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HF-groups

Definition
Let X be a class of groups. HX is the smallest class of groups
containing X with the property that if a group G acts cellularly
on a finite dimensional contractible CW-complex with all
stabilizer subgroups in HX , then G is in HX .

Let F be the class of finite groups. Then HF is closed under
taking subgroups, (HNN-)extensions, countable directed
unions, and amalgamated products.
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Properties

HF contains all countable linear groups, all countable
solvable groups, all groups with finite virtual cohomological
dimension.

Every torsion-free FP∞-group in HF has finite
cohomological dimension.

Thompson’s group F is not in HF .

Groups constructed by Arzhantseva, Bridson,
Januszkiewicz, Leary, Minasyan, and Świa̧tkowski in
“Infinite groups with fixed point properties” are not in HF .
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Definition of N (P ,A,X )-groups

Definition
Let X be a class of groups.
Suppose P is a condition on a space.
Let A be a restriction on the action of a group G that acts
on a space with property P such that the induced action of
each subgroup of G on this space also has the same
restriction.

N (P,A,X ) is the smallest class of groups containing X with
the property that if a group G acts by A on a space with
property P such that all its isotropy groups are in N (P,A,X ),
then G is also in N (P,A,X ).

The condition X satisfies P is equivalent to requiring X ∈ P, a
chosen set of topological spaces.
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Hierarchy

Inductive definition via ordinals
(a) Let N0(P,A,X ) = X .

(b) For ordinal β > 0, define Nβ(P,A,X ) to be the class of
groups that can act by A on a space X ∈ P such that each
isotropy group is in Nα(P,A,X ) for some α < β (α can
depend on the isotropy).

A group is in N (P,A,X ) if and only if it is in Nα(P,A,X )
for some α.

When P ⊂ {X |X is a finite dimensional CW-complex}, A
defines the action to be cellular, and X = {〈1〉}, denote
N (P,A,X ) by N cell(P).

N cell(P) is extension closed.
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Some known classes of groups

Well-known classes

i Pi N cell(Pi)

1 {S1} finite solvable groups

2 {Tm|m ∈ N} finite groups

3 {Sm|m ∈ N} finite groups

4 {S1,R} polycyclic groups

5 {Sm,R|m ∈ N} virtually polycyclic groups
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N cell(P6)-groups

Theorem (P. 2010)

Let P6 = {X |X = Sm,m ∈ N, or X is a locally finite tree}. Then
we have:

N cell(P6) contains all poly-Z and all countable locally finite
groups.

Every group in N cell(P6) either contains a free subgroup
on two generators or it is countable elementary amenable.

In particular, every Noetherian group in N cell(P6) is
virtually polycyclic.
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Nesting

Theorem (P. 2010)
Let ω be the least infinite ordinal. Then we have:

Pi N cell(Pi) N cell
ω (Pi)

{S1} finite solvable gps = N cell
ω (P1)

{Tm|m ∈ N} finite gps = N cell
1 (P2)

{Sm|m ∈ N} finite gps = N cell
ω (P3)

{S1,R} polycyclic gps = N cell
ω (P4)

{Sm,R|m ∈ N} v. polycyclic gps = N cell
ω (P5)

{Sm,m ∈ N,all l. f. trees} “alternative” gps ?

Also, N cell
k (Pi)  N cell

k+1(Pi) for i = 1,3,4,5,6 and each k ∈ N.
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PR-property

The next class of groups, denoted by N cell(PR), contains all
HF-groups and it is the largest we consider.

Definition
Suppose R is an integral domain of char zero. A CW-complex
X belongs to PR whenever there exist k ≥ 0 and m > 0 (both
depending on X ) s. t.
(a) Hi(X ) is R-torsion-free torsion group for each i > k ,

(b) Hk (X ) = Zm ⊕ F , where F is an R-torsion-free finite group.

When R = Q, CW-complexes that have f. g. homology groups,
such as finitely dominated ones, satisfy both conditions.
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Identifying N cell
1 (PR)

Theorem (P. 2009)
Let JR be the class of groups with jump cohomology over R
and let VCD denote the class of groups with finite virtual
cohomological dimension. Then,

VCD ⊆ N cell
1 (PR) ⊆ JR.

In fact, because Z∞ = ∪∞i=1Z
i , it acts cellularly on a 1-dim

contractible CW-complex with all stabilizer subgroups in
N cell

1 (PR). Therefore, Z∞ ∈ N cell
2 (PR). Since Z∞ does not have

jump cohomology,

N cell
1 (PR)  N cell

2 (PR).
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Definition

Definition
Let R be a commutative ring with a unit. A discrete group G has
jump cohomology over R if there exists an integer k ≥ 0, such
that for each subgroup H of G we have cdR(H) =∞ or
cdR(H) ≤ k .

The smallest of all such k will be called jump height.

When R = Z, we will simply say that G has jump
cohomology.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology



N (P,A,X )-groups
N cell

1 (PR )-groups
Construction
Jump (co)homology

Definition

Definition
Let R be a commutative ring with a unit.

A discrete group G has
jump cohomology over R if there exists an integer k ≥ 0, such
that for each subgroup H of G we have cdR(H) =∞ or
cdR(H) ≤ k .

The smallest of all such k will be called jump height.

When R = Z, we will simply say that G has jump
cohomology.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology



N (P,A,X )-groups
N cell

1 (PR )-groups
Construction
Jump (co)homology

Definition

Definition
Let R be a commutative ring with a unit. A discrete group G has
jump cohomology over R if there exists an integer k ≥ 0, such
that for each subgroup H of G we have cdR(H) =∞ or
cdR(H) ≤ k .

The smallest of all such k will be called jump height.

When R = Z, we will simply say that G has jump
cohomology.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology



N (P,A,X )-groups
N cell

1 (PR )-groups
Construction
Jump (co)homology

Definition

Definition
Let R be a commutative ring with a unit. A discrete group G has
jump cohomology over R if there exists an integer k ≥ 0, such
that for each subgroup H of G we have cdR(H) =∞ or
cdR(H) ≤ k .

The smallest of all such k will be called jump height.

When R = Z, we will simply say that G has jump
cohomology.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology



N (P,A,X )-groups
N cell

1 (PR )-groups
Construction
Jump (co)homology

Definition

Definition
Let R be a commutative ring with a unit. A discrete group G has
jump cohomology over R if there exists an integer k ≥ 0, such
that for each subgroup H of G we have cdR(H) =∞ or
cdR(H) ≤ k .

The smallest of all such k will be called jump height.

When R = Z, we will simply say that G has jump
cohomology.

Nansen Petrosyan Nested Classes of Groups and Jump (Co)homology



N (P,A,X )-groups
N cell

1 (PR )-groups
Construction
Jump (co)homology

Properties

A group has jump (co)homology of height zero if and only if
it is all torsion.

A finitely generated solvable group G has finite Hirsch
length if and only if it has jump homology.

A linear group has jump homology if and only if there is an
upper bound on the Hirsch lengths of its finitely generated
unipotent subgroups.
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Open problems

Question
Let G be a group without R-torsion and let k ≥ 0. Does G have
jump cohomology of height k over R if and only if G has finite
cohomological dimension k over R?

This holds when G is in HF .

For torsion-free groups, it has been conjectured by
Olympia Talelli that the notions of periodic cohomology and
finite cohomological dimension are equivalent.

(Adem-Smith, 2001) A countable group G has periodic
cohomology if and only if G acts freely and properly
discontinuously on some Sn × Rk .

Are torsion-free N cell
1 (PZ)-groups the same as torsion-free

H1F-groups?
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Thank You!
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