EXAMPLES OF QUANTUM HOMOGENEOUS SPACES.

Piotr M. Sołtan

Institute of Mathematics of the Polish Academy of Sciences and
Department of Mathematical Methods in Physics, Faculty of Physics,
University of Warsaw

January 28, 2010

THE QUANTUM " $a z+b$ "GROUP

- $A-\mathrm{C}^{*}$-algebra generated by two normal elements a and b affiliated with it such that a is invertible,

$$
a b=q^{2} b a, \quad a b^{*}=b^{*} a
$$

and a and b have spectrum contained in one of these:

- Comultiplication $\Delta \in \operatorname{Mor}(A, A \otimes A)$ is defined by

$$
\Delta(a)=a \otimes a, \quad \Delta(b)=a \otimes b \dot{+} b \otimes \mathbf{1}
$$

- $\mathbb{G}=(A, \Delta)$ - locally compact quantum group.

More Details

- The spectra of a and b are equal to $\Gamma \cup\{0\}$, with Γ a multiplicative subgroup of $\mathbb{C} \backslash\{0\}$.
- A is isomorphic to $\mathrm{C}_{0}(\Gamma \cup\{0\}) \rtimes \Gamma$.
- We have a surjective $\pi \in \operatorname{Mor}\left(A, \mathrm{C}_{0}(\Gamma)\right)$:

$$
\pi(a)=\boldsymbol{u}, \quad \pi(b)=0
$$

where \boldsymbol{u} is the coordinate on Γ.

- Γ is a closed quantum subgroup of $\mathbb{G}=(A, \Delta)$, i.e.

where $\Delta_{\Gamma}(f)(s, t)=f(s t)$.

The space \mathbb{G} / Γ

- We define \mathbb{G} / Γ as the "quantum space" corresponding to the following C^{*}-algebra:

$$
B=\left\{\begin{array}{l|l}
x \in \mathrm{M}(A) & \begin{array}{l}
\bullet(\operatorname{id} \otimes \pi) \Delta(x)=x \otimes \mathbf{1}, \\
\bullet x y \in A \forall y \in \mathrm{C}^{*}(\Gamma) \subset \mathrm{M}(A) \\
\bullet \gamma \mapsto U_{\gamma} x U_{\gamma}^{*} \text { is continuous }
\end{array}
\end{array}\right\} \subset \mathrm{M}(A) .
$$

- $\left(U_{\gamma}\right)_{\gamma \in \Gamma}$ are the unitaries in $\mathrm{M}(A)=\mathrm{C}_{0}(\Gamma \cup\{0\}) \rtimes \Gamma$ implementing the action of Γ, each U_{γ} is a certain function of the generator a.

The space \mathbb{G} / Γ

THEOREM

1. $B=\left\{f(b) \mid f \in \mathrm{C}_{0}(\Gamma \cup\{0\})\right\} \subset \mathrm{M}(A), \quad$ (commutative!)
2. $\Delta(B) \subset \mathrm{M}(A \otimes B), \alpha=\left.\Delta\right|_{B} \in \operatorname{Mor}(B, A \otimes B)$,
3. $(\mathbf{i d} \otimes \alpha) \circ \alpha=(\Delta \otimes \mathrm{id}) \circ \alpha$,
4. $(\epsilon \otimes \mathrm{id}) \circ \alpha=\mathrm{id}$, where ϵ is the counit of \mathbb{G},
5. let \mathbf{z} be the generator of $B \cong \mathrm{C}_{0}(\Gamma \cup\{0\})$, then

$$
\alpha(\mathbf{z})=\boldsymbol{a} \otimes \mathbf{z} \dot{+} \boldsymbol{b} \otimes \mathbf{1}
$$

6. for any $c \in A$ and $x \in B$ we have

$$
(\boldsymbol{c} \otimes \mathbf{1}) \alpha(\boldsymbol{x}) \in A \otimes B
$$

- The proof of point 6 . is based on analysis of commutation relations between a and b and certain special function

The guantum E(2) GRoup

- \mathscr{H} - Hilbert space with o.n. basis $\left(e_{i, j}\right)_{i, j \in \mathbb{Z}}$.
- Two operators:

$$
v e_{i, j}=e_{i-1, j}, \quad n e_{i, j}=q^{i} e_{i, j+1} .
$$

- A - the closure in $\mathrm{B}(\mathscr{H})$ of the set of finite sums

$$
\sum f_{k}(n) v^{k}
$$

with $f_{k} \in \mathrm{C}_{0}$ (spectrum of n).

- There exists a unique $\Delta \in \operatorname{Mor}(A, A \otimes A)$ such that

$$
\Delta(v)=v \otimes v, \quad \Delta(n)=v \otimes n \dot{+} n \otimes v^{*}
$$

($v \in \mathrm{M}(A)$ and n is affiliated with A).

- $\mathbb{G}=(A, \Delta)$ - locally compact quantum group.

SUBGROUP

- We have a surjective $\pi \in \operatorname{Mor}(A, \mathrm{C}(\mathbb{T}))$ given by

$$
\pi(v)=\boldsymbol{u}, \quad \pi(n)=0
$$

where \boldsymbol{u} is the coordinate on \mathbb{T}.

- π identifies \mathbb{T} as a closed subgroup of \mathbb{G} :

where $\Delta_{\mathbb{T}}$ is the standard comultiplication on $\mathrm{C}(\mathbb{T})$.

THE SPACE \mathbb{G} / \mathbb{T}

- We define

$$
B=\left\{x \in \mathrm{M}(A) \left\lvert\, \begin{array}{l}
\bullet(\mathrm{id} \otimes \pi) \Delta(x)=x \otimes \mathbf{1}, \\
\bullet x y \in A \forall y \in \mathrm{C}^{*}(\mathbb{T}) \subset \mathrm{M}(A)
\end{array}\right.\right\} \subset \mathrm{M}(A)
$$

THEOREM

1. The C^{*}-algebra B is the closure of the set of finite sums of the form

$$
\sum f_{k}(n) v^{k}
$$

where for each $k \in \mathbb{Z}$ the function $f_{k} \in \mathrm{C}_{0}$ (spectrum of n) is such that

$$
f_{k}(\mu \boldsymbol{z})=\mu^{k} f_{k}(\boldsymbol{z})
$$

for all $z \in$ spectrum of n and $\mu \in \mathbb{T}$,
2. the operator vn is affiliated with B,
3. B is generated by vn.

The space \mathbb{G} / \mathbb{T}

- B is isomorphic to the C^{*}-algebra

$$
\left\{\left.\left[\begin{array}{ll}
x & y \\
z & u
\end{array}\right] \right\rvert\, x \in \mathscr{T}, y, z, u \in \mathscr{K}\right\}
$$

where

- $\mathscr{T}=$ the Toeplitz algebra,
- $\mathscr{K}=$ the compact operators $\subset \mathscr{T}$.

THEOREM

1. $\Delta(B) \subset \mathrm{M}(A \otimes B)$ and $\alpha=\left.\Delta\right|_{B} \in \operatorname{Mor}(B, A \otimes B)$,
2. $(\mathbf{i d} \otimes \alpha) \circ \alpha=(\Delta \otimes i d) \circ \alpha$,
3. $(\epsilon \otimes \mathrm{id}) \circ \alpha=\mathrm{id}$,
4. for any $b \in B$ and $a \in A$ we have $(a \otimes \mathbf{1}) \alpha(b) \in A \otimes B$.

A GENERAL CONSTRUCTION

- The second example generalizes to the following setup:
- (A, Δ) - bisimplifiable Hopf C^{*}-algebra:

$$
\begin{aligned}
& \overline{\operatorname{span}\left\{\Delta(a)\left(\mathbf{1} \otimes a^{\prime}\right) \mid a, a^{\prime} \in A\right\}} \\
& \overline{\operatorname{span}\left\{(a \otimes \mathbf{1}) \Delta\left(a^{\prime}\right) \mid a, a^{\prime} \in A\right\}}
\end{aligned}=A \otimes A, ~, ~ i \otimes A,
$$

- $\mathbb{K}=\left(C, \Delta_{C}\right)$ - compact quantum group,
- $\pi \in \operatorname{Mor}(A, C)-$ surjective, $\Delta_{C} \circ \pi=(\pi \otimes \pi) \circ \Delta$.
- We then define
- $B=\{x \in A \mid(\mathrm{id} \otimes \pi) \Delta(x)=x \otimes \mathbf{1}\}$,
- $\alpha=\left.\Delta\right|_{B}$.
- It follows that
- $\alpha \in \operatorname{Mor}(B, A \otimes B)$,
- $(\mathrm{id} \otimes \alpha) \circ \alpha=(\Delta \otimes \mathrm{id}) \circ \alpha$,
- for any $b \in B$ and $a \in A$ we have $(a \otimes \mathbf{1}) \alpha(b) \in A \otimes B$.

