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1 Introduction

A number of new results about core partitions have been proved recently. ([2],[3],
[9], [12]) For s ∈ N an s-core is by definition an integer partition without hooks of
length s. This type of partitions first occurred in modular representation theory
of symmetric groups, where s-cores label s-blocks of defect 0 in the case where
s is a prime. In the study of relations between blocks for different primes in
symmetric groups it is of interest to study partitions which are simultaneously
s- and t-cores for different s, t ([13]).

In this paper we present results of a new type on core partitions. The
motivation for these results lies is the desire to classify completely the possible
block coverings in symmetric groups, but the results may also have applications
of a different nature.

There is a general question about possible equalities between (unions of)
blocks in a finite group for different primes. It is related to the Navarro-Willems
question about the possible equality of (the set of irreducible characters in) two
blocks Bs and Bt for different primes ([10]). Precisely formulated the question
is: When is, for a fixed pair of different primes s, t dividing |G|, (G a finite
group) the set of irreducible characters in a t-block Bt of G of positive defect
equal to a union of the sets of irreducible characters in some s-blocks? We refer
to this as a block covering of Bt. We call a block covering trivial if the s-blocks
occurring in the union all have defect 0.

If there is only one s-block in the covering, we have the special case of a block
equality. In [10] it was conjectured that all block equalities are trivial. This is
false in general, as noted first by C. Bessenrodt, but it is true in the case of
symmetric groups ([13], Corollary 2.8). This shows that block equalities in the
symmetric groups are parametrized by (s, t)-cores as defined below. There are
only finitely many (s, t)-cores, given s and t ([1]). This is a special case (w = 0)
of one of our main results, Theorem 4.2 below.

There are examples of non-trivial block coverings in finite groups. Such
examples occur in some sporadic simple groups: M11, M22, M23, M24, Co2, J4,
B, M . (See e.g. Section 3 in [5]). Also there are examples in some quasisimple
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groups of Lie type, where t is the defining characteristic. In [5] all occurencies
of block coverings of the principal t-block in arbitrary finite groups are listed.

In this note we want to show that (apart from some trivial exceptions for
n ≤ 4) a block covering in a symmetric groups Sn is only possible, when the
s-blocks are all of weight (defect) 0, i.e. these block coverings are all trivial
(Theorem 3.7). It is also possible to describe very explicitly the occurrences
of the trivial coverings (Theorem 4.2). These results are all obtained in the
more general case, where s and t are not necessarily prime numbers, but only
relatively prime positive integers, both not equal to 1.

In the symmetric group Sn the irreducible characters are labelled canonically
by the partitions of n and the distribution of the irreducible characters into s-
blocks is given by a combinatorial condition on their labels, still referred to
as the Nakayama conjecture. See [6], 6.2.21. This motivates us to work with
blocks of partitions, i.e. the set of labels of all the irreducible characters in a
block. As in earlier papers ([13], [4]) the primeness of s and t is not essential
and considering the results of [8] this still may have some character theoretic
relevance.

For the basic facts concerning partitions, hooks and blocks of partitions we
refer to [6], Chapter 2 or [11], Chapter 1. You may get to the s-core λ(s) of a
partition λ by removing a series of s-hooks (hooks of length s) until all s-hooks
are removed. The s-core is independent of the order in which the s-hooks are
removed. A partition λ has by definition s-weight w, if you need to remove
exactly w s-hooks to get to its s-core. It also equals the number of hooks in λ
of length divisible by s ([6], 2.7.40). We denote this number ws(λ).

A partition has s-weight 0 if and only if it has no hook of length s. Such
a partition is called an s-core. Two partitions of n are said to be in the same
s-block Bs if they have the same s-core. In this case, the weight w(Bs) of the
block is the common s-weight ws(λ) of the partitions λ in Bs and the core of
Bs is the common s-core of all the partitions in Bs. In particular, an s-core
partition forms an s-block of weight 0 by itself.

The hook structure of a partition is conveniently determined by the set of its
first column hook lengths, or more generally any of its β-sets, see [11], Chapter
1. Generally, a β-set is a finite subset X of N0 = {0, 1, 2, · · · }.

For i ≥ 0 let X+i, the i’th shift of X, be the β-set which is obtained from
X in the following way: It is the union of the set {0, 1, · · · , i − 1} and the set
obtained from X by adding i to all its elements. In particuar X+0 = X. The
β-set {0, 2, 3, 6, 7} equals {1, 2, 5, 6}+1.

Let λ be a partition. Let β(λ) be the β-set consisting of all first column
hook lengths of λ. Thus if λ = (3, 3, 1, 1) then β(λ) = {1, 2, 5, 6}. A β-set on the
form β(λ)+i is called a β-set for λ.

Let s ∈ N. The s-abacus is defined as follows: It has s runners numbered
0, 1, · · · , s − 1 running from north to south. On the i-th runner we place all
non-negative integers of residue i modulo s in increasing order. A β-set X (for
a partition λ) may be represented by a bead configuration on the s-abacus by
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placing beads in the positions given by the numbers in the β-set. We refer to
this also as the s-abacus for X.

For example, X = {1, 3, 7, 10, 11, 12}, a β-set for the partition (7,7,7,5,2,1)
of 29, is represented by the following bead configuration on the 3-abacus.

0 1 2
3 4 5
6 7 8
9 10 11
12 13 14
....

The s-core of a partition may also be determined from a β-set on the s-
abacus. This is due to the following well-known fact:

Lemma 1.1: Suppose that X is a β-set for the partition λ. Then λ contains
a hook of length s if and only if there exists a h ∈ X such that h − s ≥ 0 and
h− s /∈ X. In this case X ∪ {h− s} \ {h} is a β-set for a partition obtained by
removing an s-hook from λ. �

Thus removing/adding an s-hook of λ corresponds to moving a bead one
position up/down to an empty position on one of the runners. You get a β-set
for the s-core λ(s) of λ when all beads are in the highest possible position.

Corollary 1.2: Suppose that X is a β-set for the partition λ. Then λ is an
s-core if and only for all h ∈ X we have: If h− s ≥ 0 then h− s ∈ X. �

We study then generally the situation where a t-block Bt of positive weight
w(Bt) = w > 0 in Sn is a union of k ≥ 1 different s-blocks, where we assume
that s and t are relatively prime

Bt = ∪k
i=1B

(i)
s .

This is called a block covering (of a t-block by s-blocks) in Sn. We call w(Bt)
the weight of the covering.
Examples of coverings: Let t = 3, s = 11. Consider the 3-core κ1 =
(7, 5, 3, 22, 12) of 21. The 3-block of weight 1 with this core consists of the
partitions (10, 5, 3, 22, 12), (7, 5, 42, 2, 12) and (7, 5, 3, 22, 15) of 24, which are all
11-cores. As we shall see later, a 3-block of weight 2 with 3-core κ2 = (4, 2, 12)
also consists of partitions of 14, all of which are 11-cores. Thus we have two
examples of a 3-block being a union of 11-blocks. We shall also see that the
decisive facts for these coverings to occur is that κ1 is an 8-core and that κ2 is
a 5-core!

In the next section we present our new results on core partitions. Then it
will be shown in section 3, that for n ≥ 5 and s, t 6= 1 relatively prime all block
coverings in Sn are trivial. In the final section we describe explicitly all the
possible trivial block coverings.
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2 Some general results on cores

We assume that s, t are positive integers, not necessarily relatively prime. An
(s, t)-core is a partition which is both an s-core and a t-core.

It is known that if t | s then a t-core is also an s-core. In fact more is true.
Let again for a given t ∈ N wt(λ) denote the t-weight of the partition λ. We
have
Lemma 2.1: Let v, t ∈ N and let λ be a partition. Then

v · wvt(λ) ≤ wt(λ).

In particular wt(λ) = 0⇒ wvt(λ) = 0.
Proof: Using the t-abacus it is easy to see the removal of an vt-hook may be
obtained by a successive removal of v t-hooks. From this the lemma follows. �
Theorem 2.2: An (s, t)-core is also an (s+ t)-core and thus an (s+ wt)-core
for all w ≥ 0.
Proof: Let ρ be an (s, t)-core and X its set of first column hook lengths. Suppose
that h ∈ X and that h − (s + t) ≥ 0. We show h − (s + t) = (h − s) − t ∈ X.
Then Corollary 1.2 implies that ρ is an (s+ t)-core.

Since ρ is an s-core and (h − s) ≥ 0 we get h1 = h − s ∈ X. Since ρ is a
t-core and h1 − t ≥ 0 we get h1 − t = (h− s)− t ∈ X, as desired. �

Corollary 2.3: Suppose that w ≥ 0 satisfies 0 < wt < s and that s1 = s− tw.
Then an (s1, t)-core is also an (s, t)-core. �

Theorem 2.4: Suppose that ρw is obtained from the (s, t)-core ρ by adding w
t-hooks. Then ρw is an (s+ tw)-core.
Remark: Obviously if w > 0 then ρw is not a t-core. It need also not be an
s-core.
Proof: Consider first the case where t | s, say s = vt. By Lemma 2.1 then an
(s, t)-core is the same as a t-core. We have now that wt(ρw) = w. Moreover
s+wt = (v+w)t. If ρw is not an s+wt-core then ws+wt(ρw) = w(v+w)t(ρw) > 0
and by Lemma 2.1 we then have v + w ≤ (v + w)w(v+w)t(ρw) ≤ wt(ρw) = w.
This implies v = 0, a contradiction.

Thus we may assume that t - s. Let Y be a β-set for the partition ρw of
n+wt and let X be a β-set for the (s, t)-core ρ of n having the same cardinality
as Y. Let for 0 ≤ i ≤ t− 1

Xi = {h ∈ X | h ≡t i}, Yi = {k ∈ Y | k ≡t i}.

Each Yi is a β-set for a partition (of wi, say) in the t-quotient of ρw. Then
w = w0 + ...+ wt−1.

Representing Yi and Xi on the i-th runner of the t-abacus, we have that Yi

is obtained from Xi by a sequence of wi moves, where each move consists of
moving a bead to an empty position immediately below it.

This shows that we have the following facts
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(I) If h′ ∈ Xi \ (Xi ∩ Yi) then wi ≥ |{h ∈ Xi | h ≥ h′}|.
(Indeed, since h′ /∈ Yi the bead representing it has to be moved. To do this

we first have to move the beads below it on the runner.)
(II) If k ∈ Yi and w′ = min{v ≥ 0 | k = h + vt for some h ∈ Xi} then

wi ≥ w′.
(Indeed we need at least w′ moves to move a bead in Xi to the position

occupied by k.)
Suppose now that a := k − (s+ wt) ≥ 0 for some k ∈ Yi. We want to show

a ∈ Y.
Put av = a+ vt, for v = 0, ..., w so that a0 = a, aw = k− s. Put bv = av + s,

so that bw = k. The av are all on the same runner, say runner j and the bv are
on runner i. We have i 6= j, since t - s.

Choose a minimal w′ ≥ 0 for which there exists a h ∈ X such that k = h+w′t.
By (II) above we know wi ≥ w′. Now h = k−w′t = bw−w′ . Thus h = bw−w′ ∈ X.
Since X is a β-set for a t-core we get bv ∈ X for 0 ≤ v ≤ w − w′. This shows
that av ∈ X for 0 ≤ v ≤ w − w′, since X is also a β-set for an s-core.

We assume a /∈ Yj and seek a contradiction. Applying (I) above to a ∈ Xj

we then get wj ≥ w−w′. Thus w ≥ wi +wj ≥ w′+ (w−w′) = w and therefore
we have the equalities wi = w′, wj = w − w′. The last equality shows

Yj = Xj ∪ {a+ (w − w′)t} \ {a}
This is not possible since a+ (w − w′)t = h− s ∈ X. �

As a kind of converse to the theorem we have:

Theorem 2.5: Let w ≥ 0 be given and assume that ρ is a partition with the
following property:

(*) Whenever ρw is obtained from ρ by adding w t-hooks, then ρw is an
(s+ tw)-core.

Then ρ is an s-core.
Proof: Let X be a sufficiently large β-set for ρ and Xi as before (0 ≤ i ≤ t− 1)
the subset of X represented on the i’th runner. Let h ∈ X satisfy that h−s ≥ 0.
We want to show that h− s ∈ X. Let h′ = h+ wt.

If h′ /∈ X then Y = X ∪ {h′} \ {h} is a β-set for a partition ρw which is
obtained from ρ by adding w t-hooks. By assumption ρw is an s + wt-core.
Since h′ − wt− s = h− s ≥ 0 we get h− s ∈ Y and thus h− s ∈ X.

If h′ ∈ X, say h′ ∈ Xi then let us choose some j 6= i and a k ∈ Xj such that
k+wt /∈ Xj . Put Y = X∪{k+wt}\{k}.We then have that h′−wt−s = h−s ∈ Y,
since Y is a β-set for a s+wt-core. If h−s /∈ X then h−s = k+wt. In that case
k /∈ Y. But h ∈ Y and k = h− (wt+ s) ≥ 0. Since Y is a β-set for a s+wt-core,
this is impossible. �

3 Block coverings in Sn

We assume throughout this section that s and t are relatively prime and both
not equal to 1. Here we remark the following. In the previous section there was
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no assumption on s and t being relatively prime and certainly it will be possible
to prove results on block coverings in Sn in the general case. However these are
going to be of an entirely different nature than the ones obtained below, which
are not correct in general. One essential difference is that in the case where s and
t are relatively prime there are only finitely many (s, t)-cores. If s and t have a
common divisor v 6= 1 then any v-core is an (s, t)-core and there exists infinitely
many v-cores and thus infinitely many (s, t)-cores. Also considering the original
question for arbitrary groups the assumption about relative primeness appears
to be reasonable.

We define (for s, t relatively prime)

as,t =
(s2 − 1)(t2 − 1)

24
.

Then it is known that as,t is the maximal number n such that there exists
a partition of n which is an (s, t)-core. (See e.g. [13], Theorem 4.1). There is
a unique (s, t)-core, denoted κs,t of as,t. In [14] it is shown that any (s, t)-core
is contained in κs,t. The partition κs,t is also the unique minimal (s, t)-good
partition. This is by definition an s-core such that the partitions in an s-block
of weight 1 all have the same t-core. These partitions are described in detail in
[13].

Assume that we have a block covering in Sn.

Bt = ∪k
i=1B

(i)
s .

If k = 1 we have a block equality and this is then trivial, [13], Corollary 2.8.
We may then assume k ≥ 2, which implies w = w(Bt) > 0. Also we let ρ denote
the core of the block Bt so it is a t-core. We keep this notation in the following.

The main result in this section is

Theorem 3.1: Suppose that s, t are relatively prime, both 6= 1. There exist a
non-trivial covering of a t-block by s-blocks in Sn if and only if n, s, t satisfies
one of the following conditions:
• (n, s, t) = (3, 2, 3)
• (n, s, t) = (4, 3, 2).
We give a series of lemmas, leading up to a proof of the theorem.

Lemma 3.2: If Sn has only one t-block, t > 1, then we have one of the following
cases:
• t = 2, n = 2 or n = 4.
• t = 3, n = 3.
In these cases we have a covering of the (unique) t-block by s-blocks for any

s.
Proof: Let n > 1. For n < 5 there are only the cases listed above. For n ≥ 5 it
can easily be shown that at least two of the partitions (n), (1n), (n− 2, 2), (n−
2, 12), (n − 1, 1) have different t-cores. The final statement is trivial from the
definition. �
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Since for n > 1 Sn has an s-block of positive weight if and only if s ≤ n,
the lemma shows, that the if-part of Theorem 3.1 is true. To prove the only-if
part we show that for n ≥ 5 all block coverings in Sn of a t-block by s-blocks
are trivial. This is done in Lemma 3.6 below.

Thus from now on we assume n ≥ 5, s, t > 1.
We know that each B(i)

s has weight 0 or 1, by [13], Theorem 2.5. From [13],
Theorem 5.3 we get

Lemma 3.3: If the block covering is non-trivial, i.e. if some B(i)
s is of weight

1, then ρ is an explicitly given (s, t)-core and |ρ| = as,t − st+ s+ t. �

Lemma 3.4: The partition ρ is also an s-core. In particular |ρ| ≤ as,t.

Proof: Consider e.g. Bs = B
(1)
s . If Bs has weight 0, then λ ∈ Bs is an s-core.

Moreover λ(t) = ρ, as λ ∈ Bt. By Theorem 1 of [12] ρ is again an s-core, so that
ρ is in fact an (s, t)-core. If Bs has weight 1, then by Lemma 3.3 ρ is an s-core.
The last statement follows e.g. from [13], Theorem 4.1. �

Lemma 3.5: If some B(i)
s has weight 1, then w ≥ (s− 1).

Proof: Assume thatBs = B
(1)
s has weight 1. The (s-)core of κ of the partitions in

Bs is then an (s, t)-good partition. By [13], Theorem 5.1 we have |κ| = as,t +t2v
for some v ≥ 0. Thus n = as,t + t2v + s. We get by Lemma 3.3

w =
n− |ρ|
t

=
t2v + s+ st− s− t

t
= (s− 1) + tv,

finishing the proof. �

Lemma 3.6: All B(i)
s ’s have weight 0.

Proof: Assume that some B
(i)
s has weight 1, say Bs = B

(1)
s . Consider the

partition λ obtained from ρ by adding wt nodes in the first row. Then λ ∈ Bt

and thus also in some B(j)
s , 1 ≤ j ≤ k. Obviously it is possible to remove at

least v = bwt
s c s-hooks from the first row of λ. Thus

ws(λ) ≥ v ≥ b (s− 1)t
s

c,

by Lemma 3.5. On the other hand ws(λ) = w(B(j)
s ) ≤ 1. Thus b (s−1)t

s c ∈ {0, 1}.
The case b (s−1)t

s c = 0 is not possible, as s, t 6= 1. We thus get s < (s− 1)t < 2s.
This is satisfied for t = 2.

If t ≥ 3, we have 3(s − 1) < 2s forcing s = 2 and then t = 3. This case
s = 2, t = 3 is easily handled. Indeed, ρ = (0) by Lemma 3.3. Since we assume
n ≥ 5 we get w ≥ 2. The partition (3w) is in some B(j)

s and has 2-core (0) or
(1), depending on the parity of w. This forces its 2-weight to be at least 2, a
contradiction.

Consider the case t = 2. Then by [13], Theorem 5.3 ρ = (s′− 1, s′− 2, ..., 1),
where s′ = (s − 1)/2. By Lemma 3.5 w ≥ s − 1 ≥ 2. Add 2w − (s − 1) to the
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largest part of ρ and (s− 1) to the second largest part of ρ. This partition is in
Bt since (s− 1) is even. For s′ ≥ 3 the partition has at least s-weight 2. Indeed
it is then possible to remove an s-hook from the second row and then remove an
s-hook from the first row. This is a contradiction. We need to consider s′ = 1, 2
i.e. s = 3, 5.

If s = 3, then ρ = (0) and n = 2w. Since n ≥ 5 we get w ≥ 3. But then the
partition (w2) ∈ Bt has s-weight at least 2, a contradiction.

If s = 5, then ρ = (1) and w ≥ 4. If w ≥ 5 then (w+ 1, w) ∈ Bt has s-weight
at least 2. If w = 4, then n = 9. The core of Bs is (5,2)-good and thus must be
a partition of 3 or 7, by [13], Theorem 3.1. This is not possible. �

Lemma 3.6 depended on the assumption that n ≥ 5, t > 1. It shows the only
if-part of Theorem 3.1 and thus concludes its proof.

Let us formulate explicitly the following:

Theorem 3.7: Suppose that n ≥ 5, that s, t 6= 1 are relatively prime. Then any
block covering

Bt = ∪k
i=1B

(i)
s

of a t-block by s-blocks in Sn is trivial. �

The principal block in a finite group is the block containing the trivial char-
acter. In our setup it is thus the block containing the partition (n).
Corollary 3.8: In a block covering as in Theorem 3.7, Bt is not the principal
block of Sn, unless s > n.

Proof: If Bt is the principal block and the covering is trivial then B
(i)
s = {(n)}

for some i. Thus the principal s-block of n has weight 0, forcing s > n. �

4 Describing all possible block coverings

We are still assuming that s and t are relatively prime 6= 1 and are going to to
give a parametrization of all possible block coverings in symmetric groups, given
s and t. The occurrencies of non-trivial coverings (for n = 3, 4) as described
explicitly in Theorem 3.1. We need then only classify the trivial block coverings.

Lemma 4.1: Suppose that s, t are relatively prime. If we have a trivial block
covering

Bt = ∪k
i=1B

(i)
s

of a t-block of weight w by s-blocks, then wt < s.

Proof: Assume that s ≤ wt. Then w > 0. Let λ be obtained from the core ρ of
Bt by adding wt to its largest part. Then λ is not an s-core, since s ≤ wt. This
contradicts our assumption. �

Theorem 4.2: Suppose that s, t are relatively prime. Let Bt be a t-block of
weight w ≥ 0 with core ρ. Then Bt is covered trivially by s-blocks if and only if
wt < s and ρ is an (s− wt)-core.
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Proof: Suppose first that Bt is covered trivially by s-blocks. Then by Lemma
4.1 we get that wt < s. By assumption we know that all partitions in Bt are
s-cores. Then Theorem 2.5 shows that ρ is an (s− wt)-core.

Conversely, if wt < s and ρ is an (s−wt)-core then Theorem 2.2 shows that
all partitions in Bt are s-cores. This shows that Bt is covered by s-blocks. �

Theorem 4.3: Suppose that n ≥ 5, that s, t 6= 1 and that s, t are relatively
prime. Suppose that wt < s and put s1 = s−wt. The number of occurencies of
a t-block of weight w being covered by s-blocks equals the number of (s1, t)-cores.
This number is (

s1 + t

t

)
/(s1 + t).

The maximal n for which such a covering occurs is

n = wt+
(s21 − 1)(t2 − 1)

24
.

Proof: This is a consequence of Theorem 4.2 above, Theorem 3 in [1] and
Theorem 4.1 in [13]. �

Let us finally remark the following. If we have a block covering

Bt = ∪k
i=1B

(i)
s

of a t-block of weight w by s-blocks and ρ is the core of Bt then by Lemma 3.2 ρ
is an (s, t)-core and by Theorem 4.2 ρ is an (s1, t)-core where s1 = s−wt. Now
generally an (s1, t)-core is also an (s, t)-core by Corollary 2.3. As described in
[1], [13] β-sets for (s, t)-cores are represented by beads in an northeast justified
subdiagram of the (s, t)-diagram. Now the (s1, t) diagram lies as a w-shifted
subdiagram of the (s, t)-diagram, as illustrated by by the example below. Here
s = 17, t = 5, w = 2, s1 = 7.

The boldface numbers in this (17,5)-diagram are the numbers in the (7,5)-
diagram.

12 7 2
29 24 19 14 9 4
46 41 36 31 26 21 16 11 6 1
63 58 53 48 43 38 33 28 23 18 13 8 3

(The diagram is transposed compared to the convention of [13].) This ob-
servation shows that a northeast justified subdiagram of the (s, t)-diagram rep-
resent a (s1, t)-core if and only if the first wi entries in row i are not in the
subdiagram for all relevant i. It would perhaps be reasonable to call such a
subdigram w-shifted so that the number of possible coverings of an s-block by
t-blocks equals the number of w-shifted subdiagrams of the (s, t)-diagram.

Acknowledgement: The author thanks Christine Bessenrodt for some use-
ful comments on this paper.
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