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Abstract We define a subclass of chemical reaction networks called post-transla-
tional modification systems. Important biological examples of such systems include
MAPK cascades and two-component systems which are well-studied experimentally
as well as theoretically. The steady states of such a system are solutions to a system
of polynomial equations. Even for small systems the task of finding the solutions is
daunting. We develop a mathematical framework based on the notion of a cut (a par-
ticular subset of species in the system), which provides a linear elimination procedure
to reduce the number of variables in the system to a set of core variables. The steady
states are parameterized algebraically by the core variables, and graphical conditions
for when steady states with positive core variables imply positivity of all variables
are given. Further, minimal cuts are the connected components of the species graph
and provide conservation laws. A criterion for when a (maximal) set of independent
conservation laws can be derived from cuts is given.

Keywords Polynomial equations · Species graph ·MAPK cascade ·
Rational functions · Chemical reaction networks

Mathematics Subject Classification (2000) 92C42 · 80A30

1 Introduction

Signaling systems play an important role in regulation of cellular processes and are
essential for cellular decision making. Typical signaling systems react to stimulus in the
(cellular) environment and transmit a signal through connected layers of biochemical

E. Feliu (B) · C. Wiuf
Department of Mathematics, University of Copenhagen,
Universitetsparken 5, Copenhagen 2100, Denmark
e-mail: efeliu@math.ku.dk

123

Author's personal copy



282 E. Feliu, C. Wiuf

species. The layers provide means to adjust the response according to the stimulus.
A common form of signaling systems is Post-Translational Modification (PTM) sys-
tems where species are activated in chemical reactions in order to propagate the signal
through the system.

PTM systems have attracted considerable theoretical attention due to their abun-
dance in nature (Huang and Ferrell 1996) and regular form (Thomson and Gunawar-
dena 2009). They are a special type of chemical reaction networks and their dynamics
can be modeled as dx(t)

dt = p(x), where x = (x1, . . . , xn) are the variables (concentra-
tions of species) of the system and p(x) is a vector of polynomials in x (assuming mass-
action kinetics). In particular, small specific systems have been scrutinized, focusing
on the dynamical behavior and the steady states of the systems. Examples include the
biologically important MAPK cascades (Huang and Ferrell 1996; Kholodenko and
Birtwistle 2009; Markevich et al. 2004), as well as simpler signaling cascades systems
(Feliu et al. 2012; Feliu and Wiuf 2011a; Heinrich et al. 2002; Ventura et al. 2008).

We focus on the steady states of a PTM system (defined formally in the next sec-
tion) and how to determine them. Taken with mass-action kinetics, the system’s steady
states are solutions to a set of polynomial equations in the species and with coefficients
given by unknown kinetic rates (i.e. unspecified parameters). In particular, the number
of equations to be solved is equal to the number of species. Even small systems might
have many variables such that analytical solutions are difficult to obtain and numerical
solutions are prone to errors. It is therefore of interest to develop formal procedures
to eliminate variables and reduce the number of equations.

In addition, many PTM systems admit multistationarity (the existence of more
than one steady state under particular biological conditions) which can be seen as a
mechanism for cellular decision making (Markevich et al. 2004). Several non-neces-
sary conditions are known to infer monostationarity (at most one positive steady state)
(Angeli et al. 2010; Craciun and Feinberg 2005; Feinberg 1987). However, when these
fail, multistationarity is difficult to determine and often decided based on a random
parameter search. Procedures to eliminate variables not only assist in reducing the
number of equations to solve but also in reducing the number of effective parameters
of the system. In this way further mathematical as well as computational manipulation
of the steady-state equations can be facilitated.

Our work is inspired by previous work by Thomson and Gunawardena (2009) (see
also King and Altman 1956 for an early development of closely related techniques),
which we extend to embrace a range of important PTM systems such as signaling
cascades, including the MAPK cascade, and two-component systems with phosphore-
lays and phosphotransfer (Krell et al. 2010), as well as systems with self-interactions.
A PTM system has two types of species: substrates (S ) and intermediate complexes
(Y ). We show that the intermediate complexes always can be eliminated from the
steady-state equations. Further, we develop the idea of a cut Sα , a subset of S with
certain properties that allow us to express the steady-state equations as rational func-
tions in the core variables S \Sα , providing an algebraic parameterization of the
steady states in terms of the core variables only.

Elimination of the intermediate complexes is closely linked to the procedure known
as the quasi-steady state approximation which is often employed to simplify the model-
ing equations (King and Altman 1956; Cornish-Bowden 2004). Under the quasi-steady
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state approximation some reactions are assumed to occur at a much faster rate than
other reactions (that is, there is a separation of time scales) such that a steady state
effectively has been reached for the fast reactions. For a special class of PTM systems
this procedure has been formalized by Thomson and Gunawardena (2009). We show
that this elimination can be done generally for PTM systems.

The idea of a cut Sα enables us to write the steady-state equations as a linear sys-
tem of equations in the variables in Sα with coefficients that depend on the reaction
rate constants and the core variables S \Sα . This simplification allows us to relate
the steady-state equations to the Laplacian of a directed graph that is uniquely deter-
mined by the cut and the reactions in the system. Using primarily Tutte’s Matrix-Tree
theorem (Thomson and Gunawardena 2009; Tutte 1948), we show that properties of
the graph determine properties of the steady-state solutions. For example, if the core
variables take positive values at steady state then all other concentrations (including
those of the intermediate complexes) are either zero or positive as well.

Further, we show that cuts relate to conservation laws (conserved quantities that
imply that the dynamics takes place in an affine invariant subspace of R

n). These arise
as connected components in the species graph and are often used as a first step to
reduce the dimensionality of the system. In our approach, conservation laws come
into play after elimination of variables from the steady-state equations. In this way,
we allow for a larger reduction in the number of core variables and a control of the
positivity of the solutions.

The outline of the paper is as follows. In Sect. 2 we review some basic graph
properties and in Sect. 3 we define PTM systems, introduce the notion of a cut and
a non-interacting graph, and relate the concepts to conservation laws in the system.
Section 4 is devoted to variable elimination in the steady-state equations. In Sect. 5 we
provide examples of the elimination procedure, focusing mainly on signaling cascades.

2 Preliminaries

2.1 Graphs and the Matrix-Tree theorem

Consider a graph G with set of nodes V and set of edges E . Two nodes v,w are linked
if there exists a path between them. Being linked is an equivalence relation which
decomposes G into subgraphs called connected components. In particular, a graph is
connected if there is a path between every pair of nodes v and w.

Given a directed graph G, one says that G is strongly connected if for any pair of
nodes v,w there is a directed path from v to w. A spanning tree τ of G is a directed
subgraph with the same node set as G and such that the corresponding undirected graph
is connected and acyclic (that is, contains no cycles). There is a unique undirected path
between any two nodes in a spanning tree (Diestel 2005). A spanning tree τ is said to
be rooted at a node v if the unique path between any node w and v is directed from
w toward the root node v. It follows that v is the only node with no out-edges, that is,
there is no edge of the form v→ w in τ . In addition, there cannot be a node with two
out-edges in τ . Any directed path from v to w in a strongly connected graph can be
extended to a spanning tree rooted at w. Some general references for graph theory are
Diestel (2005) and Gross and Yellen (2006).
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284 E. Feliu, C. Wiuf

If G is labeled, that is, each edge is assigned a non-zero element (label) in some
ring R, then any spanning tree τ inherits a labeling from G and we define

π(τ) =
∏

x
a−→y∈τ

a.

Assume that G has no self-loops. Order the node set {v1, . . . , vn} of G and denote by
ai, j the label of the edge vi → v j . We set ai, j = 0 if there is no edge from vi to v j

(thus ai,i = 0). Let L (G) = {αi, j } be the Laplacian of G, that is the matrix with

αi, j =
{

a j,i if i �= j

−∑n
k=1 ai,k if i = j,

such that the column sums are zero. For each node v j , let Θ(v j ) be the set of spanning
trees of G rooted at v j . Then, the Matrix-Tree theorem states that the maximal minor
L (G)(i j) (the determinant of the minor obtained by removing the i th row and the j th
column of L (G)) is:

L (G)(i j) = (−1)n−1+i+ j
∑

τ∈Θ(v j )

π(τ ).

Note that for notational simplicity we have defined the Laplacian as the transpose of
how it is usually defined and the Matrix-Tree theorem has been adapted consequently.

3 Post-translational modification systems

In this work we focus on chemical reaction networks that arise in connection with
post-translational modification (PTM) mechanisms. The majority of these mecha-
nisms relate to post-translational modification of proteins catalyzed by enzymes, and
relay and transfer of modifier groups:

E + S �� Y ���� E + S∗ P∗ + S �� Y ���� P + S∗�� S→ S∗.

Here S∗, P∗ are modified proteins (substrates), S, P their corresponding unmodified
forms, E a substrate acting as an enzyme, and Y an intermediate complex. In the first
case, the attachment of the modifier group is catalyzed by the enzyme E and follows
a Michaelis–Menten mechanism. In the second case, a modifier group is transferred
from P∗ to S, whereas in the third case the modification of the substrate does not
involve other species. Additionally, intermediate complexes may undergo some trans-
formation before dissociation. For instance, the modification catalyzed by an enzyme
can be modeled with the formation of two (or more) intermediate complexes:

E + S �� Y1�� �� Y2�� �� E + S∗.
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PTM systems thus consist of two types of species: substrates that interact with
each other and intermediate complexes that are formed by interaction of substrates.
Further, a framework for the study of PTM systems needs to incorporate reactions
that account for the formation and dissociation of intermediate complexes, as well as
the modification of substrates and intermediate complexes without the involvement of
other species.

In the next subsection we formally define PTM systems. We proceed in the subse-
quent subsections to discuss the associated mass-action differential equations and the
existence of conserved amounts.

3.1 PTM system

A post-translation modification (PTM) system consists of two non-empty sets of
species, S = {S1, . . . , SN } (the substrates) and Y = {Y1, . . . , YP } (the interme-
diate complexes) with S ∩ Y = ∅, and a set of reactions Rct = Ra ∪ Rb ∪ Rc ∪ Rd

with associated positive reaction rate constants:

Ra = {Si + S j

ak
i, j−−→ Yk |(i, j, k) ∈ Ia} Rc = {Yi

ci, j−−→ Y j |(i, j) ∈ Ic, i �= j}

Rb = {Yk

bk
i, j−−→ Si + S j |(i, j, k) ∈ Ib} Rd = {Si

di, j−−→ S j |(i, j) ∈ Id , i �= j}

for Ia, Ib ⊆ {1, . . . , N }2 × {1, . . . , P}, Ic ⊆ {1, . . . , P}2 and Id ⊆ {1, . . . , N }2. To
fix the notation, we assume that any (i, j, k) ∈ Ia ∪ Ib satisfies i ≤ j , so that self-
interactions a priori are allowed. If the rate constants are not required, we put an arrow
to indicate a reaction and omit the rates. Further:

(i) All chemical species are involved in at least one reaction.
(ii) For every intermediate complex Yk there exist i ≤ j , indices k1, . . . , kr and a

chain of reactions Yk → Yk1 → · · · → Ykr → Si + S j .

Assumption (ii) ensures that Yk ultimately dissociates into two substrates. Also, we
allow that there are more than one Yk such that Si + S j → Yk or Yk → Si + S j for
given Si , S j .

For convenience, we put ci, j = 0, di, j = 0 if (i, j) /∈ Ic or Id respectively, and
similarly ak

i, j = 0 and bk
i, j = 0 if (i, j, k) /∈ Ia or Ib, respectively. For i ≤ j and k,

we define ak
j,i = ak

i, j and bk
j,i = bk

i, j . For later use, we define

S� = {Si ∈ S |(i, i, k) ∈ Ia ∪ Ib for some k}

to be the set of self-interacting substrates, which contains the substrates for which
reactions 2Si = Si + Si → Yk or Yk → 2Si exist for some k.
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As an example consider the PTM system with S = {S1, S2, S3, S4, S5},
Y = {Y1, Y2, Y3} and reactions

S1
d1,2 �� S2 S2 + S5

a1
2,5 �� Y1

c1,2 ��
b1

2,5

�� Y2
b2

1,4 ��
c2,1

�� S1 + S4 S3 + S4

a3
3,4 �� Y3

b3
3,5 ��

b3
3,4

�� S3 + S5

(1)

One interpretation is that S1 is modified to S2. The modifier group is then transferred
from S2 to S5 with the formation of two intermediate complexes Y1, Y2, causing the
modification of S5 to S4 and the demodification of S2 to S1. Finally, S4 is demodified
via a Michaelis–Menten mechanism catalyzed by an enzyme S3.
Nomenclature We introduce a few concepts that will be used in the following, some of
which are taken from Chemical Reaction Network Theory (CRNT) (Feinberg 1980;
Feinberg and Horn 1977). Consider the set of complexes of the reaction system:

C = Y ∪ {Si , S j | (i, j) ∈ Id} ∪ {Si + S j | (i, j, k) ∈ Ia ∪ Ib for some k}.

Then:

• A ∈ C reacts to B ∈ C if there exists a reaction A→ B.
• A ∈ C ultimately reacts to B ∈ C if there exists a sequence of reactions A →

A1 → · · · → Ar → B with Am ∈ C . If Am ∈ Ỹ ⊆ Y for all m, then A
ultimately reacts to B via Ỹ .

• Si and S j interact if for some Yk either Si + S j reacts to Yk or vice versa.
• Si , S j are 1-linked if di, j or d j,i �= 0. Yk, Yv are 1-linked if ck,v or cv,k �= 0. Si and

Yk are 1-linked if for some j, Si + S j reacts to Yk or vice versa ( j = i is allowed).
• A reaction A→ B is reversible if B → A is also a reaction. It is called irreversible

otherwise.

Assumption (ii) of a PTM system ensures that all intermediate complexes ultimately
react to some Si + S j via Y .

3.2 Mass-action kinetics

The set of reactions together with their associated rate constants give rise to a polyno-
mial system of ordinary differential equations taken with mass-action kinetics:

Ẏk =
N∑

j=1

j∑

i=1

(ak
i, j Si S j − bk

i, j Yk)+
P∑

v=1

(cv,kYv − ck,vYk), k = 1, . . . , P,

Ṡi =
N∑

j=1

P∑

k=1

εi, j (−ak
i, j Si S j + bk

i, j Yk)+
N∑

j=1

(d j,i S j − di, j Si ), i = 1, . . . , N ,
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where εi, j = 1 if i �= j and 2 if i = j and where ẋ denotes dx/dt for x = x(t). Here
we abuse notation and let Si , Yk denote the concentrations of the species Si , Yk as
well. The steady states are the solutions to the polynomial system obtained by setting
the derivatives to zero, i.e. Ẏk = 0 and Ṡi = 0:

0 =
N∑

j=1

j∑

i=1

(ak
i, j Si S j − bk

i, j Yk)+
P∑

v=1

(cv,kYv − ck,vYk), k = 1, . . . , P, (2)

0 =
N∑

j=1

P∑

k=1

εi, j (−ak
i, j Si S j + bk

i, j Yk)+
N∑

j=1

(d j,i S j − di, j Si ), i = 1, . . . , N . (3)

This system is quadratic in the variables Yk, Si , but the only quadratic terms are of the
form Si S j . It is linear in Yk .

It is convenient to treat the reaction rate constants as parameters with unspecified
(positive) values and view ak

i, j , br
l,m, cu,v, dw,t as symbols. For that, let

Con = {ak
i, j |(i, j, k) ∈ Ia} ∪ {bk

i, j |(i, j, k) ∈ Ib}
∪ {ck,v|(k, v) ∈ Ic} ∪ {dk,v|(k, v) ∈ Id}

be the set of the non-zero parameters (symbols). Then, the system (2)–(3) is quadratic
in S ∪ Y with coefficients in the field R(Con). Further, if all Si are considered part
of the coefficient field, then the system is linear with coefficients in R(Con∪S ) and
variables Y1, . . . , YP .

Only non-negative solutions of the steady-state equations are biologically mean-
ingful. To study positivity of solutions, we use the concept of S-positivity. Let X =
{x1, . . . , xr } be a finite set. A non-zero polynomial in R[X ] with non-negative coeffi-
cients is called S-positive. Similarly, a rational function f is S-positive if it is a quotient
of two S-positive polynomials. If x1, . . . , xr are substituted by positive real numbers
in f , we obtain a positive real number. In general, a rational function f = p/q in
z1, . . . , zs and coefficients in R(X) is S-positive if the non-zero coefficients of p and q
are S-positive rational functions in x1, . . . , xr . If f is a rational function in x1, . . . , xr

and xi = g(x1, . . . , x̂i , . . . , xr ) with g a rational function, then substituting g into f
gives f as a rational function in x1, . . . , x̂i , . . . , xr .

The differential equations of Example (1) are:

Ẏ1 = a1
2,5S2 S5 − (b1

2,5 + c1,2)Y1 + c2,1Y2

Ẏ2 = c1,2Y1 − (b2
1,4 + c2,1)Y2

Ẏ3 = a3
3,4 S3S4 − (b3

3,4 + b3
3,5)Y3

Ṡ5 = −a1
2,5S2 S5 + b1

2,5Y1 + b3
3,5Y3

Ṡ1 = −d1,2 S1 + b2
1,4Y2 (4)

Ṡ2 = d1,2 S1 − a1
2,5S2 S5 + b1

2,5Y1

Ṡ3 = −a3
3,4S3S4 + (b3

3,4 + b3
3,5)Y3

Ṡ4 = −a3
3,4S3S4 + b2

1,4Y2 + b3
3,4Y3.

To compute the steady states, we can use Ẏ3 = 0 to eliminate Y3 as a function of the
substrates. Also Y1, Y2 can be eliminated by solving the linear system Ẏ1 = Ẏ2 = 0.
This is a general feature of PTM systems which is covered in Sect. 4.1.

Further, observe that Ṡ3 + Ẏ3 = 0, which implies that the sum S3 + Y3 is indepen-
dent of time and thus conserved. In fact, it implies that one of the equations Ẏ3 = 0
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and Ṡ3 = 0 is redundant. Removing one of them leaves a polynomial system with 7
equations in 8 variables, and thus the solutions to the steady-state equations form an
algebraic variety of dimension at least one (over the complex numbers). This redun-
dancy can be compensated for by fixing the value S3+Y3 = A and adding this relation
to the steady-state equations.

In general, conserved amount equations, called conservation laws, complement the
steady-state equations. Their existence plays an important role in the elimination pro-
cedure below. Therefore, the next section is devoted to understand conservation laws
and how they arise. Further, we characterize those that are relevant for the elimination
procedure by a graphical condition on a certain graph.

3.3 Conservation laws

We consider systems where inflow of species is not allowed and species are not
degraded or able to diffuse out. Such systems are “entrapped” in contrast to open
systems (so-called “continuous flow stirred tank reactors”) as considered for instance
by Craciun and Feinberg (2005). PTM systems are entrapped and, as we will see below,
always have conservation laws that reflect that the total amount of species remains
constant either in free form Si or in bounded form Y j . These laws follow from the
system of differential equations and appear as linear combinations of species (e.g.
S3 + Y3 = A in the example above).

The existence of conservation laws implies that the dynamics of the system takes
place in a proper invariant subspace of R

N+P . We identify R
N+P with the real vector

space generated by S ∪ Y so that R
N+P ≡ 〈S1, . . . , SN , Y1, . . . , YP 〉. The species

Si and Yk are unit vectors with a one in the i th and (N + k)th entry, respectively, and
all other entries being zero. A vector v = (λ1, . . . , λN , μ1, . . . , μP ) is identified with
the linear combination of species

∑
i λi Si +∑

k μkYk .
Consider the stoichiometric subspace of R

N+P of a PTM system:

Γ = 〈Si + S j − Yk | (i, j, k) ∈ Ia ∪ Ib〉
+〈Yk − Yv| (k, v) ∈ Ic〉 + 〈Si − S j | (i, j) ∈ Id〉.

If (λ1, . . . , λN , μ1, . . . , μP ) ∈ Γ ⊥, then
∑

i λi Ṡi+∑
k μk Ẏk = 0 and thus

∑
i λi Si+∑

k μkYk is independent of time. The vector ω with λi = 1 and μ j = 2 belongs to
Γ ⊥ for any PTM system, showing that these systems always have conserved amounts.
As shown by Feinberg and Horn (1977), not all conserved amounts are derived from
vectors in Γ ⊥.

It follows that any basis {ω1, . . . , ωd}ofΓ ⊥ provides a set of independent conserved
quantities

∑N
i=1 λl

i Si +∑P
k=1 μl

kYk if ωl = (λl
1, . . . , λ

l
N , μl

1, . . . , μ
l
P ). Therefore, if

total amounts A1, . . . , Ad ∈ R+ are provided, we require the steady-state solutions
to satisfy:

Al =
N∑

i=1

λl
i Si +

P∑

k=1

μl
kYk l = 1, . . . , d. (5)
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Variable elimination in post-translational modification 289

Total amounts are fixed by the initial concentrations of the species. We say that equa-
tions (5) are independent if the system has maximal rank, or equivalently, if the cor-
responding vectors of Γ ⊥ are independent.

Remark 1 By definition, the stoichiometric subspace Γ , and hence the conservation
laws, do not depend on the reactions being reversible or irreversible.

We will show that some conservation laws can be determined by a graphical con-
dition together with a property of the complexes. For that, we introduce the concepts
of a cut and a non-interacting graph. These concepts do not depend on the reactions
being reversible or irreversible, because neither do the conservation laws.

Definition 1 Let a non-empty set Sα ⊆ S be given and let the associated set Yα ⊆ Y
be the smallest set such that Yk ∈ Yα if Yk is 1-linked to some Si ∈ Sα or to Ym ∈ Yα .
Then:

(i) Sα is closed if S j belongs to Sα whenever Si ∈ Sα is 1-linked to S j , and if Si

and S j interact and are 1-linked to Yk ∈ Yα , then Si or S j are in Sα .
(ii) Sα is a cut if (a) Si , S j ∈ Sα do not interact for any i, j , and (b) Sα is closed.

(iii) A cut Sα is minimal if it has no proper closed subsets.

Condition (ii) implies that a self-interacting substrate S ∈ S� cannot belong to any
cut, that is, Sα ∩S� = ∅ for any cut Sα . Note that a closed subset S ′ of a cut is
also a cut. The union of two disjoint cuts Sα,S ′α is a cut if Yα ∩ Y ′α = ∅.

In the PTM system with reactions S1 + S4
�� Y2�� �� S2 + S4�� and Y1

�� S2+S3,��
the set {S1, S2} is a cut, while {S1, S3} is not. There are no proper closed subsets of
{S1, S2} and thus the cut is minimal.

Definition 2 Let a non-empty set Sα ⊆ S be given and let Yα ⊆ Y be as in Defini-
tion 1. Let GSα,Yα

be the undirected graph with node set Sα ∪Yα and edges between
1-linked nodes. The graph is non-interacting if it is connected and Sα is a cut.

If Sα = S , then Yα = Y . All graphs GSα,Yα
are naturally subgraphs of GS ,Y .

Without proof we state the following:

Lemma 1 Let Sα be a cut and G ′ be a connected subgraph of GSα,Yα
with node set

S ′ ∪ Y ′,S ′ ⊆ Sα and Y ′ ⊆ Yα . The following statements are equivalent:

(i) S ′ is closed with associated set Y ′.
(ii) G ′ is a connected component of GSα,Yα

.
(iii) G ′ is non-interacting and contains only species in Sα ∪ Yα .

If either is the case, then S ′ is a minimal cut and G ′ = GS ′,Y ′ .

Thus, the non-interacting graphs containing substrates only in a cut Sα are exactly
the connected components of GSα,Yα

. All non-interacting graphs contain some
node from S (condition (ii) of a PTM system). However, such a graph might not
exist. Consider for example the system with reactions S1

�� S3,�� S2
�� S3,�� and

S1 + S2
�� Y1.�� The graph GS ,Y is
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Y1

S1

S3

S2

Condition (B) Of Definition 1(ii) implies that any non-interacting graph must con-
tain all four species, which contradicts condition (a) of the same definition. Note that
S1 + S2 + S3 + 2Y1 is conserved.

In the following proposition we show that each non-interacting graph gives rise to
a conservation law.

Proposition 1 Let H1, . . . , Hn be the non-interacting graphs of a PTM system, Cl

the node set of Hl ,Sl = S ∩ Cl and Yl = Y ∩ Cl . Then, ω̇l = 0 for

ωl =
∑

S∈Sl

S +
∑

Y∈Yl

Y l = 1, . . . , n.

That is, Hl corresponds to a conservation law and ωl is determined by the initial
concentrations.

Proof Substrates in Cl interact only with substrates in S \Sl and thus, by definition
of Yl , if ak

i, j �= 0 or bk
i, j �= 0 for i �= j then: (a) if Si (resp. S j ) is in Sl , then S j (resp.

Si ) belongs to S \Sl , and Yk ∈ Yl ; (b) if Yk ∈ Yl , then either Si or S j , but not both,
belongs to Sl . If cv,k �= 0 or ck,v �= 0, then Yk, Yv belong to the same non-interacting
graph (if any); if di, j �= 0 or d j,i �= 0, then Si , S j belong to the same non-interacting
graph (if any). Since Sl ∩S� = ∅ for Yk ∈ Yl and Si ∈ Sl we have:

Ẏk =
∑

i |Si∈Sl

∑

j |S j∈S \Sl

(ak
i, j Si S j − bk

i, j Yk)+
∑

v|Yv∈Yl

(cv,kYv − ck,vYk)

Ṡi =
∑

k|Yk∈Yl

∑

j |S j∈S \Sl

(−ak
i, j Si S j + bk

i, j Yk)+
∑

j |S j∈Sl

(d j,i S j − di, j Si ).

It follows that

∑

k|Yk∈Yl

∑

v|Yv∈Yl

(cv,kYv − ck,vYk) = 0 and
∑

i |Si∈Sl

∑

j |S j∈Sl

(d j,i S j − di, j Si ) = 0.

Similarly, the remaining terms in ω̇l cancel. Thus, ω̇l = 0. ��
Thus, each non-interacting graph gives rise to a conserved amount. If each non-inter-
acting graph contains a species that only belongs to that graph, then the ωl ’s are
independent. In particular, conservation laws derived from the connected components
of GSα,Yα

for some cut Sα are independent. In general, the set of conservation laws
found from Proposition 1 can be reduced to a set of independent conservation laws.

In Example (1), the graph GS ,Y is
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S3 Y3

S5

S4

Y1

Y2 S1

S2

H1

H3 H2

The non-interacting graphs H1, H2, H3 are circled. If total amounts A1, A2, A3 ∈
R+ are provided then the steady-state solutions must satisfy:

A1 = S3 + Y3, A2 = S1 + S2 + Y1 + Y2, A3 = S4 + S5 + Y1 + Y2 + Y3.

(6)

These conserved total amounts are easily verified by differentiation using (4).
This procedure provides an easy construction of conservation laws. In the example

above, the conservation laws obtained from the graph are independent and, addition-
ally, determine all conservation laws arising from Γ ⊥ (dim Γ ⊥ = 3). However, this
is not always the case. Consider for instance the reaction system

S1 + S2
�� Y1

���� Y2
���� S3 + S4.�� (7)

The graph GS ,Y is

Y1

S1

Y2

S2 S3

S4

There are 4 non-interacting graphs that give the conserved total amounts A1 =
S1 + S3 + Y1 + Y2, A2 = S1 + S4 + Y1 + Y2, A3 = S2 + S3 + Y1 + Y2, and
A4 = S2 + S4 + Y1 + Y2. This system has rank 3, implying that one of the relations
is redundant. In this case the procedure still gives all conservation laws, because the
dimension of Γ ⊥ is 3.

Consider the following reaction system:

S1 + S3
�� Y1

���� S2 + S4�� S1 + S4
�� Y2�� S2 + S3

�� Y3.�� (8)

The graph GS ,Y is

Y1

S1

Y2 Y3 .

S2

S3S4
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There are 2 non-interacting graphs that give the conserved total amounts A1 =
S1+ S2+Y1+Y2+Y3, and A2 = S3+ S4+Y1+Y2+Y3. However, dim Γ ⊥ = 3 and
the procedure fails to provide three independent conservation laws. A third conserva-
tion law is A3 = S1 + S4 + Y1 + 2Y2, and the coefficient 2 of Y2 cannot be obtained
from a non-interacting graph.

3.4 Cuts of S and conservation laws

The previous example shows that a maximal set of independent conservation laws can-
not always be obtained from non-interacting graphs. In this subsection, we provide a
criterion to guarantee that there are dim Γ ⊥ independent conservation laws derived
from non-interacting graphs. The criterion will be used in Sect. 5.

In the following we make use of Lemma 1 without further reference. Let Sα be a
cut with associated set Yα . Define S c

α = S \Sα and Y c
α = Y \Yα , and let Nα, Pα

(resp. N c
α, Pc

α ) be the cardinality of Sα,Yα (resp. S c
α ,Y c

α ). Extend the set of conser-
vation laws derived from the nα connected components of GSα,Yα

to a maximal set
of n independent conservation laws derived from other non-interacting graphs (thus
containing species in S c

α ∪ Y c
α ). Let nc

α = n − nα .

Lemma 2 Let Sα be a cut and keep the notation introduced above. Then, we have
that dim

(〈S c
α ∪ Y c

α 〉 ∩ Γ
) ≤ N c

α + Pc
α − nc

α and dim Γ ⊥ = n if and only if

dim
(〈S c

α ∪ Y c
α 〉 ∩ Γ

) = N c
α + Pc

α − nc
α.

Proof Without loss of generality we can assume that Yα = {Y1, . . . , YPα } and Sα =
{S1, . . . , SNα }. Identify R

N+P with R
Nα × R

Pα × R
N c

α × R
Pc

α and let

Γα = 〈A − B| for each edge between A and B in GSα,Yα
〉.

The space Γ ⊥α is generated by the vectors which are sums of species in each connected
component of GSα,Yα

and hence dim Γ ⊥α = nα . We have dim Γ ⊥ ≥ n = nα + nc
α

and we want to determine when equality holds. Equivalently, we want to determine
when dim Γ = N + P − n. If this is not the case, then dim Γ < N + P − n. Note
that N = Nα + N c

α and P = Pα + Pc
α .

Note that dim Γα = Nα+Pα−nα . Let π : RN+P → R
Nα+Pα denote the projection

onto the first Nα + Pα coordinates and πα : Γ → Γα its restriction to Γ (πα a surjec-
tive map). Then, dim Γ = dim Γα + dim ker πα and so dim ker πα ≤ N c

α + Pc
α − nc

α .
Further, dim Γ ⊥ = n if and only if dim ker πα = N c

α + Pc
α − nc

α . Finally, note that
〈S c

α ∪ Y c
α 〉 ∩ Γ = ker πα . Indeed, let i : Γ ↪→ R

N+P and iα : Γα ↪→ R
Nα+Pα

denote the natural inclusions. We have that iα ◦πα = π ◦ i . The kernel of π is clearly
R

N c
α+Pc

α = 〈S c
α ∪Y c

α 〉 from where it follows that the kernel of πα is 〈S c
α ∪Y c

α 〉∩Γ .
Therefore, we have that dim

(〈S c
α ∪ Y c

α 〉 ∩ Γ
) = dim ker πα = N c

α + Pc
α − nc

α if
and only if dim Γ ⊥ = n. ��

As each non-interacting graph corresponds to a minimal cut (Lemma 1), the lemma
above provides a condition for when all conservation laws can be recovered from cuts.
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Remark 2 An easy way to construct elements of 〈S c
α ∪ Y c

α 〉 ∩ Γ is by considering:

(i) Vectors Si − S j for pairs Si , S j ∈ S c
α for which there are Sm ∈ S and reactions

Sm + Si B1 . . . Br Sm + S j with Bu ∈ C and − being← or→.
(ii) Vectors Si+ S j−Yk, Si− S j or Yk−Yv corresponding to reactions with Si , S j ∈

S c
α and Yk, Yv ∈ Y c

α .

If we can construct N c
α + Pc

α − nc
α independent elements of 〈S c

α ∪ Y c
α 〉 ∩ Γ of the

previous type, then the previous lemma holds.

In Example (1) consider the cut Sα = {S1, S2, S3} with S c
α = {S4, S5} and the

conservation laws given in (6) (n = 3). We have N c
α = 2 and nc

α = 1. Further, Yα = Y
so that Pc

α = 0. The element S5 − S4 = (S3 + S5 − Y3)− (S3 + S4 − Y3) belongs to
〈S c

α 〉∩Γ . In addition, N c
α+ Pc

α −nc
α = 1 and thus dim(〈S c

α 〉∩Γ ) = N c
α+ Pc

α −nc
α ,

implying that a set of independent conservation laws is found from non-interacting
graphs.

In Example (7), consider the cut Sα = {S1, S3} with S c
α = {S2, S4} so that

N c
α = 2, Pc

α = 0. There is only one conservation law in Sα ∪Yα, S3+ S1+ Y1+ Y2,
and since n = 3, then nc

α = 2. It follows that N c
α+Pc

α−nc
α = 0, and we are guaranteed

that the dimension of 〈S2, S4〉 ∩ Γ is zero.
In Example (8), consider the cut Sα = {S1, S2} with S c

α = {S3, S4} and N c
α =

2, Pc
α = 0. We have nc

α = 1 and N c
α + Pc

α − nc
α = 1. However, 〈S3, S4〉 ∩ Γ has

dimension zero and thus extra conservation laws are required.

4 Variable elimination

In this section we show that the intermediate complexes can always be eliminated and
expressed as polynomials in the substrates with coefficients in R(Con) (Sect. 4.1).
After choosing a cut Sα , the substrates in Sα can be expressed in terms of those in
S c

α = S \Sα (Sect. 4.3).

4.1 Elimination of intermediate complexes

Consider the system Ẏi = 0 in (2) as a linear system of P polynomial equations with
coefficients in R[Con∪S ] and P variables Y1, . . . , YP . If the system has maximal
rank, then there is a unique solution in R(Con∪S ).

Specifically, we have a linear system MY = z where Y = (Y1, . . . , YP )t and
M = {λk,v} is a P × P matrix with coefficients in R[Con],

λk,v =
{
−cv,k if k �= v
∑N

j=1
∑ j

i=1 bk
i, j +

∑P
u=1 ck,u if k = v.

The independent term z = (z1, . . . , zP )t is in R[Con∪S ]: zk =∑
i≤ j ak

i, j Si S j .

Assume that M has maximal rank P in R(Con). Then, using Cramer’s rule to solve
linear systems of equations, we obtain that Yk = ρk/ρ with ρ = det(M) �= 0 and ρk
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the determinant of M with the kth column substituted by z. Since the determinant is a
homogeneous polynomial in the entries of the matrix, it follows that ρ ∈ R[Con] and
ρk ∈ R[Con∪S ]. Therefore, Yk takes the form

Yk =
∑

i≤ j

μk
i, j Si S j

with μk
i, j ∈ R(Con) and hence Yk is a polynomial in R(Con)[S ]. If both ρ, ρk are

S-positive elements of R[Con] and R[Con∪S ], respectively, then μk
i, j is S-positive in

R(Con) and for positive rate constants and non-negative values of Si , the steady-state
value of Yk is non-negative as well.

S-positivity of ρ, ρk is proven in the next section using the Matrix-Tree theorem
(Tutte 1948).

4.2 Decomposition of the system

The matrix M is not a Laplacian, since the column sums
∑N

j=1
∑ j

i=1 bk
i, j are not zero.

Therefore, the Matrix-Tree theorem cannot be directly applied. However, M can be
extended such that its determinant is a maximal minor of a Laplacian.

Let GY be the directed graph with node set Y and a directed edge Yk → Yv if
(k, v) ∈ Ic. That is, GY is the graph obtained by restricting the set of reactions to those
among the intermediate complexes. The node sets of the connected components of GY
determine a partition of Y : Y = Y1 ∪ · · · ∪ Ys . Let Pl be the cardinality of Yl and
rename the intermediate complexes such that Yl = {YP1+···+Pl−1+1, . . . , YP1+···+Pl }.

If Yk ∈ Yl for some l, then ck,v = cv,k = 0 for any v such that Yv /∈ Yl . It follows,
that M is a block diagonal matrix diag(M1, . . . , Ms) with Ml being a Pl × Pl matrix.
Solving MY = z is thus equivalent to solving s “smaller” systems with matrices Ml .
Further, M has maximal rank P if and only if Ml has maximal rank Pl for all l.

Consider the connected component GYl corresponding to Yl . We construct an
extended labeled directed graph ĜYl as follows:

Definition 3 Order the set Yl ∪ {∗} such that YP1+···+Pl−1+k is the kth node and ∗ the
(Pl + 1)th node. Let

bk =
∑

i≤ j

bk
i, j , and ak =

∑

i≤ j

ak
i, j Si S j .

The graph ĜYl has node set Yl ∪ {∗} and labeled directed edges:

Yk
ck,v−−→ Yv, if (k, v) ∈ Ic, Yk

bk−→ ∗, if bk �= 0, ∗ ak−→ Yk if ak �= 0.
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In Example (1), the graph GY has two connected components Y1 = Y1
�� Y2��

and Y2 = Y3. The graphs ĜY1 and ĜY2 are

Y1

b1
2,5

���
��

��
��

�
c1,2 �� Y2c2,1

��

b2
1,4����

��
��

��
Y3

b3
3,5+b3

3,4 �� ∗ .
a3

3,4 S3 S4

��

∗
a1

2,5 S2 S5

����������

Let L = {αk,v} be the Laplacian of ĜYl . If k, v ≤ Pl , then αk,v = −λk,v . The entries
of the last row are αPl+1,k = bk for k ≤ Pl and the entries of the last column are
αk,Pl+1 = ak (= zk) for k ≤ Pl . We conclude that the (Pl +1, Pl +1) principal minor
of L is exactly −Ml and thus, by the Matrix-Tree theorem, we have

det(Ml) = (−1)Pl L(Pl+1,Pl+1) =
∑

τ∈Θ(∗)
π(τ ).

Assumption (ii) of a PTM system ensures that each Yk ultimately reacts to some Si+S j

via Y , and hence there exists at least one spanning tree rooted at ∗. Thus, det(Ml) �= 0
and det(Ml) is an S-positive element of R[Con].

By the definition of ρk and the Matrix-Tree theorem,

ρk = (−1)k+1L(Pl+1,k) =
∑

τ∈Θ(YPl−1+k )

π(τ ),

and hence ρk is either zero or an S-positive element of R[Con∪S ].
If there exists at least one spanning tree rooted at vk = YPl−1+k , then ρk �= 0.

A necessary condition for this to happen is the existence of at least one in-edge to
vk . Otherwise the concentration at steady state of vk is zero, which is expected if vk

is only consumed and never produced. Similarly, if there is no reaction of the form
Si + S j → YPl−1+m for any m (that is, a directed edge ∗ → vm), then ρk = 0 for all k.

The term ρk is a homogeneous polynomial of degree 2 in S with coefficients in
R[Con], because any spanning tree rooted at a node vk has exactly one edge of the
form ∗ → vm for some m. Further, a monomial Si S j appears in ρk only if Si + S j

ultimately reacts to vk via Yl . If ĜYl is strongly connected, then this condition is both
sufficient and necessary. Indeed, if Si + S j ultimately reacts to vk via Yl , then there
is a spanning tree rooted at vk containing this path.

The next proposition summarizes the discussion above:

Proposition 2 Consider a PTM system with intermediate complexes Y and substrates
S . Then, Ẏk = 0 for all k, if and only if

Yk =
∑

i≤ j

μk
i, j Si S j (9)

with μk
i, j ∈ R(Con) being either zero or S-positive. Further:
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(i) If Si + S j does not ultimately react to Yk via Y , then μk
i, j = 0.

(ii) If ĜYl is strongly connected and Yk ∈ Yl , then μk
i, j �= 0 if and only if Si + S j

ultimately reacts to Yk via Yl .
(iii) ĜYl is strongly connected if and only if Yk in (9) is a non-zero polynomial in

R(Con)[S ] for all Yk ∈ Yl .

Remark 3 The condition that ĜYl is strongly connected is biochemically reasonable:
The intermediate complexes are not the initial or final products of the system and
should eventually be broken up into parts.

In Example (1), the graph ĜY1 has three spanning trees rooted at∗ so that det(M1) =
b2

1,4c1,2 + b1
2,5c2,1 + b2

1,4b1
2,5. There is one spanning tree rooted at Y2, giving ρ2 =

c1,2a1
2,5S2S5, and two spanning trees rooted at Y1, giving ρ1 = (b2

1,4 + c2,1)a1
2,5S2S5.

The graph ĜY2 has one spanning tree rooted at ∗ so that det(M2) = b3
3,5 + b3

3,4, and

one spanning tree rooted at Y3, giving ρ3 = a3
3,4S3S4. Thus:

Y1 = μ1
2,5S2S5, Y2 = μ2

2,5S2S5, Y3 = μ3
3,4S3S4,

with μ1
2,5 =

(b2
1,4+c2,1)a1

2,5
det(M1)

, μ2
2,5 =

c1,2a1
2,5

det(M1)
, and μ3

3,4 =
a3

3,4
det(M2)

.

Lemma 3 Let ĜY = ∪l ĜYl . The graphs ĜYl , l = 1, . . . , s, are strongly connected
if and only if the graph ĜY is.

Proof Assume that the graphs ĜYl are strongly connected. Then, for any v ∈ ĜYl

and ω ∈ ĜY j , there are directed paths v → ∗ in ĜYl and ∗ → v in ĜY j , which by
composition give a directed path between v and w.

For the reverse implication, let v, ω be two elements of Yl . Since ĜY is strongly
connected, there exists a directed pathα : v→ w in ĜY . We can assume thatv,w �= ∗.
A path connecting an intermediate complex in Yl to one in Y j for j �= l must pass
through ∗. If a path α goes through ṽ ∈ Y j , for j �= l, then it must go through ∗, first
in and then out, potentially many times until it goes back to Yl and to w. Therefore,

α has the form v
α1−→ ∗ β−→ ∗ α2−→ w with α1 and α2 being paths in ĜYl . It follows that

the path v
α1−→ ∗ α2−→ w is a directed path from v to w in ĜYl . ��

4.3 Elimination of substrates

Equation (9) shows that at steady state the intermediate complexes are given as poly-
nomials in S with coefficients in R(Con). Insertion of (9) into the (time dependent)
differential equations for the substrates is the procedure known as the quasi-steady
state approximation. The rationale is that intermediate complexes tend to reach steady
state much faster than substrates and thus some variables in the dynamical system
can be eliminated. We have shown here that PTM systems mathematically enable this
simplification although biochemical justification is required in concrete examples.
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We now use the steady-state equation (3) to further eliminate some of the substrates
in terms of others. Recall equation (3), that is Ṡi = 0,

0 =
N∑

j=1

P∑

k=1

εi, j (−ak
i, j Si S j + bk

i, j Yk)+
N∑

j=1

(d j,i S j − di, j Si ) (10)

for i = 1, . . . , N . After substitution of the values for Yk , equation Ṡi = 0 corresponds
to

0 =
N∑

u=1

P∑

k=1

∑

j≤t

εi, j b
k
i,uμk

j,t S j St −
N∑

j=1

P∑

k=1

εi, j a
k
i, j Si S j +

N∑

j=1

(d j,i S j − di, j Si ),

(11)

These equations are quadratic in S . To proceed with linear elimination it is necessary
to decide which variables are to be eliminated and which will be taken as part of the
coefficient field. Since a monomial Si S j appears only if Si and S j interact, we can
proceed as long as S can be partitioned in an appropriate way.

Lemma 4 Given a cut Sα , equations (11) for Si ∈ Sα form a homogeneous linear
system of equations in the set of substrates Sα and with coefficients in R(Con∪S c

α ).

Proof For the three sums in (11) we make the following observations: If Si ∈ Sα and
d j,i �= 0 or di, j �= 0, then also S j ∈ Sα . If Si ∈ Sα and ak

i, j �= 0, then S j �∈ Sα ,

otherwise Si and S j would interact. Finally, if μk
j,t �= 0, then according to Propo-

sition 2, S j + St ultimately reacts to Yk via the set Yα associated to Sα . Since Sα

is a cut, one of S j and St (but not both) belongs to Sα . Thus equations (11) for the
substrates in Sα form a homogeneous linear system of equations in the species in Sα .

��
Assume that there exists a cut Sα , let Yα be the associated set of intermediate com-

plexes (Definition 1) and reorder the substrates so that Sα = {S1, . . . , SNα }. Equations
(11) for Si ∈ Sα form an Nα × Nα homogeneous linear system of equations with
variables Sα and coefficients in R(Con∪S c

α ). Further, εi, j = 1 if Si ∈ Sα .
Let B be the matrix with entries b̃i, j for i �= j and b̃i,i − ãi for i = j , where

ãi =
Nα∑

j=1

di, j +
N∑

j=Nα+1

P∑

k=1

ak
i, j S j , b̃i, j = d j,i +

N∑

t=Nα+1

P∑

k=1

bk
i μ

k
j,t St ,

bk
i =

N∑

u=Nα+1

bk
i,u,

so that (11) becomes

0 =
Nα∑

j=1, j �=i

b̃i, j S j + (̃bi,i − ãi )Si . (12)
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Consider Example (1) and the cut Sα = {S1, S2, S3}. Then the equations (11)
corresponding to Ṡ1 = 0, Ṡ2 = 0 and Ṡ3 = 0 are

0 = −d1,2S1 + b2
1,4μ

2
2,5S2S5, 0 = d1,2S1 + (b1

2,5μ
1
2,5 − a1

2,5)S2S5,

0 = ((b3
3,4 + b3

3,5)μ
3
3,4 − a3

3,4)S3S4.

Therefore,

ã1 = d1,2, ã2 = a1
2,5S5, ã3 = a3

3,4S4

b̃1,2 = b2
1,4μ2

2,5S5, b̃2,1 = d1,2, b̃2,2 = b1
2,5μ1

2,5S5, b̃3,3 = (b3
3,4 + b3

3,5)μ3
3,4S4.

while the rest of the coefficients are zero. Note that indeed the coefficients of the system
belong to R(Con∪{S4, S5}). The equation Ṡ3 = 0 is trivial since (b3

3,4 + b3
3,5)μ

3
3,4 −

a3
3,4 = 0. Observe also that the equations corresponding to Ṡ1 and Ṡ2 sum to zero

since b1
2,5μ

1
2,5 + b2

1,4μ
2
2,5 − a1

2,5 = 0. As we show next, this is a general feature due

to the conservation laws Ẏ3 + Ṡ3 = 0 and Ṡ1 + Ṡ2 + Ẏ1 + Ẏ2 = 0.
Proposition 1 ensures that there is a conservation law for each connected component

of GSα,Yα
. Let Cα

1 , . . . , Cα
nα

be the node sets of the connected components and define
Sα,l = Sα ∩ Cα

l and Yα,l = Yα ∩ Cα
l so that

∑
Si∈Sα,l

Ṡi +∑
Yk∈Yα,l

Ẏk = 0 for
l = 1, . . . , nα , are conservation laws. Imposing only that the intermediate complexes
are at steady state, that is Ẏk = 0 for all k, we obtain

∑

Si∈Sα,l

Ṡi = 0, l = 1, . . . , nα. (13)

Here the equations for Ṡi depend only on the substrates and the intermediate complexes
being substituted by their steady-state expressions (9). It follows that the column sums
of the matrix B restricted to the rows corresponding to Sα,l are all zero. Consequently,
the matrix B has rank at most Nα − nα .

Definition 4 Let GSα
be the labeled directed graph with node set Sα and an edge

from S j to Si labeled b̃i, j whenever b̃i, j �= 0, and i �= j .

Recall that b̃i, j ∈ R(Con)[S c
α ] is S-positive. Let GYα

be GY restricted to the nodes
Yα and define ĜYα

similarly (cf. Lemma 3). It follows from the definition of Yα

(Definition 1) that GYα
is a union of connected components of GY . Let Nα,l be the

cardinality of Sα,l .

Lemma 5 After reordering of the substrates in Sα, B is a block diagonal matrix,
diag(B1, . . . , Bnα ) with Bl an Nα,l × Nα,l matrix. If there is a reaction S j → Si , then
b̃i, j �= 0. If this is not the case and b̃i, j �= 0 for i �= j , then S j + St ultimately reacts
to Si + Su via Yα for some Su, St ∈ S c

α . If in addition ĜYα
is strongly connected,

then the reverse is true.

Proof It follows from Lemma 3 and Proposition 2(i) that if μk
j,t �= 0 then S j + St

ultimately reacts to Yk . By definition, bk
i �= 0 if and only if there exists a reaction
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Yk → Si + Su for some Su ∈ S c
α . We have b̃i, j �= 0 if and only if d j,i �= 0 or

bk
i μ

k
j,t �= 0 for some k and t , and hence either there is a reaction S j → Si or there

exist Su, St ∈ S c
α , so that S j + St ultimately reacts to Si + Su via Yα . If ĜYα

is
strongly connected then by Proposition 2(ii) the existence of these reactions is a suf-
ficient condition. It follows, after reordering of the species in Sα , that B is a block
diagonal matrix with blocks given by the species in each connected component of
GSα,Yα

. Indeed, if Si , S j are in different components, then b̃i, j = b̃ j,i = 0. ��
It follows from the lemma that a necessary condition for b̃i, j �= 0 is that Si can

be “produced” from S j . Also, a consequence of the lemma is that the graph GSα
has

at least l connected components. If two species Si , S j belong to the same connected
component of GSα

then they belong to the same connected component of GSα,Yα
.

If ĜYα
is strongly connected then the reverse is true. In the following we restrict the

study to the case where GSα,Yα
is connected and note that the results apply to every

connected component individually. However, the propositions to be derived below are
stated in full generality, that is, without the assumption that GSα,Yα

is connected.
If GSα,Yα

is connected then using (13), the column sums of B are zero and B is
the Laplacian of the labeled directed graph GSα

. By the Matrix-Tree theorem, the
principal minors B(i, j) of B = L (GSα

) are

B(i, j) = (−1)Nα−1+i+ j
∑

τ∈Θ(S j )

π(τ ).

Thus, B has rank Nα − 1 if and only if there exists at least one spanning tree in GSα

rooted at some S j with j ∈ {1, . . . , Nα}. A necessary condition for this to happen
is that GSα

is connected as well. Therefore, from now on we assume that GSα
is

connected as well. Otherwise the elimination procedure does not apply. For a general
PTM system with a selected cut Sα , we obtain the following proposition:

Proposition 3 The graph GSα,l has at least one rooted spanning tree if and only if
there is only one independent conservation law involving the species in Sα,l ∪ Yα,l .
Consequently, if this is the case for all l, then the non-interacting graphs provide a
maximal set of independent conservation laws involving the species in Sα ∪ Yα .

Proof For a fixed l, the non-interacting graphs of GSα,l ,Yα,l provide all conservation
laws involving only Sα,l ∪ Yα,l if and only if all conservation laws are multiples of∑

Si∈Sα,l
Si+∑

Yk∈Yα,l
Yk , which is the case if and only if the rank of Bl is Nα,l−1. As

stated above this is equivalent to the existence of a rooted spanning tree in GSα,l . ��

Remark 4 In particular, the proposition holds if GSα
is strongly connected. If ĜYα

is strongly connected, then to check that GSα
is strongly connected we do not need

to calculate the labels of GSα
. Whether there is an edge or not between two nodes

follows from the set of reactions, cf. Lemma 5.

For simplicity we assume that there exists a spanning tree of GSα
rooted at S1. Then,

the variables S2, . . . , SNα can be solved in the coefficient field R(Con∪S c
α ∪ {S1}).
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In particular, using Cramer’s rule and the Matrix-Tree theorem, we obtain

S j = (−1) j+1 B(1, j)

B(1,1)

= σ j (S c
α )

σ1(S c
α )

S1 = r S
j (S

c
α )S1, where σ j (S

c
α ) =

∑

τ∈Θ(S j )

π(τ )

(14)

for j = 2, . . . , Nα . By assumption, σ1(S c
α ) �= 0 is S-positive and σ j (S c

α ) is either a
zero or S-positive element of R(Con)[S c

α ]. If the graph GSα
is strongly connected,

then σ j (S c
α ) �= 0 for all j and any choice of S j could be used instead of S1. Further:

Proposition 4 The subgraph GSα,l of the graph GSα
is strongly connected if and

only if σ j (S c
α ) is a non-zero polynomial in R(Con)[S c

α ] for all S j ∈ Sα,l .

The results shown above provide a proof of the following lemma.

Lemma 6 If a substrate St1 ∈ S c
α is a variable in σ j (S c

α ) for some S j ∈ Sα , then

there exist Si1 , . . . , Sim ∈ Sα with Sim = S j such that Si1 + St1
Yα⇒ Si2 + St2 for some

St2 ∈ S c
α and for l = 2, . . . , m−1, either Sil reacts to Sil+1 or Sil+Stl

Yα⇒ Sil+1+Stl+1

for some Stl , Stl+1 ∈ S c
α .

After substitution of the value of S j given in (14) into Yk (9) we obtain

Yk = rY
k (S c

α )S1, (15)

where rY
k is either zero or an S-positive rational function in S c

α with coefficients in
R(Con). If ĜYα

is strongly connected, σ j (S c
α ) �= 0, σi (S c

α ) �= 0, and μk
i, j �= 0 for

some i, j , then this function is non-zero.
Conservation laws The sum of the species concentrations in GSα,Yα

is conserved. If
the total amount A1 = S1 + · · · + SNα + Y1 + · · · + YPα is given, we obtain

A1 = (1+ r S
2(S

c
α )+ · · · + r S

Nα
(S c

α )+ rY
1 (S c

α )+ · · · + rY
Pα

(S c
α ) )S1.

The coefficient of S1 is an S-positive element of R(Con∪S c
α ) and thus,

S1 = r S
1 (S c

α ) := A1

1+ r S
2(S

c
α )+ · · · + r S

Nα
(S c

α )+ rY
1 (S c

α )+ · · · + rY
Pα

(S c
α )

with r S
1 an S-positive rational function in S c

α with coefficients in R(Con∪{A1}).
If σ1(S c

α ) �= 0 when evaluated at some non-negative values for the substrates in
S c

α , and A1 > 0, then S1 > 0. Further, σ1(S c
α ) = 0 only if some substrates in S c

α

are zero. This remark and Proposition 4 imply:

Proposition 5 Assume that the graph GSα,l has a rooted spanning tree and that there
exists a non-negative steady state with positive values for the substrates in S c

α . Then,
GSα,l is strongly connected if and only if for any total amount Al > 0, the corre-
sponding steady-state value satisfies S j �= 0 for all S j ∈ Sα,l .
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By substitution of S1 by r S
1 , we obtain

Yk = rY
k (S c

α ) := rY
k (S c

α )r S
1 (S c

α ), S j = r S
j (S

c
α ) := r S

j (S
c
α )r S

1 (S c
α ) (16)

with rY
k , r S

j either zero or S-positive rational functions in S c
α with coefficients in

R(Con∪{A1}).
Proposition 6 Assume that for l = 1, . . . , nα , there is a spanning tree of GSα,l rooted

at some species Sil . Then, there exists a zero or S-positive rational function r S
j in S c

α

with coefficients in R(Con), such that equation (11) for S j ∈ Sα,l is satisfied in
R(Con∪S c

α ) if and only if

S j = r S
j (S

c
α )Sil , S j ∈ Sα,l .

Further, there exists an S-positive rational function r S
il

in S c
α with coefficients in

R(Con∪{Al}), such that the conservation law Al = ∑
S∈Sα,l

S +∑
Y∈Yα,l

Y is ful-
filled if and only if

Sil = r S
il (S

c
α ). (17)

In Example (1), considering the cut Sα = {S1, S2, S3}, the graph GSα
has two con-

nected components: S3, which does not allow further eliminations, and S1
b̃2,1 �� S2
b̃1,2

�� ,

which is strongly connected. Selecting S1 as the non-eliminated substrate we obtain

S2= b̃2,1S1

b̃1,2
= d1,2S1

b2
1,4μ

2
2,5S5

, Y1=
d1,2μ

1
2,5S1

b2
1,4μ

2
2,5

= d1,2(b2
1,4 + c2,1)S1

b2
1,4c1,2

, Y2 = d1,2S1

b2
1,4

.

The equations for the total amounts A1 = S3+ Y3 and A2 = S1+ S2 + Y1+ Y2 give:

A1 = S3(1+ μ3
3,4S4), A2 = d1,2

b2
1,4

(
b2

1,4

d1,2
+ 1

μ2
2,5S5

+ b2
1,4 + c2,1

c1,2
+ 1

)
S1.

Let r̃ S
1 (S4, S5) = A2

(
b2

1,4
d1,2
+ 1

μ2
2,5 S5
+ b2

1,4+c2,1

c1,2
+ 1

)−1

. Then,

S1 =
b2

1,4

d1,2
r̃ S

1 (S4, S5), S2 = r̃ S
1 (S4, S5)

μ2
2,5S5

, S3 = A1

1+ μ3
3,4S4

,

Y1 =
(b2

1,4 + c2,1)

c1,2
r̃ S

1 (S4, S5), Y2 = r̃ S
1 (S4, S5), Y3 =

μ3
3,4 A1S4

1+ μ3
3,4S4

. (18)

Thus, all species are given as S-positive rational functions of S4, S5 in the coefficient
field R(Con∪{A1, A2}).
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4.4 Steady-state equations

To summarize, at steady state the intermediate complexes Y can be expressed as
rational functions of the substrates S and therefore eliminated. Further, provided a
cut Sα exists (and some spanning trees), the variables Sα can be expressed as func-
tions of S c

α = S \Sα and therefore also eliminated. For the latter statement, we
make use of the conservation laws (with given total amounts) for the species in Sα

determined by the connected components of GSα,Yα
. Assume that the graph GSα,Yα

has nα connected components, each admitting a rooted spanning tree. By Proposition
3, each component provides one conservation law.

Specifically, consider the steady-state equations (11) for S c
α . Substituting the

expressions in (15) and (14) for Y and Sα provides the steady-state equations in
terms of S c

α and the selected variables Sil (one for each connected component of
GSα

). Using the conservation law, equation (16) provides steady-state equations in
terms of S c

α only. Let S c
α = {SNα+1, . . . , SN }. Since Sα is a cut, if Si ∈ S c

α and
di, j �= 0 or d j,i �= 0, then S j ∈ S c

α . Using Eqs. (16) and (11), the equation Ṡi = 0
for i = Nα + 1, . . . , N can be written as:

0 =
P∑

k=1

⎛

⎝
Nα∑

j=1

εi, j a
k
i, j r

S
j (S

c
α )Si +

N∑

j=Nα+1

εi, j a
k
i, j Si S j

⎞

⎠+
N∑

j=1

P∑

k=1

εi, j b
k
i, j r

Y
k (S c

α )

+
N∑

j=Nα+1

(d j,i S j − di, j Si ).

The right-hand side of the equation is a rational function in S c
α with coefficients in

R(Con∪{A1, . . . , Anα }). Since the non-vanishing r S
j (S

c
α ) and rY

k (S c
α ) are S-positive

rational functions, their denominators can be chosen to be S-positive. Thus, we can
multiply the expressions by the denominators without changing the positive solutions
and a polynomial equation is obtained. Therefore, we define �u(S c

α ) = 0 to be
the equation obtained from Ṡu = 0 after elimination of Y and Sα and removal of
denominators in this way.

Extend the set of nα conservation laws arising from Sα to a maximal set of dim(Γ ⊥)

laws. Following a similar procedure, each additional equation for a conserved amount
Al =∑

i λl
i Si +∑

k μl
kYk for l = nα + 1, . . . , dim(Γ ⊥) is transformed into an equa-

tion Al = ϕl(S c
α ). The function ϕl is a rational function in S c

α with coefficients in
R(Con∪{A1, . . . , Anα }) and its denominator can be chosen to be S-positive.

Theorem 1 Consider a PTM system for which there exists a cut Sα and let Sα,l , l =
1, . . . , nα , be the node sets of the connected components of GSα,Yα

. Further, assume
that each subgraph GSα,l admits a rooted spanning tree. If total amounts Al are
given for the nα connected components of GSα,Yα

and the dim(Γ ⊥)− nα additional
conservation laws, then the non-negative steady states of the system with positive
values for the substrates in S c

α are in one-to-one correspondence with the positive
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solutions to

�u(S c
α ) = 0, Al = ϕl(S

c
α )

for u = Nα+1, . . . , N and l = nα+1, . . . , dim(Γ ⊥). Here �u(S c
α ) is a polynomial

and ϕl(S c
α ) is a rational function in S c

α with coefficients in R(Con∪{A1, . . . , Anα }).
Proof We have shown that any non-negative steady state with positive values for all
substrates in S c

α must satisfy these equations. For the reverse, consider a positive
solution s = (sNα+1, . . . , sN ) to the equations �u(S c

α ) = 0 and Al = ϕl(S c
α ).

For i = 1, . . . , Nα , define si through equation (17) and yk, k = 1, . . . , P , through
equation (9). For positive rate constants and positive total amounts, si , yk are non-neg-
ative (because the rational functions defining them are S-positive). By construction
these definitions automatically ensure that the conservation laws with total amounts
Al , l = 1, . . . , Nα , are satisfied (cf. Proposition 6).

By Proposition 2, the values y1, . . . , yP satisfy (2) for all k and hence the steady-
state equations of the intermediate complexes are satisfied. By Proposition 6 the
values s1, . . . , sNα satisfy (11). Since the latter is just (3) after substitution of (9),
we see that (3) holds as well. Since �u(S c

α ) = 0 is the steady-state equation Ṡu = 0
for u = Nα + 1, . . . , N , after substitution of (9) and (17), this equation is also sat-
isfied. The same reasoning applies to the equation Al = ϕl(S c

α ), l > nα . Thus,
Si = si , i = 1, . . . , N , and Yk = yk, k = 1, . . . , P , is a solution to the steady-state
equations and satisfy the conservation laws with total amounts Al . ��

If each GSα,l is strongly connected, then this theorem together with Proposition
2(iii) and Proposition 4 provide a statement about positive steady states, and not only
about non-negative steady states.

Corollary 1 With the notation of Theorem 1, assume that ĜY and each GSα,l are
strongly connected. Then, the positive steady states of the system are in one-to-one
correspondence with the positive solutions to

�u(S c
α ) = 0, Al = ϕl(S

c
α )

for u = Nα + 1, . . . , N and l = nα + 1, . . . , dim(Γ ⊥). Further, if at steady state
Si = 0, Si ∈ Sα , or Yk = 0, Yk ∈ Y , then there exists some S j ∈ S c

α such that also
S j = 0.

In Example (1), S c
α = {S4, S5} , dim(Γ ⊥) − nα = 1 and there is only one addi-

tional conservation law, A3 = S4+ S5+Y1+Y2+Y3. Using Eq. (18), the elimination
procedure leads to the steady-state equations consisting of Ṡ4 = 0 (that is, equation
�4(S4, S5) = 0) and A3 (that is, equation ϕ3(S4, S5) = A3):

0 = �4(S4, S5) = −b3
3,5μ

3
3,4 A1S4d̃ S

1 (S4, S5)+ b2
1,4(1+ μ3

3,4S4)̃n
S
1 (S4, S5),

A3 = ϕ3(S4, S5) = S4 + S5 +
(b2

1,4 + c2,1 + c1,2)

c1,2
r̃ S

1 (S4, S5)+
μ3

3,4 A1S4

1+ μ3
3,4S4

,
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where r̃ S
1 (S4, S5) = ñS

1 (S4, S5)/d̃ S
1 (S4, S5). Since the conditions of Corollary 1 are

fulfilled, any positive solution of this reduced system provides a positive steady state
of the PTM system. The steady states of the other species, S1, S2, S3, Y1, Y2, Y3, are
found from (18). In this specific example, the first equation is linear in S4 and S5 sepa-
rately, and hence either S4 or S5 can be eliminated as well. This provides a polynomial
equation in the remaining variables. However, S-positivity is no longer guaranteed.

In the example we intentionally selected Sα to have the highest possible number of
elements, because all variables in Sα are subsequently eliminated. In some systems
(see e.g. Sect. 5.2) there two different cuts Sα,S ′α might exist, such that the union
is not a cut, but still all variables in Sα ∪S ′α can be eliminated. Thus, more species
might be eliminated if different cuts are considered.

5 Examples

5.1 TG framework

Thomson and Gunawardena (2009) provide a linear elimination procedure for the
special case in which the set of substrates is partitioned into two distinct sets. In their
context, a PTM system (here called TG system) consists of three non-empty and disjoint
sets of species called enzymes, substrates, and intermediate complexes:

Enz = {E1, . . . , EL}, Sub = {S1, . . . , SN }, Y = {Y1, . . . , YP },

and a set of reactions Rct = Ra ∪ Rb ∪ Rc with Ra = {Ei + S j

ak
i, j−−→ Yk |(i, j, k) ∈

Ia}, Rb = {Yk

bk
i, j−−→ Ei + S j |(i, j, k) ∈ Ib} and Rc = {Yi

ci, j−−→ Y j |(i, j) ∈ Ic}, for
Ia, Ib ⊆ {1, . . . , L} × {1, . . . , N } × {1, . . . , P} and Ic ⊆ {1, . . . , P}2, such that

(i) All chemical species are involved in at least one reaction.
(ii) For every intermediate complex Yk there is at most one enzyme Eη(k), such that

(η(k), j, k) ∈ Ra ∪ Rb for some j .
(iii) If two intermediate complexes Yk, Yv are 1-linked, then Eη(k) = Eη(v).

The graph ĜY and each connected component of the graph GSub are required to
be strongly connected. In particular, the assumption that ĜY is strongly connected
implies that any Yk ultimately reacts to Si+S j for some i, j . If we let S = Sub∪Enz,
it follows that a TG system is a special case of a PTM system.

Essentially, they consider PTM systems in which enzymes are not allowed to be
modified and substrates are not allowed to modify. Let Sα = Sub,S c

α = Enz and
note that Yα = Y c

α = Y . Properties (i)-(iii) imply that Sα and S c
α are cuts. Thus

our framework applies to TG systems and is in fact an extension.
By assumption (iii) the graph GS c

α ,Y has L connected components that give L

conservation laws for the enzymes: Ei = Ei +∑
k|η(k)=i Yk , for i = 1, . . . , L . With

the notation of Lemma 2, N c
α = nc

α = L , Pc
α = 0, so that N c

α + Pc
α − nc

α = 0.
Thus a set of independent conservation laws for a TG system can be derived from
the non-interacting graphs of GS ,Y . Further, the form of Ra and Rb ensures that
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any non-interacting graph contains species from Enz or Sub, but not both. Thus, all
conservation laws are associated with a connected component of GEnz,Y or GSub,Y .

If all intermediate complexes ultimately dissociate into an enzyme and a substrate,
and each connected component of GSα

has a rooted spanning tree, then the variables
in Sα ∪ Y can be eliminated. In this case, the steady-state equations are reduced to
L equations derived from the total amount of enzymes. Observe that these conditions
are milder than requiring ĜY and GSα

to be strongly connected.

5.2 Signaling cascades

Our setting is well-suited to study elimination of variables in signaling cascades. Sig-
naling cascades form a special type of PTM systems where some substrates also act
as enzymes (Feliu et al. 2012; Huang and Ferrell 1996) and thus extends TG systems.

Definition 5 A signaling cascade is a collection of TG systems R1, . . . , Rn , with
corresponding sets of species

Enzi = {Ei
1, . . . , Ei

Li
}, Subi = {Si

1, . . . , Si
Ni
}, Y i = {Y i

1, . . . , Y i
Pi
}

and sets of reactions Rcti = Ri
a ∪ Ri

b ∪ Ri
c, for i = 1, . . . , n, satisfying the following

conditions:

(i) (Enzi ∪Subi ∪Y i ) ∩ (Enz j ∪Sub j ∪Y j ) = {Ei+1
1 } = {Si

Ni
} for j = i + 1

and i < n. The intersection is empty otherwise.
(ii) For i = 1, . . . , n, the graph GSubi admits a spanning tree rooted at Si

Ni
.

(iii) All intermediate complexes ultimately dissociate into two substrates.

Condition (i) implies that a signaling cascade consists of independent TG systems
joined by a single substrate acting as an enzyme in the layer below. Condition (iii)
ensures that the intermediate complexes can be eliminated.

Let N = N1+· · ·+Nn, L = L1+· · ·+Ln and S =⋃
i Enzi ∪Subi . Consider the

closed subset Subi ⊂ S with associated set YSubi = Y i ∪{Yk ∈ Y i+1| Eη(k) = Si
Ni
}

for i = 1, . . . , n. By definition, substrates in Subi do not interact and thus Subi is a
cut.

Proposition 6 ensures that the variables in Subi can be eliminated and that

Si
j = r i

j (Enzi )Si
Ni

, Si
j ∈ Subi \{Si

Ni
}.

By Lemma 6, r i
j depends on the species in Enzi only: if Si

u + St ultimately reacts to

Si
j + Sr via Y for some species Si

u in Subi and Sr ∈ S \ Subi , then since Si
j �= Si

Ni
,

St = Sr = Ei
η for some Ei

η ∈ Enzi . Further, if Yk ∈ YSubi , we let Yk = rY
k (Enzi )Si

Ni
be the corresponding rational function.
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5.2.0.1 Conservation laws. Since GSubi is connected and admits a rooted spanning
tree, there is only one conservation law among the species in Subi ∪YSubi ,

S
i =

∑

Si
j∈Subi

r i
j (Enzi )Si

Ni
+

∑

Yk∈YSubi

rY
k (Enzi )Si

Ni
, (19)

where S
i

is the total amount. For i = n, Sn
Nn

/∈ Enzn , and therefore Sn
Nn

can be isolated
from (19) and expressed as a rational function in Enzn .

Thus, if we let Enz = ⋃
i Enzi , then the species in S \Enz are given as rational

functions in Enz with coefficients in R(Con). Condition (iii) implies that for Ei
η ∈

Enzi \{Si
Ni
}, {Ei

η} is a cut with associated (connected) graph G Ei
η,Y

Ei
η

. Thus, if the

total amount E
i
η is provided, the steady states must fulfill the equality

E
i
η = Ei

η +
∑

k|η=η(k)

Yk = Ei
η +

∑

k|η=η(k)

rY
k (Enzi )Si

Ni
. (20)

We conclude that the non-negative steady states of a signaling cascade are solu-
tions to L equations in Enz with coefficients in R(Con), provided that total amounts

for Enz are given: S
1
, . . . , S

n−1
in (19) for the enzymes Si

Ni
and E

i
η in (20) for

Ei
η ∈ Enz \{S1

N1
, . . . , Sn−1

Nn−1
}.

The number of conservation laws obtained in this way is m =∑
i Li + 1 = L + 1

(remember S
n
). Let ε = 1 if n is even and 0 otherwise, and define εc = 1 − ε. The

cuts provide all conservation laws. In fact the graph associated to the cut

Sα =
⋃

i even

Subi ∪
⋃

i odd

Enzi

has nα = ε +∑
i odd Li connected components and thus, nc

α = εc +∑
i even Li . We

have Nα = ∑
i odd Li +∑

i even(Ni − 1) + ε, and N c
α =

∑
i even Li +∑

i odd(Ni −
1)+ εc. Further, Yα = Y , so that Pc

α = 0.
Let Γ = N c

α − nc
α =

∑
i odd(Ni − 1). By Lemma 2, if there are Γ independent

terms in S c
α ∩ Γ , then all conservation laws come from non-interacting graphs. By

assumption, the graph GSubi has a spanning tree rooted at Si
Ni

. This implies that for

every Su �= Si
Ni

in Subi , there exists a directed path Su �� Sk1
�� . . . �� Skr

�� Si
Ni

.

The conditions of a TG system and Lemma 5 ensure that for any edge Skv → Sks in
GSubi , E+ Skv ultimately reacts to E+ Sks via Y for some E . We see that Su− Si

Ni
∈

S c
α ∩Γ for all Su �= Si

Ni
in Subi , implying that indeed there are Γ independent vectors

in S c
α ∩ Γ .
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5.3 Biological examples

MAPK signaling cascade We consider the first two layers of the MAPK cascade with a
one-site modification in the first layer and a two-site modification in the second layer.
In the latter, dephosphorylation is considered sequential whereas this is not the case
for phosphorylation (Markevich et al. 2004).

The reactions of the system in the first layer are

E + S1
0

�� Y 1
1

���� E + S1
1 F1 + S1

1
�� Y 1

2
���� F1 + S1

0 ,

accounting for phosphorylation and dephosphorylation, respectively, via a Michaelis–
Menten mechanism. In the second layer we have the phosphorylation reactions

S1
1 + S2

0,0
�� Y 2

1
���� S1

1 + S2
1,0 S1

1 + S2
0,0

�� Y 2
2

���� S1
1 + S2

0,1

S1
1 + S2

1,0
�� Y 2

3
���� S1

1 + S2
1,1 S1

1 + S2
0,1

�� Y 2
4

���� S1
1 + S2

1,1.

Dephosphorylation proceeds sequentially in the following way:

F2 + S2
1,1

�� Y 2
5

���� F2 + S2
1,0 F2 + S2

1,0
�� Y 2

6
���� F2 + S2

0,0.

The sets of enzymes are Enz1 = {E, F1} and Enz2 = {S1
1 , F2}. The sets of sub-

strates are Sub1 = {S1
0 , S1

1 } and Sub2 = {S2
0,0, S2

1,0, S2
0,1, S2

1,1}. The sets of interme-

diate complexes are Y 1 = {Y 1
1 , Y 1

2 } and Y 2 = {Y 2
1 , Y 2

2 , Y 2
3 , Y 2

4 , Y 2
5 , Y 2

6 }. We have
Enz2 ∩Sub1 = {S1

1}, so that the modified substrate in the first layer is a kinase of the
next layer. The superindex denotes the layer, while the subindex denotes phosphory-
lation state (the presence of the phosphate group is represented by 1).

Each connected component of ĜY consists of a single intermediate complex and
is thus strongly connected. The graphs ĜSub1 and ĜSub2 are

S1
0

�� S1
1�� S2

1,0
��������

��������

S2
0,0

��������

		������
S2

1,1



������

S2
0,1

		������

which are also strongly connected. The conservations laws (all derived from non-

interacting graphs) are E = E + Y 1
1 , F1 = F1 + Y 1

2 , F2 = F2 + Y 2
5 + Y 2

6 , S
1 =

S1
0 + S1

1 + Y 1
1 + Y 1

2 + Y 2
1 + Y 2

2 + Y 2
3 + Y 2

4 and S
2 = S2

0,0+ S2
1,0+ S2

0,1+ S2
1,1+ Y 2

1 +
Y 2

2 + Y 2
3 + Y 2

4 + Y 2
5 + Y 2

5 . Therefore, if total amounts are provided, then the steady
states of the two-layer cascade are found as solutions to a system of four polynomial
equations in four variables, namely E, F1, F2, S1

1 .
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Receptor protein-tyrosine kinase Receptor protein-tyrosine kinases (RPTK) are cell
surface receptors linked to enzymes that phosphorylate their substrate proteins in tyro-
sine residues. The common mechanism for activation is autophosphorylation following
ligand-induced dimerization (Cooper and Hausman 2009, §15). The phosphorylated
receptor serves as binding site to downstream signaling molecules, such as SH2 domain
containing proteins. Further, the receptor can be dephosphorylated by several protein
tyrosine phosphatases (PTPs) (Ostman and Bohmer 2001).

A simple model describing the phosphorylation state of an RPTK is:

2R0
�� Y1 ���� 2R1 S + R1

�� Y2�� F + R1
�� Y3 ���� F + R0

where R0, R1 stand for the unphosphorylated and phosphorylated RPTK, respectively,
S is a protein binding R1, and F is a PTP.

We have S = {R0, R1, S, F} and Y = {Y1, Y2, Y3}. Note that S� = {R0, R1}
are the self-interacting substrates and thus cannot be part of a cut. First of all, the
intermediate complexes can be eliminated in terms of S . The graph GS ,Y is

R0

F

Y1

Y3

R1 Y2 S .

The non-interacting graphs provide two conservation laws: F = F + Y3, and
S = S+Y2, associated to the cut Sα = {F, S}. Thus, the substrates F, S can be elim-
inated. We conclude that at steady state all species are described as rational functions
in R0, R1 and the non-negative steady states are in one-to-one correspondence with
the non-negative solutions to the equations corresponding to Ṙ0 and the remaining
conservation law R = R0 + R1 + 2Y1 + Y2 + Y3.

6 Discussion and perspectives

In this paper we have shown that the steady states of a PTM system are parameterized
algebraically by a set of core variables selected among all substrates. The eliminated
variables cannot be any set but must fulfil certain criteria. Further, the intermediate
complexes can always be eliminated and expressed as polynomials in the substrates,
or as rational functions in the core variables. The intermediate complexes are tran-
sient molecules involved in enzymatic catalytic activities and eventually dissociate
into substrates. Elimination of intermediate complexes is a standard procedure known
as the quasi-steady state approximation and is often applied to simplify the dynamics
of the system. Here we have justified this procedure mathematically at steady state for
general PTM systems.

An interesting consequence of the variable elimination procedure is that conditions
for a steady state to have zero concentration(s) are derived. Several results on chemical
reaction networks apply to strictly positive steady-state solutions and do not consider
solutions on the boundary, e.g. Craciun and Feinberg (2005). Our conditions allow
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the identification of systems with species for which the steady-state concentrations
always are on the boundary.

Cuts can be identified algorithmically and thus a fully automated procedure for iden-
tifying sets of variables that can be eliminated from the steady-state equations can be
implemented. However, such a procedure might be computationally expensive. Given
a cut Sα , the minimal cuts S ′ ⊆ Sα can easily be identified, e.g. as the connected
components of the graph GSα,Yα

. Importantly, elimination of the variables in S ′ from
the steady-state equations and calculation of the corresponding rational expressions
can also be done efficiently (algorithmically) using symbolic programming packages
such as Mathematica or Singular.

The framework and the results derived here are in the setting of PTM systems,
which are particularly useful for understanding cellular signaling. The specific struc-
ture of PTM systems ensures that the set of intermediate complexes can be fully
eliminated and that the structure between the set of substrates and the set of interme-
diate complexes can be explored. However, we are aware that the notion of a cut and
the graphical techniques apply more generally to chemical reaction networks taken
with mass-action (Feliu and Wiuf 2011b). The special peculiarities and structure of
the PTM systems and signaling cascades are however lost in the general exposition.

Acknowledgments E.F. is supported by a postdoctoral grant from the “Ministerio de Educación” of Spain
and the project MTM2009-14163-C02-01 from the “Ministerio de Ciencia e Innovación”. C.W. is supported
by the Lundbeck Foundation, Denmark and the Leverhulme Trust, UK. Part of this work was done while
E.F. and C.W. were visiting the Imperial College London in the fall 2011.

References

Angeli D, De Leenheer P, Sontag E (2010) Graph-theoretic characterizations of monotonicity of chemical
networks in reaction coordinates. J Math Biol 61:581–616

Cooper GM, Hausman RE (2009) The cell, 5th edn. ASM Press, Washington
Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland Press, London
Craciun G, Feinberg M (2005) Multiple equilibria in complex chemical reaction networks. I. The injectivity

property. SIAM J Appl Math 65(5):1526–1546
Diestel R (2005) Graph theory, graduate texts in mathematics, vol 173, 3rd edn. Springer, Berlin
Feinberg M (1980) Lectures on chemical reaction networks 1. pp 1–18. http://www.che.eng.ohio-state.edu/

~feinberg/LecturesOnReactionNetworks/
Feinberg M (1987) Chemical reaction network structure and the stability of complex isothermal reactors I.

The deficiency zero and deficiency one theorems. Chem Eng Sci 42(10):2229–2268
Feinberg M, Horn FJM (1977) Chemical mechanism structure and the coincidence of the stoichiometric

and kinetic subspaces. Arch Ration Mech Anal 66(1):83–97
Feliu E, Wiuf C (2011a) Enzyme sharing as a cause of multistationarity in signaling systems. J R Soc

Interf doi:10.1098/rsif.2011.0664 (epub ahead of print, Nov 2)
Feliu E, Wiuf C (2011b) Variable elimination in chemical reaction networks with mass action kinetics.

arXiv 1109.1505
Feliu E, Knudsen M, Andersen LN, Wiuf C (2012) An algebraic approach to signaling cascades with n

layers. Bull Math Biol 74(1):45–72
Gross JL, Yellen J (2006) Graph theory and its applications, 2nd edn. Discrete mathematics and its appli-

cations. Chapman and Hall/CRC, Boca Raton
Heinrich R, Neel BG, Rapoport TA (2002) Mathematical models of protein kinase signal transduction. Mol

Cell 9:957–970
Huang CY, Ferrell JE (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl

Acad Sci USA 93:10078–10083

123

Author's personal copy

http://www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks/
http://www.che.eng.ohio-state.edu/~feinberg/LecturesOnReactionNetworks/
http://dx.doi.org/10.1098/rsif.2011.0664


310 E. Feliu, C. Wiuf

Kholodenko BN, Birtwistle MR (2009) Four-dimensional dynamics of MAPK information processing sys-
tems. Wiley Interdiscip Rev Syst Biol Med 1:28–44

King E, Altman C (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions.
J Phys Chem 60:1375–1378

Krell T, Lacal J, Busch A, Silva-Jimenez H, Guazzaroni ME, Ramos JL (2010) Bacterial sensor kinases:
diversity in the recognition of environmental signals. Annu Rev Microbiol 64:539–559

Markevich NI, Hoek JB, Kholodenko BN (2004) Signaling switches and bistability arising from multisite
phosphorylation in protein kinase cascades. J Cell Biol 164:353–359

Ostman A, Bohmer FD (2001) Regulation of receptor tyrosine kinase signaling by protein tyrosine phos-
phatases. Trends Cell Biol 11:258–266

Thomson M, Gunawardena J (2009) The rational parameterization theorem for multisite post-translational
modification systems. J Theor Biol 261:626–636

Tutte WT (1948) The dissection of equilateral triangles into equilateral triangles. Proc Camb Philos Soc
44:463–482

Ventura AC, Sepulchre JA, Merajver SD (2008) A hidden feedback in signaling cascades is revealed. PLoS
Comput Biol 4:e1000041

123

Author's personal copy


	Variable elimination in post-translational modification reaction networks with mass-action kinetics
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Graphs and the Matrix-Tree theorem

	3 Post-translational modification systems
	3.1 PTM system
	3.2 Mass-action kinetics
	3.3 Conservation laws
	3.4 Cuts of mmS and conservation laws

	4 Variable elimination
	4.1 Elimination of intermediate complexes
	4.2 Decomposition of the system
	4.3 Elimination of substrates
	4.4 Steady-state equations

	5 Examples
	5.1 TG framework
	5.2 Signaling cascades
	5.3 Biological examples

	6 Discussion and perspectives
	Acknowledgments
	References


