New Action-Induced Nested Classes of Groups and Jump (Co)homology

Nansen Petrosyan

K.U.Leuven Campus Kortrijk

Copenhagen, January 27, 2010

イロト 不得 とくほ とくほ とうほ

Outline

• $\mathcal{N}^{cell}(\mathcal{P})$ -groups

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロン 不得 とくほ とくほう 一日

Outline

- Motivation
- $\mathcal{N}^{\textit{cell}}(\mathcal{P})$ -groups

- Construction
- Jump (co)homology

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Outline

N^{cell}₁(*P_R*)-groups
Construction
Jump (co)homology

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $\underset{\mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups}}{\text{Motivation}}$

$H\mathcal{F}$ -groups

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

<ロ> (四) (四) (三) (三) (三)

 $\underset{\mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-groups}}{\text{Motivation}}$

HF-groups

Definition

Let ${\mathcal X}$ be a class of groups.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロト イポト イヨト イヨト

3

HF-groups

Definition

Let \mathcal{X} be a class of groups. $H\mathcal{X}$ is the smallest class of groups containing \mathcal{X} with the property that if a group G acts cellularly on a finite dimensional contractible CW-complex with all stabilizer subgroups in $H\mathcal{X}$, then G is in $H\mathcal{X}$.

イロト イポト イヨト イヨト

HF-groups

Definition

Let \mathcal{X} be a class of groups. $H\mathcal{X}$ is the smallest class of groups containing \mathcal{X} with the property that if a group G acts cellularly on a finite dimensional contractible CW-complex with all stabilizer subgroups in $H\mathcal{X}$, then G is in $H\mathcal{X}$.

Let \mathcal{F} be the class of finite groups.

イロト イポト イヨト イヨト

HF-groups

Definition

Let \mathcal{X} be a class of groups. $H\mathcal{X}$ is the smallest class of groups containing \mathcal{X} with the property that if a group G acts cellularly on a finite dimensional contractible CW-complex with all stabilizer subgroups in $H\mathcal{X}$, then G is in $H\mathcal{X}$.

Let \mathcal{F} be the class of finite groups. Then $H\mathcal{F}$ is closed under taking subgroups, (HNN-)extensions, countable directed unions, and amalgamated products.

ヘロト ヘヨト ヘヨト

Properties

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロン イロン イヨン イヨン

3

Properties

• *HF* contains all countable linear groups, all countable solvable groups, all groups with finite virtual cohomological dimension.

・ロト ・ 理 ト ・ ヨ ト ・

3

Properties

- *HF* contains all countable linear groups, all countable solvable groups, all groups with finite virtual cohomological dimension.
- Every torsion-free FP_{∞} -group in $H\mathcal{F}$ has finite cohomological dimension.

・ロト ・ 理 ト ・ ヨ ト ・

-

Properties

- *HF* contains all countable linear groups, all countable solvable groups, all groups with finite virtual cohomological dimension.
- Every torsion-free FP_{∞} -group in $H\mathcal{F}$ has finite cohomological dimension.
- Thompson's group F is not in $H\mathcal{F}$.

ヘロン ヘアン ヘビン ヘビン

э

Properties

- *HF* contains all countable linear groups, all countable solvable groups, all groups with finite virtual cohomological dimension.
- Every torsion-free *FP*_∞-group in *HF* has finite cohomological dimension.
- Thompson's group F is not in $H\mathcal{F}$.
- Groups constructed by Arzhantseva, Bridson, Januszkiewicz, Leary, Minasyan, and Świątkowski in "Infinite groups with fixed point properties" are not in HF.

ヘロト ヘヨト ヘヨト

 $\underset{\mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-groups}}{\text{Motivation}}$

Definition of $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$ -groups

イロト イポト イヨト イヨト

3

Motivation $\mathcal{N}^{cell}(\mathcal{P})$ -groups

Definition of $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$ -groups

Definition

• Let \mathcal{X} be a class of groups.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロン イロン イヨン イヨン

ъ

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P}) \text{-groups} \end{array}$

Definition of $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$ -groups

Definition

- Let \mathcal{X} be a class of groups.
- Suppose \mathcal{P} is a condition on a space.

ヘロト ヘワト ヘビト ヘビト

э

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups} \end{array}$

Definition of $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$ -groups

Definition

- Let \mathcal{X} be a class of groups.
- Suppose \mathcal{P} is a condition on a space.
- Let A be a restriction on the action of a group G that acts on a space with property P such that the induced action of each subgroup of G on this space also has the same restriction.

イロト イポト イヨト イヨト

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups} \end{array}$

Definition of $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$ -groups

Definition

- Let \mathcal{X} be a class of groups.
- Suppose \mathcal{P} is a condition on a space.
- Let \mathcal{A} be a restriction on the action of a group G that acts on a space with property \mathcal{P} such that the induced action of each subgroup of G on this space also has the same restriction.

 $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$ is the smallest class of groups containing \mathcal{X} with the property that if a group *G* acts by \mathcal{A} on a space with property \mathcal{P} such that all its isotropy groups are in $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$, then *G* is also in $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$.

・ロト ・ 理 ト ・ ヨ ト ・

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups} \end{array}$

Definition of $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$ -groups

Definition

- Let \mathcal{X} be a class of groups.
- Suppose \mathcal{P} is a condition on a space.
- Let \mathcal{A} be a restriction on the action of a group G that acts on a space with property \mathcal{P} such that the induced action of each subgroup of G on this space also has the same restriction.

 $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$ is the smallest class of groups containing \mathcal{X} with the property that if a group *G* acts by \mathcal{A} on a space with property \mathcal{P} such that all its isotropy groups are in $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$, then *G* is also in $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$.

The condition X satisfies \mathcal{P} is equivalent to requiring $X \in \mathcal{P}$, a chosen set of topological spaces.

Hierarchy

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロン イロン イヨン イヨン

ъ

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups} \end{array}$

Hierarchy

Inductive definition via ordinals

(a) Let
$$\mathcal{N}_0(\mathcal{P}, \mathcal{A}, \mathcal{X}) = \mathcal{X}$$
.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロト イポト イヨト イヨト

3

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups} \end{array}$

Hierarchy

Inductive definition via ordinals

(a) Let
$$\mathcal{N}_0(\mathcal{P}, \mathcal{A}, \mathcal{X}) = \mathcal{X}$$
.

(b) For ordinal β > 0, define N_β(P, A, X) to be the class of groups that can act by A on a space X ∈ P such that each isotropy group is in N_α(P, A, X) for some α < β (α can depend on the isotropy).</p>

イロト 不得 とくほ とくほ とうほ

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups} \end{array}$

Hierarchy

Inductive definition via ordinals

(a) Let
$$\mathcal{N}_0(\mathcal{P}, \mathcal{A}, \mathcal{X}) = \mathcal{X}$$
.

- (b) For ordinal β > 0, define N_β(P, A, X) to be the class of groups that can act by A on a space X ∈ P such that each isotropy group is in N_α(P, A, X) for some α < β (α can depend on the isotropy).
 - A group is in N(P, A, X) if and only if it is in N_α(P, A, X) for some α.

イロト 不得 とくほ とくほ とうほ

Motivation $\mathcal{N}^{cell}(\mathcal{P})$ -groups

Hierarchy

Inductive definition via ordinals

(a) Let
$$\mathcal{N}_0(\mathcal{P}, \mathcal{A}, \mathcal{X}) = \mathcal{X}$$
.

- (b) For ordinal β > 0, define N_β(P, A, X) to be the class of groups that can act by A on a space X ∈ P such that each isotropy group is in N_α(P, A, X) for some α < β (α can depend on the isotropy).</p>
 - A group is in N(P, A, X) if and only if it is in N_α(P, A, X) for some α.
 - When $\mathcal{P} \subset \{X | X \text{ is a finite dimensional CW-complex}\},$

イロン 不良 とくほう イロン しゅ

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups} \end{array}$

Hierarchy

Inductive definition via ordinals

(a) Let
$$\mathcal{N}_0(\mathcal{P}, \mathcal{A}, \mathcal{X}) = \mathcal{X}$$
.

- (b) For ordinal β > 0, define N_β(P, A, X) to be the class of groups that can act by A on a space X ∈ P such that each isotropy group is in N_α(P, A, X) for some α < β (α can depend on the isotropy).
 - A group is in N(P, A, X) if and only if it is in N_α(P, A, X) for some α.
 - When *P* ⊂ {*X*|*X* is a finite dimensional CW-complex}, *A* defines the action to be cellular,

イロト 不得 とくほ とくほ とうほ

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups} \end{array}$

Hierarchy

Inductive definition via ordinals

(a) Let
$$\mathcal{N}_0(\mathcal{P}, \mathcal{A}, \mathcal{X}) = \mathcal{X}$$
.

- (b) For ordinal β > 0, define N_β(P, A, X) to be the class of groups that can act by A on a space X ∈ P such that each isotropy group is in N_α(P, A, X) for some α < β (α can depend on the isotropy).</p>
 - A group is in N(P, A, X) if and only if it is in N_α(P, A, X) for some α.
 - When P ⊂ {X|X is a finite dimensional CW-complex}, A defines the action to be cellular, and X = {⟨1⟩},

・ロト ・ 理 ト ・ ヨ ト ・

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups} \end{array}$

Hierarchy

Inductive definition via ordinals

(a) Let
$$\mathcal{N}_0(\mathcal{P}, \mathcal{A}, \mathcal{X}) = \mathcal{X}$$
.

- (b) For ordinal β > 0, define N_β(P, A, X) to be the class of groups that can act by A on a space X ∈ P such that each isotropy group is in N_α(P, A, X) for some α < β (α can depend on the isotropy).</p>
 - A group is in N(P, A, X) if and only if it is in N_α(P, A, X) for some α.
 - When *P* ⊂ {*X*|*X* is a finite dimensional CW-complex}, *A* defines the action to be cellular, and *X* = {⟨1⟩}, denote *N*(*P*, *A*, *X*) by *N*^{cell}(*P*).

イロト イポト イヨト 一日

 $\begin{array}{l} \text{Motivation} \\ \mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-}\text{groups} \end{array}$

Hierarchy

Inductive definition via ordinals

(a) Let
$$\mathcal{N}_0(\mathcal{P}, \mathcal{A}, \mathcal{X}) = \mathcal{X}$$
.

- (b) For ordinal β > 0, define N_β(P, A, X) to be the class of groups that can act by A on a space X ∈ P such that each isotropy group is in N_α(P, A, X) for some α < β (α can depend on the isotropy).</p>
 - A group is in N(P, A, X) if and only if it is in N_α(P, A, X) for some α.
 - When P ⊂ {X|X is a finite dimensional CW-complex}, A defines the action to be cellular, and X = {⟨1⟩}, denote N(P, A, X) by N^{cell}(P).
 - $\mathcal{N}^{cell}(\mathcal{P})$ is extension closed.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э

Outline

 $\mathcal{N}(\mathcal{P}, \mathcal{A}, \mathcal{X})$ -groups $\mathcal{N}_1^{cell}(\mathcal{P}_B)$ -groups

Motivation $\mathcal{N}^{cell}(\mathcal{P})$ -groups

Jump (co)homology

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Motivation $\mathcal{N}^{cell}(\mathcal{P})$ -groups

Some known classes of groups

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロト イポト イヨト イヨト

ъ

Motivation $\mathcal{N}^{cell}(\mathcal{P})$ -groups

Some known classes of groups

Well-known classes				
	i	\mathcal{P}_i	$\mathcal{N}^{cell}(\mathcal{P}_i)$	
	1	$\{S^1\}$	finite solvable groups	
	2	$\{\mathbb{T}^m m \in \mathbb{N}\}$	finite groups	
	3	$\{ {m{\mathcal{S}}}^m m \in \mathbb{N} \}$	finite groups	
	4	$\{ {old S}^1, {\mathbb R} \}$	polycyclic groups	
	5	$\{S^m, \mathbb{R} m \in \mathbb{N}\}$	virtually polycyclic groups	

イロト イポト イヨト イヨト

э

 $\stackrel{\text{Motivation}}{\mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-groups}}$

 $\mathcal{N}^{\textit{cell}}(\mathcal{P}_6)\text{-groups}$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Motivation $\mathcal{N}^{cell}(\mathcal{P})$ -groups

 $\mathcal{N}^{cell}(\mathcal{P}_6)$ -groups

Theorem (P. 2010)

Let $\mathcal{P}_6 = \{X | X = S^m, m \in \mathbb{N}, \text{ or } X \text{ is a locally finite tree}\}.$

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Motivation $\mathcal{N}^{cell}(\mathcal{P})$ -groups

$$\mathcal{N}^{cell}(\mathcal{P}_6)$$
-groups

Theorem (P. 2010)

Let $\mathcal{P}_6 = \{X | X = S^m, m \in \mathbb{N}, \text{ or } X \text{ is a locally finite tree}\}$. Then we have:

• $\mathcal{N}^{\textit{cell}}(\mathcal{P}_6)$ contains all poly- \mathbb{Z} and all countable locally finite groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Motivation $\mathcal{N}^{cell}(\mathcal{P})$ -groups

$$\mathcal{N}^{cell}(\mathcal{P}_6)$$
-groups

Theorem (P. 2010)

Let $\mathcal{P}_6 = \{X | X = S^m, m \in \mathbb{N}, \text{ or } X \text{ is a locally finite tree}\}$. Then we have:

- *N^{cell}*(*P*₆) contains all poly-ℤ and all countable locally finite groups.
- Every group in N^{cell}(P₆) either contains a free subgroup on two generators or it is countable elementary amenable.

イロト 不得 とくほ とくほ とうほ
Motivation $\mathcal{N}^{cell}(\mathcal{P})$ -groups

$$\mathcal{N}^{\textit{cell}}(\mathcal{P}_6)$$
-groups

Theorem (P. 2010)

Let $\mathcal{P}_6 = \{X | X = S^m, m \in \mathbb{N}, \text{ or } X \text{ is a locally finite tree}\}$. Then we have:

- *N^{cell}*(*P*₆) contains all poly-ℤ and all countable locally finite groups.
- Every group in N^{cell}(P₆) either contains a free subgroup on two generators or it is countable elementary amenable.
- In particular, every Noetherian group in N^{cell}(P₆) is virtually polycyclic.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 $\stackrel{\text{Motivation}}{\mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-groups}}$

Nesting

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロン イロン イヨン イヨン

3

 $\begin{array}{c} \mathcal{N}(\mathcal{P},\mathcal{A},\mathcal{X})\text{-groups} \\ \mathcal{N}_1^{\textit{cell}}(\mathcal{P}_R)\text{-groups} \end{array}$

 $\stackrel{\text{Motivation}}{\mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-groups}}$

Nesting

Theorem (P. 2010)

Let ω be the least infinite ordinal.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

 $\stackrel{\text{Motivation}}{\mathcal{N}^{\textit{cell}}(\mathcal{P})\text{-groups}}$

Nesting

Theorem (P. 2010)

Let ω be the least infinite ordinal. Then we have:

\mathcal{P}_i	$\mathcal{N}^{cell}(\mathcal{P}_i)$	$\mathcal{N}^{\textit{cell}}_{\omega}(\mathcal{P}_i)$
{ S ¹ }	finite solvable gps	$=\mathcal{N}_{\omega}^{\textit{cell}}(\mathcal{P}_{1})$
$\{\mathbb{T}^m m\in\mathbb{N}\}$	finite gps	$= \mathcal{N}_1^{\textit{cell}}(\mathcal{P}_2)$
$\{ {old S}^m m \in \mathbb{N} \}$	finite gps	$=\mathcal{N}_{\omega}^{\mathit{cell}}(\mathcal{P}_3)$
$\{oldsymbol{S}^1,\mathbb{R}\}$	polycyclic gps	$=\mathcal{N}_{\omega}^{\textit{cell}}(\mathcal{P}_4)$
$\{oldsymbol{S}^m, \mathbb{R} oldsymbol{m} \in \mathbb{N}\}$	v. polycyclic gps	$=\mathcal{N}^{\mathit{cell}}_{\omega}(\mathcal{P}_5)$
$\{S^m, m \in \mathbb{N}, \text{all I. f. trees}\}$	"alternative" gps	?

Motivation $\mathcal{N}^{cell}(\mathcal{P})$ -groups

Nesting

Theorem (P. 2010)

Let ω be the least infinite ordinal. Then we have:

\mathcal{P}_i	$\mathcal{N}^{cell}(\mathcal{P}_i)$	$\mathcal{N}^{\textit{cell}}_{\omega}(\mathcal{P}_i)$
{ <i>S</i> ¹ }	finite solvable gps	$=\mathcal{N}^{\mathit{cell}}_{\omega}(\mathcal{P}_1)$
$\{\mathbb{T}^m m\in\mathbb{N}\}$	finite gps	$=\mathcal{N}_1^{\textit{cell}}(\mathcal{P}_2)$
$\{ {old S}^m m \in \mathbb{N} \}$	finite gps	$=\mathcal{N}^{\mathit{cell}}_{\omega}(\mathcal{P}_3)$
$\{oldsymbol{S}^1,\mathbb{R}\}$	polycyclic gps	$=\mathcal{N}^{\mathit{cell}}_{\omega}(\mathcal{P}_4)$
$\{oldsymbol{S}^m, \mathbb{R} oldsymbol{m} \in \mathbb{N}\}$	v. polycyclic gps	$=\mathcal{N}^{\mathit{cell}}_{\omega}(\mathcal{P}_5)$
$\{S^m, m \in \mathbb{N}, \text{all I. f. trees}\}$	"alternative" gps	?

Also, $\mathcal{N}_{k}^{cell}(\mathcal{P}_{i}) \subsetneq \mathcal{N}_{k+1}^{cell}(\mathcal{P}_{i})$ for i = 1, 3, 4, 5, 6 and each $k \in \mathbb{N}$.

A (1) > A (2) > A (2)

 $\begin{array}{c} \mathcal{N}(\mathcal{P},\mathcal{A},\mathcal{X})\text{-}\text{groups} \\ \mathcal{N}_1^{\textit{cell}}(\mathcal{P}_R)\text{-}\text{groups} \end{array}$

Construction Jump (co)homology

Outline

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

<ロ> (四) (四) (注) (三) (三)

Construction Jump (co)homology

 \mathcal{P}_R -property

The next class of groups, denoted by $\mathcal{N}^{cell}(\mathcal{P}_R)$, contains all $H\mathcal{F}$ -groups and it is the largest we consider.

 \mathcal{P}_R -property

The next class of groups, denoted by $\mathcal{N}^{cell}(\mathcal{P}_R)$, contains all $H\mathcal{F}$ -groups and it is the largest we consider.

Definition

Suppose *R* is an integral domain of char zero.

・ロト ・ 理 ト ・ ヨ ト ・

-

Definition

Suppose *R* is an integral domain of char zero. A CW-complex *X* belongs to \mathcal{P}_R whenever there exist $k \ge 0$ and m > 0 (both depending on *X*) s. t.

イロン 不良 とくほう イロン 二日

Definition

Suppose *R* is an integral domain of char zero. A CW-complex *X* belongs to \mathcal{P}_R whenever there exist $k \ge 0$ and m > 0 (both depending on *X*) s. t.

(a) $H_i(X)$ is *R*-torsion-free torsion group for each i > k,

イロン 不良 とくほう イロン 二日

Definition

Suppose *R* is an integral domain of char zero. A CW-complex *X* belongs to \mathcal{P}_R whenever there exist $k \ge 0$ and m > 0 (both depending on *X*) s. t.

(a) $H_i(X)$ is *R*-torsion-free torsion group for each i > k,

(b) $H_k(X) = \mathbb{Z}^m \oplus F$, where F is an R-torsion-free finite group.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Definition

Suppose *R* is an integral domain of char zero. A CW-complex *X* belongs to \mathcal{P}_R whenever there exist $k \ge 0$ and m > 0 (both depending on *X*) s. t.

(a) $H_i(X)$ is *R*-torsion-free torsion group for each i > k,

(b) $H_k(X) = \mathbb{Z}^m \oplus F$, where F is an R-torsion-free finite group.

When $R = \mathbb{Q}$, CW-complexes that have f. g. homology groups, such as finitely dominated ones, satisfy both conditions.

Construction Jump (co)homology

Identifying $\mathcal{N}_1^{cell}(\mathcal{P}_R)$

イロト イポト イヨト イヨト

- 20

Construction Jump (co)homology

Identifying $\mathcal{N}_1^{cell}(\mathcal{P}_R)$

Theorem (P. 2009)

Let $\mathcal{J}_{\mathcal{R}}$ be the class of groups with jump cohomology over R and let \mathcal{VCD} denote the class of groups with finite virtual cohomological dimension.

Construction Jump (co)homology

Identifying $\mathcal{N}_1^{cell}(\mathcal{P}_R)$

Theorem (P. 2009)

Let $\mathcal{J}_{\mathcal{R}}$ be the class of groups with jump cohomology over R and let \mathcal{VCD} denote the class of groups with finite virtual cohomological dimension. Then,

$$\mathcal{VCD} \subseteq \mathcal{N}_1^{\textit{cell}}(\mathcal{P}_R) \subseteq \mathcal{J}_{\mathcal{R}}.$$

Construction Jump (co)homology

Identifying $\mathcal{N}_1^{cell}(\mathcal{P}_R)$

Theorem (P. 2009)

Let $\mathcal{J}_{\mathcal{R}}$ be the class of groups with jump cohomology over R and let \mathcal{VCD} denote the class of groups with finite virtual cohomological dimension. Then,

$$\mathcal{VCD} \subseteq \mathcal{N}_1^{\textit{cell}}(\mathcal{P}_R) \subseteq \mathcal{J}_{\mathcal{R}}.$$

In fact, because $\mathbb{Z}^{\infty} = \bigcup_{i=1}^{\infty} \mathbb{Z}^{i}$, it acts cellularly on a 1-dim contractible CW-complex with all stabilizer subgroups in $\mathcal{N}_{1}^{cell}(\mathcal{P}_{R})$.

イロト 不得 とくほ とくほ とうほ

Construction Jump (co)homology

Identifying $\mathcal{N}_1^{cell}(\mathcal{P}_R)$

Theorem (P. 2009)

Let $\mathcal{J}_{\mathcal{R}}$ be the class of groups with jump cohomology over R and let \mathcal{VCD} denote the class of groups with finite virtual cohomological dimension. Then,

$$\mathcal{VCD} \subseteq \mathcal{N}_1^{\textit{cell}}(\mathcal{P}_R) \subseteq \mathcal{J}_{\mathcal{R}}.$$

In fact, because $\mathbb{Z}^{\infty} = \bigcup_{i=1}^{\infty} \mathbb{Z}^{i}$, it acts cellularly on a 1-dim contractible CW-complex with all stabilizer subgroups in $\mathcal{N}_{1}^{cell}(\mathcal{P}_{R})$. Therefore, $\mathbb{Z}^{\infty} \in \mathcal{N}_{2}^{cell}(\mathcal{P}_{R})$.

イロト 不得 とくほ とくほ とうほ

Construction Jump (co)homology

Identifying $\mathcal{N}_1^{cell}(\mathcal{P}_R)$

Theorem (P. 2009)

Let $\mathcal{J}_{\mathcal{R}}$ be the class of groups with jump cohomology over R and let \mathcal{VCD} denote the class of groups with finite virtual cohomological dimension. Then,

$$\mathcal{VCD} \subseteq \mathcal{N}_1^{\textit{cell}}(\mathcal{P}_R) \subseteq \mathcal{J}_{\mathcal{R}}.$$

In fact, because $\mathbb{Z}^{\infty} = \bigcup_{i=1}^{\infty} \mathbb{Z}^{i}$, it acts cellularly on a 1-dim contractible CW-complex with all stabilizer subgroups in $\mathcal{N}_{1}^{cell}(\mathcal{P}_{R})$. Therefore, $\mathbb{Z}^{\infty} \in \mathcal{N}_{2}^{cell}(\mathcal{P}_{R})$. Since \mathbb{Z}^{∞} does not have jump cohomology,

$$\mathcal{N}_1^{cell}(\mathcal{P}_R) \subsetneq \mathcal{N}_2^{cell}(\mathcal{P}_R).$$

Construction Jump (co)homology

Outline

Jump (co)homology

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

 $\begin{array}{c} \mathcal{N}(\mathcal{P},\mathcal{A},\mathcal{X})\text{-}\text{groups} \\ \mathcal{N}_1^{\textit{cell}}(\mathcal{P}_R)\text{-}\text{groups} \end{array}$

Construction Jump (co)homology

Definition

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロン イロン イヨン イヨン

3

Construction Jump (co)homology

Definition

Definition

Let *R* be a commutative ring with a unit.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロト 不得 とくほと くほとう

3

Definition

Definition

Let *R* be a commutative ring with a unit. A discrete group *G* has jump cohomology over *R* if there exists an integer $k \ge 0$, such that for each subgroup *H* of *G* we have $cd_R(H) = \infty$ or $cd_R(H) \le k$.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

Definition

Definition

Let *R* be a commutative ring with a unit. A discrete group *G* has jump cohomology over *R* if there exists an integer $k \ge 0$, such that for each subgroup *H* of *G* we have $cd_R(H) = \infty$ or $cd_R(H) \le k$.

• The smallest of all such k will be called jump height.

Definition

Let *R* be a commutative ring with a unit. A discrete group *G* has jump cohomology over *R* if there exists an integer $k \ge 0$, such that for each subgroup *H* of *G* we have $cd_R(H) = \infty$ or $cd_R(H) \le k$.

- The smallest of all such k will be called jump height.
- When *R* = Z, we will simply say that *G* has jump cohomology.

イロン 不得 とくほ とくほ とうほ

 $\begin{array}{c} \mathcal{N}(\mathcal{P},\mathcal{A},\mathcal{X})\text{-}\text{groups} \\ \mathcal{N}_1^{\textit{cell}}(\mathcal{P}_R)\text{-}\text{groups} \end{array}$

Construction Jump (co)homology

Properties

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロン イロン イヨン イヨン

3

Properties

• A group has jump (co)homology of height zero if and only if it is all torsion.

・ロト ・ 理 ト ・ ヨ ト ・

- 32

Properties

- A group has jump (co)homology of height zero if and only if it is all torsion.
- A finitely generated solvable group *G* has finite Hirsch length if and only if it has jump homology.

イロト イポト イヨト イヨト 三日

Properties

- A group has jump (co)homology of height zero if and only if it is all torsion.
- A finitely generated solvable group *G* has finite Hirsch length if and only if it has jump homology.
- A linear group has jump homology if and only if there is an upper bound on the Hirsch lengths of its finitely generated unipotent subgroups.

Construction Jump (co)homology

Open problems

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロト イポト イヨト イヨト

3

Construction Jump (co)homology

Open problems

Question

Let G be a group without R-torsion

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロト イポト イヨト イヨト

ъ

Construction Jump (co)homology

Open problems

Question

Let *G* be a group without *R*-torsion and let $k \ge 0$.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロト 不得 とくほ とくほとう

э

Construction Jump (co)homology

Open problems

Question

Let *G* be a group without *R*-torsion and let $k \ge 0$. Does *G* have jump cohomology of height *k* over *R* if and only if *G* has finite cohomological dimension *k* over *R*?

• This holds when G is in $H\mathcal{F}$.

Construction Jump (co)homology

Open problems

Question

Let *G* be a group without *R*-torsion and let $k \ge 0$. Does *G* have jump cohomology of height *k* over *R* if and only if *G* has finite cohomological dimension *k* over *R*?

- This holds when G is in $H\mathcal{F}$.
- For torsion-free groups, it has been conjectured by Olympia Talelli that the notions of periodic cohomology and finite cohomological dimension are equivalent.

イロト 不得 とくほ とくほ とうほ

Construction Jump (co)homology

Open problems

Question

Let *G* be a group without *R*-torsion and let $k \ge 0$. Does *G* have jump cohomology of height *k* over *R* if and only if *G* has finite cohomological dimension *k* over *R*?

- This holds when G is in $H\mathcal{F}$.
- For torsion-free groups, it has been conjectured by Olympia Talelli that the notions of periodic cohomology and finite cohomological dimension are equivalent.
- (Adem-Smith, 2001) A countable group G has periodic cohomology if and only if G acts freely and properly discontinuously on some Sⁿ × ℝ^k.

イロト 不得 とくほ とくほ とうほ

Construction Jump (co)homology

Open problems

Question

Let *G* be a group without *R*-torsion and let $k \ge 0$. Does *G* have jump cohomology of height *k* over *R* if and only if *G* has finite cohomological dimension *k* over *R*?

- This holds when G is in $H\mathcal{F}$.
- For torsion-free groups, it has been conjectured by Olympia Talelli that the notions of periodic cohomology and finite cohomological dimension are equivalent.
- (Adem-Smith, 2001) A countable group G has periodic cohomology if and only if G acts freely and properly discontinuously on some Sⁿ × ℝ^k.
- Are torsion-free $\mathcal{N}_1^{cell}(\mathcal{P}_{\mathbb{Z}})$ -groups the same as torsion-free $H_1\mathcal{F}$ -groups?

 $\begin{array}{ll} \mathcal{N}(\mathcal{P},\mathcal{A},\mathcal{X})\text{-groups} & \text{Construction} \\ \mathcal{N}_1^{\textit{cell}}(\mathcal{P}_R)\text{-groups} & \text{Jump (co)homology} \end{array}$

Thank You!

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology

イロト 不得 とくほ とくほとう

3