remain conceptually limited
and must be cautiously interpreted; for example, the assumption
that the network as a whole evolves at homogeneous rates has been
questioned (32).

Models of Network Evolution Inspired by Horizontal Gene Transfer,
Duplication-Divergence, and Link Turnover. We ask whether the
T. pallidum PIN topology is compatible with a number of fun-
damentally different modes of network evolution, in guise of
simplified models. We successfully checked (Materials and Meth-
ods, section 5) and applied ABCμ (Materials and Methods, section
6) to sample from f̂ρ(θ , εεε|x0, ·) for the models PAP, DDA+PA, and
DD+LNK+PA (under both sampling schemes RS1 and RS2);
see Fig. 3 and SI Appendix, Figs. S5 and S6. Based on RS1 (12),
all models depart significantly in FRAG as exemplified for PAPr
in Table 3. This motivated us to consider alternative models of
missing data, and we found no significant departures in FRAG for
any of the considered evolution models under RS2; see Table 3.
Turning to the 6 remaining discrepancy functions, we observe
(Table 3 and Fig. 3), that only model DDA+PA matches the
Treponema pallidum PIN adequately, suggesting that an evolu-
tionary mode of duplication-divergence is most consistent with
the T. pallidum PIN dataset. Repeating our analysis based on
RS2 for the Helicobacter pylori PIN dataset, we could not sub-
stantiate our results further, because all considered models pro-
vide an adequate fit to the data. This is surprising, because
we expect a similar power of our method on both datasets
(SI Appendix, S1.19), and may point to qualitative differences
among the two PINs owing to different, underlying experimental
protocols.

Conclusion
The growing complexity of realistic models renders Bayesian
model criticism increasingly important and difficult. In this arti-
cle, we provide Bayesian techniques to comprehensively quantify

¶
Model acronyms are explained in Materials and Methods, section M2, with underlined
characters.

Table 3. Fifty percent high probability density intervals of εk |x0, indicating model mismatch relative to the T. pallidum PIN

Mi εCONN εWR εODBOX εDIA εCC εND εFRAG

PAPr [−0.11, 0.11] [−0.11, 0.15] [0.28, 0.72] [−0.16, 0.92] [-0.012,-0.002] [−0.20, 0.05] [0.08, 0.18]
PAP [−0.15, 0.14] [−0.12, 0.16] [0.02, 0.61] [−0.60, 0.91] [-0.010,-0.003] [−0.66, 0.01] [−0.16, 0.01]
DDA+PA [−0.24, 0.29] [−0.34, 0.48] [−0.12, 0.20] [−0.48, 0.50] [−0.002, 0.027] [−0.66, 0.05] [−0.01, 0.29]
DD+LNK+PA [−0.27, 0.21] [−0.20, 0.17] [−0.11, −0.55] [−0.59, 0.32] [−0.018,−0.006] [−1.03,−0.16] [0,0.11]

Note that the scales of εk correspond to the scales of the summaries, so that small numbers are meaningful. We caution against overinterpretation because
the errors are not independent. See Materials and Methods, section 6, for further details.
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discrepancies between the likelihood model and the data, simultane-
ously with parameter inference in situations when the likelihood is
intractable, thus providing valuable guidance on the interpretabil-
ity of parameter estimates and on how to improve models. We
found this methodology helpful in iteratively identifying an ade-
quate model of network evolution in terms of a large number
of summaries; in particular, the PIN topology of the prokaryote
T. pallidum provides little support for network evolution dom-
inated by link turnover, or by lateral gene transfer alone. We
close by cautioning that it is difficult to convincingly associate
a formal framework to our high probability density intervals on
multiple diagnostic error terms (6, 7). The presented methods
will be useful in the initial stages of model and data exploration
(16), and in particular, in efficiently scrutinizly several models by
direct, inspection of their summary errors (5), prior to more formal
analyses (14).

Materials and Methods
1. Summaries. PINs can be described as graphs that contain a set of nodes,
interacting proteins, and undirected binary edges, representing the observed
interactions between the proteins. We consider the following topological
summary statistics of PINs: Order, the number of nodes; size, the number
of edges; node degree, the number of edges associated with a node; ND,
average node degree; distance, the minimum number of edges that have
to be visited to reach a node j from node i; WR, within-reach distribution,
the mean probability of how many nodes are reached from one node within
distance k = 1, 2, . . . (12); DIA, diameter, the longest minimum path among
pairs of nodes in a connected component; CC, cluster coefficient, the mean
probability that 2 neighbors of a node are themselves neighbours; BOX, the
number of 4-cycles with 4 edges among the 4 nodes; FRAG, fragmentation,
the percentage of nodes not in the largest connected component; CONN,

log connectivity distribution, log(p(k1, k2)ND
2
)/(k1p(k1)k2p(k2)), the deple-

tion or enrichment of edges ending in nodes of degree k1, k2 relative to
the uncorrelated network with same node degree distribution; ODBOX, BOX
degree distribution, the probability distribution of BOXes with k edges to
nodes outside the BOX. Examples are provided in SI Appendix, Table S1.

2. Algorithmic Details of the Models of Network Evolution. Given a
PIN x0, we simulate a network under a given model to the number of genes
in the respective genome, and account for incompleteness in x0 by either
RS1 or RS2. In model PAP evolution proceeds only by preferential attachment
(33); at each step the number of attachments minus one is Poisson distributed
with mean m. DDA+PA (12) features preferential attachment of a new node
to one node of the existing network with probability α, or, with probabil-
ity 1 − α, a step of node duplication and immediate link divergence. In the
latter case, a parent node is randomly chosen and its edges are duplicated.
For each parental edge, the parental and duplicated one are then lost with
probability δDiv each, but not both; moreover, at least one link is retained to
any node. The parent node may be attached to its child with probability δAtt.
DD+LNK+PA is a mixture of duplication-divergence (as above with parameter
δDiv but fixed δAtt = 0), link addition and deletion, and preferential attach-
ment as in DDA+PA. Link addition (deletion) proceeds by choosing a node
randomly, and attaching it preferentially to another node (deleting it prefer-
entially from its interaction partners) (20). At each step unnormalized weights
are calculated as follows. For duplication-divergence, the rate κDup is multi-
plied by the order of the current network; for link addition, the rate κLnkAdd is
multiplied by

(Order
2

)− size; for link deletion, the unnormalized weight of link
addition is multiplied by κLnkAdd. Preferential attachment occurs at a constant
frequency α, and the weights of duplication, link addition, and link deletion
are normalized so that their sum equals 1−α. Each of the components is cho-
sen with these weights; the parameter ranges are determined by the prior
(SI Appendix, S1.10).

3. Combining Multiple Error Terms. It is difficult to compare ξ̂k,θ ,x0 (εk)
across k without further transformation, because summaries differ in their
sensitivity to changes in θ (12) so that the scales of the density estimates vary
across summaries and (to a lesser extent) across θ ; see SI Appendix, Fig. S1.
In Rejection-ABCμ (SI Appendix, S1.8), summaries may be precomputed and
standardized, but this is not applicable in MCMC. We propose to standard-
ize the variance of each ξ̂k to one, bearing in mind that this might reduce
approximation quality in some cases.

4. Details of ABCμ. ABCμ is similar to the MCMC algorithm proposed in
ref. 27; the latter also extends the state space, but includes a scalar τ (cir-
cumventing the need to design an efficient proposal q(εεε → εεε′)). We show
that ABCμ eventually samples from f̂ρρρ(θ , εεε,xxx), provide convergence results
for the smoothing approximation (SI Appendix, S1.5 and S1.11), discuss our
non-standard proposal kernel (SI Appendix, S1.12), and provide final details
(SI Appendix, S1.13). We do not claim that our smoothing approach based
on repeated sampling from f (·|θ , Mi) comes at no cost. What we contend is
that (i) we obtain improved mixing quality relative to ABC within MCMC,
owing to a stabilized, numerical approximation of the likelihood with Eq. 9,
and (ii) that we can construct more efficient proposal kernels, a point partic-
ularly relevant for ABCμ, where the number of error terms easily exceeds the
dimensionality of θ . With respect to (i), we compared ABCμ with ABC-MCMC
(26), zoomABC-MCMC (12), and AUX-ABC (27) on the H. pylori PIN dataset
(SI Appendix, S1.15). Table 1 illustrates that ABCμ results in much improved
acceptance rates and better mixing; this has already been suggested by Bec-
quet and Przeworski (28) when f (S(x)|θ , Mi) is available in closed form. As for
(ii), we devised a guided, asymmetric random walk in εεε (SI Appendix, S1.12).
This greatly improved both overall acceptance rate and mixing in εεε compared
to AUX-ABC and ABCμ with a (symmetric) Gaussian random walk (GRW) in εεε

(Table 2), exemplifying that effectively, repeated sampling may improve the
efficiency of standard MCMC methods.

5. Testing ABCμ on PINs. It was unclear whether our implementation is
efficient enough to sample from Eq. 9. First, estimates of Eq. 7 might be inher-
ently biased as for technically similar algorithms, and/or the PIN topology, in
terms of the chosen summaries, might not be informative enough to evidence
discrepancies between the model and the data. Second, given our smooth-
ing approximation based on an adaptively chosen bandwidth h = h(xxx), we
might be worried that posterior quantities of θ may be unreliable. We have
addressed both concerns empirically (SI Appendix, S1.16), comforting that
ABCμ provides useful numerical estimates of f̂ρρρ(εεε | x0, Mi) to criticize the mod-
els of network evolution considered here, and suggesting that samples θ | x0
from the marginal of Eq. 9, obtained by ABCμ, provide a good approximation
to fρρρ(θ | x0, Mi).

6. Criticizing Models of Network Evolution. To contrast models PAP,
DDA+PA, and DD+LNK+PA to the T. pallidum PIN dataset, ABCμ based on
the summaries CONN, WR, ODBOX, DIA, CC, ND, FRAG, and τ(ε|PAP) =
(0.2, 0.2, 1.4, 1, 0.007, 0.7, 0.4), τ(ε|DDA + PA) = (1, 0.7, 0.8, 0.5, 0.05, 0.5, 0.4),
and τ(ε|DD + LNK + PA) = (0.3, 0.3, 0.5, 0.7, 0.02, 1.1, 0.25) were used to
generate 4 Markov chains as in SI Appendix, S1.15.

ACKNOWLEDGMENTS. We thank M.P.H. Stumpf for stimulating discussions,
T. Hinkley for providing an efficient C++ library to evaluate network sum-
maries, and M. Sternberg for comments on an earlier version of the man-
uscript, and two anonymous referees for valuable comments on an earlier
version of this article. Computations were performed at the Imperial Col-
lege High Performance Computing Centre http://www3.imperial.ac.uk/ict/
services/teachingandresearchservices/highperformancecomputing. O.R. was
supported by the Wellcome Trust; C.A. by an Advance Research Fellowship
from the Engineering and Physical Sciences Research Council, C.W. by the
Danish Cancer Society and the Danish Research Councils, and S.R. by the
Biotechnology and Biological Sciences Research Council and the Centre for
Integrative Systems Biology at Imperial College.

1. May RM (2004) Uses and abuses of mathematics in biology. Science 303:
790–793.

2. Box GEP (1976) Science and statistics. J Am Stat Assoc 71:791–799.
3. Bernado JM, Smith AFM (1994) Bayesian Theory (Wiley & Sons, Chichester, UK), 1st

Ed.
4. Box GEP (1980) Sampling and Bayes’ inference in scientific modelling and robustness.

J R Soc A (General) 143:383–430.
5. Gelfand AE, Dey DK, Chang H (1992) Bayesian Statistics 4, eds Bernardo JM, Berger

JO, Dawid AP, Smith AFM (Oxford Univ Press, Oxford), pp 147–167.
6. Meng XL (1994) Posterior predictive p-values. Ann Stat 22(3):1142–1160.
7. Bayarri MJ, Berger JO (1999) Bayesian Statistics 6, eds Bernardo JM, Berger JO, Dawid

AP, Smith AFM (Oxford Univ Press, Oxford), pp 53–82.
8. Liu JS (2001) Monte Carlo Strategies in Scientific Computing (Springer, New York),

343 pp.
9. Gouriéroux C, Monfort A (1996) Simulation-Based Econometric Methods (Oxford

Univ Press, Oxford).
10. Marjoram P, Tavaré S (2006) Modern computational approaches for analysing

molecular genetic variation data. Nat Rev Genet 7:759–770.

11. Riley S, et al. (2003) Transmission dynamics of the etiological agent of SARS in Hong
Kong: Impact of public health interventions. Science 300:1961–1966.

12. Ratmann O, et al. (2007) Using likelihood-free inference to compare evolutionary
dynamics of the protein networks of H.pylori and P.falciparum. PLoS Comp Biol
3:e230.

13. Wilkinson RD (2007) Bayesian inference of primate divergence times. PhD thesis
(Univ of Cambridge, Cambridge).

14. Fagundes NJR, et al. (2007) Statistical evaluation of alternative models of human
evolution. Proc Natl Acad Sci USA 104:17614–17619.

15. Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH (2008) Approximate Bayesian
computation scheme for parameter inference and model selection in dynamical
systems. J R Soc Interf, 10.1098rsif. 2008.0172.

16. Zellner A (1975) Bayesian analysis of regression error terms. J Am Stat Assoc
70:138–144.

17. O’Hagan A (2003) Highly Structured Stochastic Systems, eds Green PJ, Hjort NL,
Richardson S (Oxford Univ Press, Oxford), pp 423–453.

18. Rain JC, et al. (2001) The protein-protein interaction map of Helicobacter pylori.
Nature 409:211–215.

10580 www.pnas.org / cgi / doi / 10.1073 / pnas.0807882106 Ratmann et al.

http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/ST1_Pdf
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/Supplemental_PDF#nameddest=SF1
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix
http://www.pnas.org/cgi/data/0807882106/DCSupplemental/SI_Appendix


ST
AT

IS
TI

CS
EV

O
LU

TI
O

N

19. Titz B, et al. (2008) The binary protein interactome of Treponema pallidum—The
Syphilis spirochete. PLoS ONE 3:e2292.

20. Beltrao P, Serrano L (2007) Specificity and evolvability in eukaryotic protein interaction
networks. PLoS Comp Biol 3:e25.

21. Pinney JW, Amoutzias GD, Rattray M, Robertson DL (2007) Reconstruction of ances-
tral protein interaction networks for the bZIP transcription factors. Proc Natl Acad Sci
USA 104:20449–20453.

22. Hakes L, Pinney JW, Robertson DL, Lovell SC (2008) Protein-protein inter-
action networks and biology—What’s the connection? Nat Biotechnol 26:
69–72.

23. Wilkinson RD (2008) Approximate Bayesian Computation (ABC) gives
exact results under the assumption of model error. arXiv:0811.3355v1
[stat.CO].

24. Sisson SA, Fan Y, Tanaka MM (2007) Sequential Monte Carlo without likelihoods. Proc
Natl Acad Sci USA 104:1760–1765.

25. Gilks WR, Richardson S, Spiegelhalter DJ (1996) Markov Chain Monte Carlo in Practice
(Chapman & Hall, London).

26. Marjoram P, Molitor J, Plagnol V, Tavaré S (2003) Markov Chain Monte Carlo without
likelihoods. Proc Natl Acad Sci USA 100:15324–15328.

27. Bortot P, Coles S, Sisson S (2007) Inference for stereological extremes. J Am Stat Assoc
102:84–92.

28. Becquet C, Przeworski M (2007) A new approach to estimate parameters of speciation
models with application to apes. Genome Res 17:1505–1519.

29. Knudsen M, Wiuf C (2008) A Markov chain approach to randomly grown graphs.
J Appl Math, 10.1155/2008/190836.

30. Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative
impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci USA
105:10039–10044.

31. Chothia C, Gough J, Vogel C, Teichmann SA (2003) Evolution of the protein repertoire.
Science 300:1701–1703.

32. Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal
body plans. Science 311:796–800.

33. Barabási A, Albert R (1999) Emergence of scaling in random networks. Science
286:509–512.

Ratmann et al. PNAS June 30, 2009 vol. 106 no. 26 10581



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    9.50000
    9.50000
    9.50000
    9.50000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.50000
    9.50000
    9.50000
    9.50000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [614.000 804.000]
>> setpagedevice


