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Definition (Anantharaman-Delaroche, 2004):

Let (M,ϕ) and (N,ψ) be two von Neumann algebras equipped with

normal, faithful states ϕ , ψ . A linear map T : M → N is called a

(ϕ, ψ)-Markov map if

(a) T is completely positive

(b) T (1M) = 1N

(c) ψ ◦ T = ϕ

(d) T ◦ σϕt = σψt ◦ T , t ∈ R .

If (M,ϕ) = (N,ψ) , then T is called a ϕ-Markov map on M .

Note: A (ϕ, ψ)-Markov map T : M → N has an adjoint (ψ, ϕ)-

Markov map T ∗ : N →M uniquely determined by

ψ(yT (x)) = ϕ(T ∗(y)x) , x ∈M , y ∈ N .

Definition (Anantharaman-Delaroche, 2004):

A (ϕ, ψ)-Markov map T : M → N is called factorizable if there exists

a finite von Neumann algebra P with a normal, faithful state χ and

two ∗-monomorphisms

α : M → P , β : N → P

such that α is (ϕ, χ)-Markov, β is (ψ, χ)-Markov and

T = β∗ ◦ α .
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Remarks:

(a) β∗ = β−1 ◦ Eβ(N) , where Eβ(N) is the unique χ-preserving condi-

tional expectation of P onto β(N) .

(b) If ϕ and ψ are traces and T is factorizable, then (P, χ) in the

definition above can be chosen such that χ is also a trace. This can

be achieved by replacing (P, χ) by (Pχ, χ|Pχ) , where Pχ denotes the

centralizer of χ , since both ϕ(M) and ψ(N) are contained in Pχ .

Problem (Anantharaman-Delaroche, 2004):

Is every Markov map factorizable?

Markov maps on (Mn(C) , τn))
Here τn =

1
nTr is the normalized trace on Mn(C) .

A linear map T : Mn(C) →Mn(C) is (Mn(C) , τn)-Markov if

(a) T is completely positive

(b) T (1) = 1

(c) τn ◦ T = τn .

By a result of Choi (1973) , condition (a) is equivalent to the fact that

T has the form

Tx =

d∑
i=1

a∗ixai , x ∈Mn(C)
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where a1 , . . . , ad ∈ Mn(C) can be chosen to be linearly independent.

Note that in this case,

T (1) = 1 ⇐⇒
d∑
i=1

a∗iai = 1 ,

τn ◦ T = τn ⇐⇒
d∑
i=1

aia
∗
i = 1 .

Theorem 1 (Haagerup-M.):

Let T : Mn(C) → Mn(C) be a (Mn(C) , τn)-Markov map, written in

the form

Tx =

d∑
i=1

a∗ixai , x ∈Mn(C) ,

where a1 , . . . , ad ∈Mn(C) are linearly independent. Then the follow-

ing conditions are equivalent:

(1) T is factorizable

(2) There exists a finite von Neumann algebraN with a normal faithful

tracial state τN and a unitary u ∈Mn(N) such that

Tx = (idMn(C) ⊗ τN)(u
∗(x⊗ 1)u) , x ∈Mn(C) .

(3) There exists a finite von Neumann algebraN with a normal faithful

tracial state τN and v1 , . . . , vd ∈ N such that u : =
∑d

i=1 ai⊗ vi
is a unitary operator in Mn(C)⊗N and

τN(v
∗
i vj) = δij , 1 ≤ i, j ≤ d .
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Corollary 1:

Let T : Mn(C) →Mn(C) be a (Mn(C) , τn)-Markov map of the form

Tx =

d∑
i=1

a∗ixai , x ∈Mn(C) ,

where a1 , . . . , ad ∈Mn(C) . If d ≥ 2 and the set {a∗iaj : 1 ≤ i, j ≤ d}
is linearly independent, then T is not factorizable.

Proof: Assume that T is factorizable. By Theorem 1, there exists a

finite von Neumann algebra N with a normal faithful tracial state τN
and v1 , . . . , vd ∈ N such that

u : =

d∑
i=1

ai ⊗ vi

is unitary. Since
∑d

i=1 a
∗
iai = 1 , it follows that

d∑
i,j=1

a∗iaj ⊗ (v∗i vj − δij1N) = u∗u−

(
d∑
i=1

a∗iai

)
⊗ 1N = 0 .

By the linear independence of the set {a∗iaj : 1 ≤ i, j ≤ d} ,

v∗i vj − δij1N = 0 , 1 ≤ i, j ≤ d .

Since d ≥ 2 , it follows in particular that v∗1v1 = v∗2v2 = 1 and v∗1v2 =

0 . Since N is finite, v1 and v2 are unitary operators, which gives rise

to a contradiction. This proves that T is not factorizable.
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Example 1 (Haagerup-M.): Set

a1 =
1√
2

 0 0 0

0 0 −1

0 1 0

 , a2 =
1√
2

 0 0 1

0 0 0

−1 0 0


a3 =

1√
2

 0 −1 0

1 0 0

0 0 0


Then

∑3
i=1 a

∗
iai =

∑3
i=1 aia

∗
i = 1 . Hence the operator T defined by

Tx : =

3∑
i=1

a∗ixai , x ∈M3(C)

is a (M3(C) , τ3)-Markov map. The set

{a∗iaj : 1 ≤ i, j ≤ 3}

is linearly independent. Hence, by Corollary 1, T is not factorizable.

Remark: LetFM(Mn(C) , τn) be the set of factorizable (Mn(C) , τn)-
Markov maps. It can be checked that

conv(Aut(Mn(C) , τn))) ⊂ FM(Mn(C) , τn) . (1)

All automorphisms of Mn(C) are inner. The map T from above is

an example of a completely positive, unital, trace-preserving map on

M3(C) which is not a convex combination of inner automorphisms.

Question: Is the inclusion (1) strict?
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Proposition 1 (Haagerup-M.):

Let T : Mn(C) → Mn(C) be a (Mn(C) , τn)-Markov map written in

the form

Tx =

d∑
i=1

a∗ixai , x ∈Mn(C) ,

where a1 , . . . , ad ∈Mn(C) are linearly independent. Then the follow-

ing conditions are equivalent:

(a) T ∈ conv(Aut(Mn(C)) .

(b) T satisfies condition (2) of Theorem 1 with N abelian.

(c) T satisfies condition (3) of Theorem 1 with N abelian.

Corollary 2:

Let T : Mn(C) →Mn(C) be a (Mn(C) , τn)-Markov map of the form

Tx =

d∑
i=1

a∗ixai , x ∈Mn(C) ,

where a1 , . . . , ad ∈ Mn(C) are self-adjoint,
∑d

i=1 a
2
i = 1 and satisfy

aiaj = ajai , 1 ≤ i, j ≤ d . Then the following hold:

(a) T is factorizable.

(b) If d ≥ 3 and the set {aiaj : 1 ≤ i, j ≤ d} is linearly independent,

then T /∈ conv(Aut(Mn(C))) .
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Schur multipliers

If B = (bij)
n
i,j=1 is a positive semi-definite matrix, then the map T :

Mn(C) →Mn(C) given by

Tx : = (bijxij)1≤i,j≤n , x = (xij)
n
i,j=1 ∈Mn(C)

is called the Schur multiplier associated to the matrix B . Note that T

is completely positive. If, moreover,

b11 = b22 = . . . = bnn = 1 ,

then T (1) = 1 and τn ◦ T = τn . Hence T is an (Mn(C) , τn)-Markov

map.

Example 2 (Haagerup-M.): Let β = 1/
√
5 and set

B : =



1 β β β β β

β 1 β −β −β −β
β β 1 β −β −β
β −β β 1 β −β
β −β −β β 1 β

β β −β −β β 1


.

We can show that the associated Schur multiplier TB satisfies the hy-

potheses of Corollary 2, hence TB is a factorizable Markov map on

M6(C) , but
TB /∈ conv(Aut(M6(C))) .
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Example 3 (Haagerup-M.): Let 0 < s < 1 and set

B(s) : =


1

√
s

√
s

√
s√

s s s s√
s s s s√
s s s s

 + (1− s)


0 0 0 0

0 1 ω ω

0 ω 1 ω

0 ω ω 1

 ,

where ω = ei2π/3 = −1/2 + i
√
3/2 and ω is its complex conjugate.

Then B(s) is positive semi-definite matrix of rank 2. Moreover,

TB(s)(x) =

2∑
i=1

ai(s)
∗xai(s) , x ∈M4(C) ,

where a1(s) = diag(1 ,
√
s ,

√
s ,

√
s) , a2(s) =

√
1− s diag(0 , 1 , ω , ω) .

The set {a∗iaj : i, j = 1, 2} is linearly independent, hence TB(s) is not

factorizable, by Corollary 1.

Furthermore, set

L =
dB(s)

ds |s=1

=
1

2


0 1 1 1

1 0 3− i
√
3 3 + i

√
3

1 3 + i
√
3 0 3− i

√
3

1 3− i
√
3 3 + i

√
3 0

 .

Then

N(t) :=
(
e−Lijt

)
1≤i,j≤4

, t ≥ 0

is a semigroup of positive definite matrices having 1 on the diagonal.

Hence

T (t) : = TN(t) , t ≥ 0

is a semigroup of Schur multipliers which are (M4(C), τ4)-Markov maps.

9



For t > 0 , N(t) has rank 4, and therefore Corollary 1 cannot be

applied. Using a different method we can obtain from Theorem 1

that there exists t0 > 0 such that T (t) is not factorizable, for any

0 < t < t0 .

Remarks:

(1) Eric Ricard proved in 2007 that if a (Mn(C) , τn)-Markov map T

is a Schur multiplier T = TB associated to a matrix B having real

entries, then T is always factorizable.

(2) By a result of Kümmerer and Maassen (1987), it follows that if

T (t) : = e−Lt , t ≥ 0

is a one-parameter semigroup of (Mn(C) , τn)-Markov maps satisfying

T (t)∗ = T (t) , t ≥ 0 ,

then

T (t) ∈ conv(Aut(Mn(C))) , t ≥ 0 .

In particular, T (t) is factorizable, for all t ≥ 0 .

10



On the connection between Anantharaman-Delaroche’s

work and Kümmerer’s work (Communicated by Claus Koestler,

May 2008)

Definition (Kümmerer, JFA 1985):

Let (M,ϕ) be a von Neumann algebra with a normal, faithful state ϕ .

A ϕ-Markov map T : M →M has a dilation if there exists

• (N,ψ) von Neumann algebra with a normal faithful state ψ

• i : M → N (ϕ, ψ)-Markov ∗-monomorphism

• α ∈ Aut(N,ψ)

such that

T n = i∗ ◦ αn ◦ i , n ≥ 1 .

Combining results from Anantharaman-Delaroche (2004) with results

from Kümmerer’s unpublished Habilitationsschrift (1986), one gets the

following

Theorem (Anantharaman-Delaroche, 2004 + Kümmerer, 1986):

Let T : M →M be a ϕ-Markov map. The following are equivalent:

(1) T is factorizable.

(2) T has a dilation.

11



In his Habilitationsschrift (1986), Kümmerer constructs examples of

τn-Markov maps onMn(C) having no dilation. His examples are simi-

lar to our examples 1 and 3, but he does not consider the one-parameter

semigroup case.

Proposition (Kümmerer, 1986, cf. Cor. 3.4.5 and Prop. 3.5.5):

(1) Let T : M3(C) →M3(C) be the τ3-Markov map

Tx : =

3∑
i=1

a∗ixai , x ∈M3(C)

where

a1 =
1√
2

 0 0 0

1 0 0

0 1 0

 , a2 =
1√
2

 0 1 0

0 0 1

0 0 0


a3 =

1√
2

 0 0 1

0 0 0

1 0 0


Then T has no dilation.

(2) Let n ≥ 4 and T : Mn(C) →Mn(C) be the τn-Markov map

Tx : =

2∑
i=1

a∗ixai , x ∈Mn(C)

where

a1 = diag

(
1 ,

1√
2
,
1√
2
, 0 , . . . , 0

)
, a2 = diag

(
0 ,

1√
2
,
i√
2
, 1 , . . . , 1

)
.

Then T is a Schur multiplier which has no dilation.
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The noncommutative Rota dilation property

Definition (Junge, Le Merdy, Xu, 2006):

Let (M, τ ) be a (finite) von Neumann algebra with a normal, faithful

tracial state τ . A τ -Markov map T : M → M has the Rota dilation

property if there exists

• N von Neumann algebra with a normal faithful tracial state τN

• (Nn)n≥1 decreasing sequence of von Neumann subalgebras of N

• i : M ↪→ N trace-preserving embedding

such that

T n = i∗ ◦ ENn ◦ i , n ≥ 1 ,

where ENn is the trace-preserving conditional expect. of N onto Nn .

Remark: If T : M → M has the Rota dilation property, then T is

factorizable. The converse is not necessarily true, as shown by follow-

ing example:

Let T : M2(C) →M2(C) given by

T

(
x =

(
x11 x12
x21 x22

))
=

(
x11 −x12
−x21 x22

)
, x ∈M2(C) .

Then T ∈ Aut(M2(C)), and hence it is factorizable, but T does not

have the Rota dilation property, since it is not positive (as an operator

on L2(M2(C) , τ2)) .
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Theorem (Anantharaman-Delaroche, 2004, cf. E. Ricard, 2007):

If T : M → M is a factorizable Markov map and T ∗ = T , then T 2

has the Rota dilation property.

Remark: If M is abelian, then any Markov map T : M → M is au-

tomatically factorizable. If, moreover, T = T ∗ , then the Rota dilation

for T 2 in the above theorem can be chosen such that N is abelian. This

is the classical Rota dilation theorem.

Theorem 2 (Haagerup-M.):

For some large n ∈ N , there exists a Markov map T on (Mn(C) , τn)
such that T ∗ = T , but T 2 is not factorizable. In particular, T 2 does

not have the Rota dilation property.

Key Lemma: Let n, d ∈ N with d ≥ 5 and set

Tx : =

n∑
i=1

a∗ixai , x ∈Mn(C) ,

where a1 , . . . , ad ∈Mn(C) satisfy:

(1) ai = a∗i , 1 ≤ i ≤ d

(2)
∑d

i=1 a
2
i = 1

(3) a2iaj = aja
2
i , 1 ≤ i, j ≤ d

(4) A : = {aiaj : 1 ≤ i, j ≤ d} is linearly independent

(5) B : = ∪6
i=1Bi is linearly independent, where
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B1 : = {aiajakal : i ̸= j ̸= k ̸= l} , B2 : = {aiaja2k : i ̸= j ̸= k ̸= k} ,
B3 : = {a3iaj : i ̸= j} , B4 : = {aia3j : i ̸= j} , B5 : = {a2ia2j : i < j} ,
B6 : = {a4i : 1 ≤ i ≤ d} .
Then T is a (Mn(C) , τn)-Markov map, but T 2 is not factorizable. In

particular, T 2 does not have the Rota dilation property.

Remark: Operators a1 , . . . , ad satisfying conditions (1)− (5) can be

realized in

L∞(Sd−1)⊗̄L(Z2 ∗ . . . ∗ Z2) ,

namely as

ai = bi ⊗ ui , 1 ≤ i ≤ d

where b1 , . . . , bd are the coordinate functions on S
d−1 (the unit sphere

in Rd) and u1 , . . . , ud ∈ L(Z2 ∗ . . . ∗Z2) are the self-adjoint unitaries

corresponding to the generators g1 , . . . , gd of Z2 ∗ . . . ∗Z2 . Using the

fact that this group is residually finite, it is possible to get examples of

n× n matrices a1 , . . . , ad satisfying (1)− (5) for large values of n .

Theorem 2 (Haagerup-M.):

Let M be a finite von Neumann algebra with normal faithful tracial

state τ , and let S : M → M be a τ -Markov map on M . Then the

following are equivalent:

(1) S has the Rota dilation property

(2) S has a Rota dilation of order 1

(3) S = T ∗T , where T : M → N is a factorizable (τ, τN)-Markov

map , for some von Neumann algebra N with a normal faithful

tracial state τN .
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Further results

Recall the noncommutative little Grothendieck inequality (cb-version):

Theorem (Pisier–Shlyakhtenko, 2002, Haagerup-M, 2008):

Let A be a C∗-algebra. If T : A → OH(I) is a completely bounded

linear map, then there exist states f1 , f2 on A such that

∥T (x)∥ ≤
√
2∥T∥cbf1(xx∗)1/4f2(x∗x)1/4 , x ∈ A .

Problem: What is the best constant C0 in the inequality

∥T (x)∥ ≤ C∥T∥cbf1(xx∗)1/4f2(x∗x)1/4 , x ∈ A . (2)

for all choices of A and T .

Note: 1 ≤ C0 ≤
√
2 .

Theorem 4 (Haagerup-M): C0 > 1 .

More precisely,

(1) There exists T : M3(C) → OH({1, 2, 3}) such that (2) does not

hold with C = 1 , for any choice of states f1 , f2 .

(2) There exists T : l∞{1, 2, 3, 4} → OH({1, 2}) such that (2) does

not hold with C = 1 , for any choice of states f1 , f2 .
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On the asymptotic quantum Birkhoff conjecture

Classical Birkhoff theorem (Birkhoff, 1946):

Every doubly stochastic matrix is a convex combination of permuta-

tion matrices.

Consider the abelian von Neumann algebra D := l∞({1, 2, . . . , n})
with trace given by τ ({i}) = 1/n , 1 ≤ i ≤ n . The positive unital

trace-preserving maps on D are the linear operators on D which are

given by doubly stochastic n× n matrices. Note that every automor-

phism of D is given by a permutation of {1 , 2 , . . . , n} .

The quantum Birkhoff conjecture:

Does every completely positive unital trace-preserving map

T : (Mn(C), τn) → (Mn(C), τn) , n ≥ 1

lie in conv(Aut(Mn(C)) ?

This turns out to be false for n ≥ 3 (see, e.g, Example 1), and it was

first shown by Landau-Streater (1993).

The asymptotic quantum Birkhoff conjecture:

Let T : Mn(C) →Mn(C) be a τn-Markov map, n ≥ 1 . Then

lim
k→∞

dcb

(
k⊗
i=1

T , conv(Aut(
k⊗
i=1

Mn(C)))

)
= 0 . (3)
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Theorem 5 (Haagerup-M):

Let T : Mn(C) →Mn(C) be a τn-Markov map, n ≥ 1 . Then

dcb

(
k⊗
i=1

T , conv(Aut(

k⊗
i=1

Mn(C)))

)
≥ dcb(T ,FM(Mn(C))) .

Hence, if T is not factorizable, then (3) does not hold. Therefore the

asymptotic quantum Birkhoff conjecture is not true.

Proof: It suffices to prove that given m,n ≥ 1 , then for any τn-

Markov map T on Mn(C) and any τm-Markov map S on Mm(C) ,

dcb(T ⊗ S , conv(Aut(Mn(C))⊗Mm(C))) ≥ dcb(T ,FM(Mn(C))) .

Let i : Mn(C) →Mn(C)⊗Mm(C) be given by

i(x) : = x⊗ 1 , x ∈Mn(C) .

It is easily checked that

i∗(T ⊗ S)i = T ,

where i∗ is the adjoint of i . Since ∥i∥cb = ∥i∗∥cb = 1 , we get

dcb(T ⊗ S , conv(Aut(Mn(C))⊗Mm(C))) ≥ (4)

dcb(T , i
∗conv(Aut(Mn(C))⊗Mm(C))i) .

Since for every u ∈ U(Mn(C) ⊗Mm(C)) , the map i∗ ◦ ad(u) ◦ i is
factorizable, and FM(Mn(C)) is a convex set, we deduce that

i∗conv(Aut(Mn(C))⊗Mm(C))i ⊂ FM(Mn(C)) ,

which together with (4) completes the proof.
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