Three-group numbers

Jørn B. Olsson

May 8, 2006

If $n \in \mathbb{N}$ then $f(n)$ is defined as the number of (isomorphism classes of) groups of order n. We call n a k-group number, if $f(n)=k$.
Suppose that $p_{1}, p_{2}, \ldots, p_{t}$ are distinct prime numbers. For $i \neq j$ we call p_{i} and p_{j} related if $p_{i} \mid\left(q_{j}-1\right)$ or $p_{j} \mid\left(q_{i}-1\right)$. We say that there are s relations between the p_{j} if exactly s pairs of the primes are related. Thus for example there are 2 relations between 3,7,13 and no relations (0 relations) between 5,7,13.

Proposition 1: We have that n is a 1-group number if and only if n is a product of distinct prime numbers with no relations.
Proof: Suppose that n is a 1 -group number, and write $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots$ If some $a_{i} \geq 2$ then there are at least 2 (nonisomorphic) abelian groups of order $p_{i}^{a_{i}}$, contradicting that n is a 1 -group number. Thus n is a product of distinct prime numbers. If two of them are related, say p_{i} and p_{j} there exists also a nonabelian group of order $p_{i} p_{j}$, contradicting again that n is a 1 -group number. Conversely if n is a product of distinct prime numbers with no relations, an abelian group of order n is cyclic. It is known that a group G of order n is metacyclic. If G is not abelian then G / G^{\prime} and G^{\prime} are nontrivial and there has to exist a relation between a prime divisor of $\left|G: G^{\prime}\right|$ and a prime divisor of $\left|G^{\prime}\right|$. Otherwise G^{\prime} would be contained in the center of G and thus be a direct factor of G. This is clearly not possible. \diamond

Proposition 2: Suppose that p, q are different prime numbers. Then
(1) $p q^{2}$ is a 2-group number if and only if there is no relation between p, q and $p \nmid(q+1)$.
(2) $p q^{2}$ is a 3-group number if and only if there is no relation between p, q and $p \mid(q+1)$.
Proof: There are exacty two abelian groups of order $p q^{2}$. Suppose that we also have a nonabelian group G of this order. Let P be a p-Sylow subgroup and Q a q-Sylow subgroup of G. Then by Sylows theorem either $P \unlhd G$ or $Q \unlhd G$, but not both.
If $P \unlhd G$ then Q acts nontrivially on P and this is only possible when $q||A u t(P)|=$ $p-1$. But then there are two nonabelian groups of this order and $p q^{2}$ is a k-group number, $k \geq 4$. We assume now that $q \nmid(p-1)$.

If $Q \unlhd G$ then P acts nontrivially on Q so that $p||A u t(Q)|$. We have $| A u t(Q) \mid=$ $q(q-1)$ if Q is cyclic and $|\operatorname{Aut}(Q)|=q(q-1)^{2}(q+1)$ otherwise. If $p=2$ there are 3 non-abelian groups of order $p q^{2}$. Suppose $p \neq 2$. If $p \mid(q-1)$ we have at least two non-abelian groups of order $p q^{2}$. If $p \mid(q+1)$ we get exactly one nonabelian group. \diamond

Proposition 3: We have that n is a 2-group number if and only if n is a product on one of the following forms:
(1) $n=p_{1} p_{2} \ldots p_{t} q^{2}$ for distinct prime numbers $p_{1}, . ., p_{t}, q$ with no relations and such that in addition $p_{i} \nmid(q+1)$ for $i=1, \ldots, t$.
(2) $n=p_{1} p_{2} \ldots p_{t}$ for distinct prime numbers $p_{1}, . ., p_{t}$, with 1 relation between the p_{i} 's.
Proof: By considering the number of abelian groups of order n we see that n has the form $n=p_{1} p_{2} \ldots p_{t} q^{2}$ or $n=p_{1} p_{2} \ldots p_{t}$ for distinct prime numbers $p_{1}, . ., p_{t}, q$. if n is a 2 -group number.
Assume that n is a 2 -group number. In the case of $n=p_{1} p_{2} \ldots p_{t} q^{2}$ we see that there can be no non-abelian groups of order n. We then use the previous results to get that there are no relations and in addition $p_{i} \nmid(q+1)$ for $i=1, \ldots, t$. Thus the conditions of (1) are fulfilled.
In the case of $n=p_{1} p_{2} \ldots p_{t}$ each relation between the p_{i} 's gives a new (isomorhism type) group of order n. Thus the condition of (2) is fulfilled.
Conversely assume first that n fulfils the conditions of (1). If $q=2$ then q is related to any odd prime, forcing $n=4$. If $q \neq 2$ then any group G of order n is solvable. By Propositions 1 and 2 we get that any π-Hall subgroup of G where $|\pi|=2$ must be abelian. This forces G to be abelian.
If G has order n, fulfilling the condition of (2), again G is solvable. Suppose that p_{1} and p_{2} are related. By Proposition 1 we get that any π-Hall subgroup of G where $|\pi|=2$ must be abelian unless $\pi=\left\{p_{1}, p_{2}\right\}$. Thus all p_{i}-subgroups for $i \geq 3$ are central in G and thus direct factors of G. The result follows, since there are exactly 2 groups of order $p_{1} p_{2} . \diamond$

Theorem 4: We have that n is a 3-group number if and only if n is a product on one of the following forms:
(1) $n=p_{1} p_{2} \ldots p_{t} q^{2}$ for distinct prime numbers $p_{1}, . ., p_{t}, q$ with no relations and such that in addition $p_{i} \mid(q+1)$ for exactly one $i \in\{1, \ldots, t\}$.
(2) $n=p_{1} p_{2} \ldots p_{t}$ for distinct prime numbers $p_{1}, . ., p_{t}$, with 2 relations between the p_{i} 's which are on the form $p_{i}\left|\left(p_{j}-1\right), p_{j}\right|\left(p_{k}-1\right)$ for some i, j, k.
Proof: By considering the number of abelian groups of order n we see that n has the form $n=p_{1} p_{2} \ldots p_{t} q^{2}$ or $n=p_{1} p_{2} \ldots p_{t}$ for distinct prime numbers p_{1}, \ldots, p_{t}, q, if n is a 3 -group number.
We see that n is a 3 -group number if and only if there exists exactly one non-abelian group of order n in the first case and exactly two in the second case.

Assume that n is a 3 -group number. In the first case $n=p_{1} p_{2} \ldots p_{t} q^{2}$ we see that if there is a relation between $p_{1}, . ., p_{t}, q$ we get at least two nonabelian groups of order n. By the previous result there has to exist at least one p_{i} dividing $(q+1)$, if n is not a 2 -group number. If this happens more than once we get at least two nonabelian groups of order n by Proposition 2. Thus the conditions of (1) are fulfilled.
In the second case $n=p_{1} p_{2} \ldots p_{t}$ there must be 2 relations between the the p_{i} 's, since 1 relation is not enough by the previous result and 3 relations give at least 3 non-abelian groups. We have the following possiblities for the relations:
(i) $p_{i}\left|p_{j}-1, p_{j}\right| p_{k}-1$
(ii) $p_{i}\left|p_{j}-1, p_{i}\right| p_{k}-1$
(iii) $p_{i}\left|p_{j}-1, p_{k}\right| p_{l}-1$,
with i, j, k, l different. But the two last possibilities give at least 3 non-abelian groups of order n. Thus the condition of (2) is fulfilled.
Conversely assume first that n fulfils the conditions of (1). If one of the primes is 2 , it is related to all other primes, contradicting the conditions. Thus a group G of order n is solvable. Assuming that $p_{1} \mid(q+1)$ we see that any any π-Hall subgroup of G where $|\pi|=2$ must be abelian unless $\pi=\left\{p_{1}, q\right\}$. This forces all Sylow p_{i}-subgroups, $i \geq 2$ to be direct factors of G. By Proposition 2 we get that n is a 3 -group number.
If n fulfils the conditions of (2), then again any G of order n is solvable. The p-Sylow subgroups of a group G of order n are direct factors of G for all $p \neq p_{i}, p_{j}, p_{k}$ and do not play a rôle. So assume G is a nonabelian group of order $n=p_{1} p_{2} p_{3}$ with $p_{1}\left|\left(p_{2}-1\right), p_{2}\right|\left(p_{3}-1\right)$. Let P_{i} be a p_{i}-Sylow group of $G, i=1,2,3$. We have $p_{1}<p_{2}<p_{3}$ and thus $P_{3} \unlhd G$. Therefore also $C_{G}\left(P_{3}\right) \unlhd G$. Since p_{1} and p_{3} are not related $P_{1} \subseteq C_{G}\left(P_{3}\right)$. We now have one of the following:
(i) $C_{G}\left(P_{3}\right)=G$. Then P_{3} is a direct factor of G.
(ii) $C_{G}\left(P_{3}\right)=P_{1} P_{3}$. Then $P_{1} \operatorname{char} C_{G}\left(P_{3}\right) \unlhd G$ and therefore $P_{1} \unlhd G$ must be a direct factor of G.
Each of these cases thus give exactly one non-abelian group of order n.

