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THE QUANTUM “az + b”GROUP

• A — C∗-algebra generated by two normal elements a

and b affiliated with it such that a is invertible,

ab = q2ba, ab∗ = b∗a,

and a and b have spectrum contained in one of

these:

• Comultiplication ∆ ∈ Mor(A, A ⊗ A) is defined by

∆(a) = a ⊗ a, ∆(b) = a ⊗ b +̇ b ⊗ 1.

• G = (A,∆) — locally compact quantum group.
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MORE DETAILS

• The spectra of a and b are equal to Γ ∪ {0}, with Γ a

multiplicative subgroup of C \ {0}.

• A is isomorphic to C0(Γ ∪ {0}) ⋊ Γ.

• We have a surjective π ∈ Mor
(

A,C0(Γ)
)

:

π(a) = u, π(b) = 0,

where u is the coordinate on Γ.

• Γ is a closed quantum subgroup of G = (A,∆), i.e.

A
∆

π

A ⊗ A

π⊗π

C0(Γ)
∆Γ

C0(Γ) ⊗ C0(Γ)

where ∆Γ(f )(s, t) = f (st).
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THE SPACE G/Γ

• We define G/Γ as the “quantum space”

corresponding to the following C∗-algebra:

B =

{

x ∈ M(A)
• (id ⊗ π)∆(x) = x ⊗ 1,
• xy ∈ A ∀ y ∈ C∗(Γ) ⊂ M(A)
• γ 7→ UγxU∗

γ
is continuous

}

⊂ M(A).

• (Uγ)γ∈Γ are the unitaries in M(A) = C0(Γ ∪ {0}) ⋊ Γ
implementing the action of Γ, each Uγ is a certain

function of the generator a.
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THE SPACE G/Γ

THEOREM

1. B =
{

f (b) f ∈ C0(Γ ∪ {0})
}

⊂ M(A), (commutative!)

2. ∆(B) ⊂ M(A ⊗ B), α = ∆
∣

∣

B
∈ Mor(B, A ⊗ B),

3. (id ⊗ α)◦α = (∆ ⊗ id)◦α, (action of G)

4. (ǫ ⊗ id)◦α = id, where ǫ is the counit of G,

5. let z be the generator of B ∼= C0(Γ ∪ {0}), then

α(z) = a ⊗ z +̇b ⊗ 1,

6. for any c ∈ A and x ∈ B we have (continuity)

(c ⊗ 1)α(x) ∈ A ⊗ B.

• The proof of point 6. is based on analysis of

commutation relations between a and b and certain

special function
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THE QUANTUM E(2) GROUP

• H — Hilbert space with o.n. basis (ei,j)i,j∈Z.

• Two operators: (q ∈]0, 1[)

vei,j = ei−1,j, nei,j = qiei,j+1.

• A — the closure in B(H ) of the set of finite sums

∑

fk(n)vk

with fk ∈ C0(spectrum of n).

• There exists a unique ∆ ∈ Mor(A, A ⊗ A) such that

∆(v) = v ⊗ v, ∆(n) = v ⊗ n +̇ n ⊗ v∗

(v ∈ M(A) and n is affiliated with A).

• G = (A,∆) — locally compact quantum group.
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SUBGROUP

• We have a surjective π ∈ Mor
(

A,C(T)
)

given by

π(v) = u, π(n) = 0,

where u is the coordinate on T.

• π identifies T as a closed subgroup of G:

A
∆

π

A ⊗ A

π⊗π

C(T)
∆T

C(T) ⊗ C(T)

where ∆T is the standard comultiplication on C(T).
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THE SPACE G/T

• We define

B =

{

x ∈ M(A)
• (id ⊗ π)∆(x) = x ⊗ 1,
• xy ∈ A ∀ y ∈ C∗(T) ⊂ M(A)

}

⊂ M(A).

THEOREM

1. The C∗-algebra B is the closure of the set of finite

sums of the form
∑

fk(n)vk

where for each k ∈ Z the function

fk ∈ C0(spectrum of n) is such that

fk(µz) = µkfk(z)

for all z ∈ spectrum of n and µ ∈ T,

2. the operator vn is affiliated with B,

3. B is generated by vn.
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THE SPACE G/T

• B is isomorphic to the C∗-algebra

{[

x y

z u

]

x ∈ T , y, z, u ∈ K

}

where

• T = the Toeplitz algebra,
• K = the compact operators ⊂ T .

THEOREM

1. ∆(B) ⊂ M(A ⊗ B) and α = ∆
∣

∣

B
∈ Mor(B, A ⊗ B),

2. (id ⊗ α)◦α = (∆ ⊗ id)◦α,

3. (ǫ ⊗ id)◦α = id,

4. for any b ∈ B and a ∈ A we have (a ⊗ 1)α(b) ∈ A ⊗ B.
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A GENERAL CONSTRUCTION

• The second example generalizes to the following
setup:

• (A, ∆) — bisimplifiable Hopf C∗-algebra:

span
{

∆(a)(1 ⊗ a′) a, a′ ∈ A
}

= A ⊗ A,

span
{

(a ⊗ 1)∆(a′) a, a′ ∈ A
}

= A ⊗ A,

• K = (C, ∆C) — compact quantum group,
• π ∈ Mor(A, C) — surjective, ∆C◦π = (π ⊗ π)◦∆.

• We then define

• B =
{

x ∈ A (id ⊗ π)∆(x) = x ⊗ 1
}

,

• α = ∆
∣

∣

B
.

• It follows that

• α ∈ Mor(B, A ⊗ B),
• (id ⊗ α)◦α = (∆ ⊗ id)◦α,
• for any b ∈ B and a ∈ A we have (a ⊗ 1)α(b) ∈ A ⊗ B.
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