Stability properties for a-T-menability, part II

Yves Stalder

Clermont-Université

Copenhagen, February 2, 2010

In this talk:

- G, H, Γ, N, Q will denote countable groups;
- \mathcal{H} will denote a real (or complex) Hilbert space;

Suppose $\Gamma \curvearrowright (X, d)$ by isometries. Let $x_0 \in X$.

Recall

The action is (metrically) proper if, for all R > 0, the set $\{\gamma \in \Gamma : d(x_0, \gamma x_0) \le R\}$ is finite. We write $\lim_{\gamma \to \infty} d(x_0, \gamma x_0) = +\infty$.

This does not depend on the choice of x_0 .

Remark

a-T-menability is stable under taking:

- subgroups;
- direct products;
- Ifree products.

Proposition (Jolissaint)

Let $1 \rightarrow N \rightarrow \Gamma \rightarrow Q \rightarrow 1$ be a short exact sequence. If N has the Haagerup property and if Q is **amenable**, then G has the Haagerup property.

Remark

The Haagerup property is not stable under semi-direct product:

- \mathbb{Z}^2 has the Haagerup property;
- *SL*₂(Z) has the Haagerup property;
- $\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z})$ does not have the Haagerup property.

Indeed, Margulis proved that the pair $(\mathbb{Z}^2 \rtimes SL_2(\mathbb{Z}), \mathbb{Z}^2)$ has relative property (T).

Let X be a (countable) G-set.

Definition

The wreath product of G and H over X is the group $H \wr_X G := H^{(X)} \rtimes G$, where $H^{(X)}$ is the set of finitely supported functions $X \to H$ and G acts by shifting indices: $(g \cdot w)(x) = w(g^{-1}x)$ for $g \in G$ and $w \in H^{(X)}$.

- Recall that every element γ ∈ H ≥_X G admits a unique decomposition γ = wg with g ∈ G and w ∈ H^(X).
- If X = G, endowed with action by left translations, we write H ≥ G instead of H ≥_G G.

Suppose Q is a quotient of G.

Theorem (Cornulier-S.-Valette)

If G, H, Q all have the Haagerup property, then the wreath product $H \wr_Q G$ has the Haagerup property.

Example

 $(\mathbb{Z}/2\mathbb{Z})\wr\mathbb{F}_2$ has the Haagerup property.

Theorem (Chifan-Ioana)

Suppose $H \neq \{1\}$ and Q does not have the Haagerup property. Then, $H \wr_Q G$ does not have the Haagerup property.

- Let X be a countable set. Recall that the power set of X identifies with 2^X = {0,1}^X, which is a Cantor set.
- Let $A, B \subseteq X$. Say A cuts B, denoted $A \vdash B$, if $A \cap B \neq \emptyset$ and $A^c \cap B \neq \emptyset$.

Definition

A measured walls structure on X is a Borel measure μ on 2^X such that, for all $x, y \in X$

$$d_{\mu}(x,y) := \mu \{ A \subseteq X : A \vdash \{x,y\} \} + \infty$$
.

Then, the kernel $d_{\mu} : X \times X \to \mathbb{R}_+$ is a pseudo-distance on *X*.

Theorem

- Let $\Gamma = BS(m, n) = \langle a, b | ab^m a^{-1} = b^n \rangle$ for $m, n \in \mathbb{N}^*$.
 - (Gal-Januszkiewicz) Γ is a-T-menable.
 - (Haglund) Provided m ≠ n, there is no proper Γ-action on a space with walls.

Theorem (Robertson-Steger)

The following are equivalent:

- Γ is a-T-menable;
- there exists a left-invariant measured walls structure on Γ such that d_µ is proper.

See also: Cherix-Martin-Valette; Chatterji-Drutu-Haglund

Identify \mathbb{F}_2 to its Cayley tree. If A is a half-space and if $f : A^c \to \mathbb{Z}/2\mathbb{Z}$ is finitely supported, set

$$E(A, f) := \{ \gamma = wg \in (\mathbb{Z}/2\mathbb{Z}) \wr \mathbb{F}_2 : g \in A \text{ and } w|_{A^c} = f \}$$
.

One shows then that these half-spaces define a left-invariant structure of space with walls on Γ whose associated pseudodistance is proper.

Stability properties of a-T-menability II By Y. Stalder; end of the talk Thm A (Cornulier - S. - Valette) Suppose Q is a quotient group of G. If G, H, Q are a - I - menable, then so is HIQG. Lemma 1 Let X be a G-set, W=H and mbe a Gi-invariant MWS on X. Then, there exists a W×G-invariant MWS on W×X st $d_{\mu}(w_1x_1, w_2x_2) = \mu \{A \leq X A cuts$ $Supp(w, w_2) \cup \{x_1, x_2\}$ Proof is skipped Proof of thm A Take A, M, V left-invan MWS on G, Q, H s.t. d, d, d, are proper (they exist by the Robertson - Steger theorem).

Consider the maps

$$p: W \times G \longrightarrow G$$

 $f: W \times G \longrightarrow W \times Q$
 $T_{q}: W \times G \longrightarrow H$ for ged
 $wg \longrightarrow w(q)$
and set
 $\omega:= p^* \lambda + j^* \widetilde{\mu} + \sum_{q \in Q} T_{q}^* \gamma$
Def: pull-back of a MWS
 $f: E \longrightarrow F; \ge MWS \text{ on } F$
 $f^{\#}: 2^F \longrightarrow 2^E; A \longmapsto f'(A)$
 $f^{\#} \ge := (f^{\#})_* \le (push - forward)$
 $q = measure)$

Properties: a) $d_{f^* \in (x, y)} = d_{e_{f}}(f(x), f(y))$ b) If f is Γ -equivariant and ξ is Γ -invariant, then $f^* \notin i$ is Γ -invariant

Hence wis W×G-invariant since pt, str and Ing are. It remains to prove that du is proper. Fix R > 0; suppose $d_{\omega}(1, wg) \leq R$ Then * $d_{\mathcal{H}}((1_{w}, 1_{Q}), (w, g_{Q})) \leq \mathbb{R}$, hence $Supp(w) \subseteq B_{\mu}(1_Q, R)$ by Lemma 1. $\times d_{\lambda}(1_{G,g}) \leq R$, hence $g \in B_{\lambda}(1_{G,R})$ * $\forall q \in Q, d_{\mathcal{Y}}(1, w(q)) \leq R,$ hence $W(q) \subseteq \overline{B_{y}}(1_{H}, R)$ These three balls are finite since dj, du, dv are proper. Thus $\{wg \in W \times G : cl_{\omega}(1, wg) \leq R \}$ is finite; this proves that du is proper.

À result about compression Let x: R, ---- R, be a nondecreasing subadditive function. Let H be a finitely generated group F be a f.g. free group Prop (Parry) For the natural finite generating set of H2F, word lengths on F, H and H2F satisfy $|wg|_{HZR} = m(w,g) + \sum_{x \in \mathbb{H}} |w(x)|_{HZR}$ where m(w,g) is the length of a shortest path from 1 to g in (the Cayley graph of) F covering Supp (w). Thm B (Cornulier - S. - Valette) If Hadmits a left-invariant MWS $5 \text{ s.t. } d_{\mathcal{G}}(1,g) \ge \alpha(|g|) \forall g \in \mathcal{H},$ then so does $H \ge \mathbb{F}$.

Proof Technical extra assumption:
$$\alpha(n) \leq \frac{\pi}{2}$$

the R₁. Take the MWS μ on $\#$
induced by its tree structure;
it is left-invariant and d_{μ} is the
tree distance on $\#$.
Set $\omega = \tilde{\mu} + \sum_{x \in \#} \pi_x^* \leq \pi_x$ where:
 $\pi_x^*: H^{(F)} \times \#$ How $\omega(x)$
. $\tilde{\mu}$ is MWS on $H^{(F)} \times \#$ given by lemmal.
This is a left-invariant MWS on $H2 \#$
and Lemma 1 gives
 $d_{\omega}(1, wg) = n + \sum_{x \in \#} d_{\sigma}(1, w(x))$
where $n = \#$ fedges cutting
 $Supp(w) \cup \{1, g\}$
Observations:
a) these edges form a subtree
b) it is covered by a loop of
length 2n

Hence,
$$m(w,g) \leq 2n$$

Consequently, one has $\forall wg \in HZF$
 $d_w(1, wg) \geq \frac{1}{2}m(w,g) + \sum_{x \in F} \alpha(|w(x)|)$
 $\geq \alpha(m(w,g)) + \sum_{x \in F} \alpha(|w(x)|)$
 $\geq \alpha(m(w,g)) + \sum_{x \in F} |w(x)|)$
 $\equiv \alpha(|wg|) \quad by \quad Parry's \quad prop.$
 $Q \in D$