Factorization and dilation problems for completely positive maps on von Neumann algebras

Magdalena Musat University of Copenhagen

Copenhagen, January 29, 2010

Definition (Anantharaman-Delaroche, 2004):

Let (M, ϕ) and (N, ψ) be two von Neumann algebras equipped with normal, faithful states ϕ , ψ . A linear map $T: M \to N$ is called a (ϕ, ψ) -Markov map if

(a) T is completely positive

$$(b) T(1_M) = 1_N$$

- (c) $\psi \circ T = \phi$
- $(d) \ T \circ \sigma^\phi_t = \sigma^\psi_t \circ T \,, \quad t \in \mathbb{R} \,.$

If $(M, \phi) = (N, \psi)$, then T is called a ϕ -Markov map on M.

<u>Note</u>: A (ϕ, ψ) -Markov map $T: M \to N$ has an adjoint (ψ, ϕ) -Markov map $T^*: N \to M$ uniquely determined by

$$\psi(yT(x)) = \phi(T^*(y)x) \,, \quad x \in M \,, y \in N \,.$$

Definition (Anantharaman-Delaroche, 2004):

A (ϕ, ψ) -Markov map $T: M \to N$ is called *factorizable* if there exists a finite von Neumann algebra P with a normal, faithful state χ and two *-monomorphisms

$$\alpha \colon M \to P \,, \quad \beta \colon N \to P$$

such that α is (ϕ, χ) -Markov, β is (ψ, χ) -Markov and

$$T = \beta^* \circ \alpha \,.$$

Remarks:

(a) $\beta^* = \beta^{-1} \circ E_{\beta(N)}$, where $E_{\beta(N)}$ is the unique χ -preserving conditional expectation of P onto $\beta(N)$.

(b) If ϕ and ψ are traces and T is factorizable, then (P, χ) in the definition above can be chosen such that χ is also a trace. This can be achieved by replacing (P, χ) by $(P_{\chi}, \chi_{|P_{\chi}})$, where P_{χ} denotes the centralizer of χ , since both $\phi(M)$ and $\psi(N)$ are contained in P_{χ} .

Problem (Anantharaman-Delaroche, 2004):

Is every Markov map factorizable?

Markov maps on $(M_n(\mathbb{C}), \tau_n))$

Here $\tau_n = \frac{1}{n}$ Tr is the normalized trace on $M_n(\mathbb{C})$.

- A linear map $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is $(M_n(\mathbb{C}), \tau_n)$ -Markov if
- (a) T is completely positive
- (b) T(1) = 1
- $(c) \ \tau_n \circ T = \tau_n \,.$

By a result of Choi (1973), condition (a) is equivalent to the fact that T has the form

$$Tx = \sum_{i=1}^{d} a_i^* x a_i, \quad x \in M_n(\mathbb{C})$$

where $a_1, \ldots, a_d \in M_n(\mathbb{C})$ can be chosen to be linearly independent. Note that in this case,

$$T(1) = 1 \iff \sum_{i=1}^{d} a_i^* a_i = 1,$$

$$\tau_n \circ T = \tau_n \iff \sum_{i=1}^{d} a_i a_i^* = 1.$$

Theorem 1 (Haagerup-M.):

Let $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be a $(M_n(\mathbb{C}), \tau_n)$ -Markov map, written in the form

$$Tx = \sum_{i=1}^{d} a_i^* x a_i, \quad x \in M_n(\mathbb{C}),$$

where $a_1, \ldots, a_d \in M_n(\mathbb{C})$ are linearly independent. Then the following conditions are equivalent:

- (1) T is factorizable
- (2) There exists a finite von Neumann algebra N with a normal faithful tracial state τ_N and a unitary $u \in M_n(N)$ such that

$$Tx = (\mathrm{id}_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1)u), \quad x \in M_n(\mathbb{C}).$$

(3) There exists a finite von Neumann algebra N with a normal faithful tracial state τ_N and $v_1, \ldots, v_d \in N$ such that $u \colon = \sum_{i=1}^d a_i \otimes v_i$ is a unitary operator in $M_n(\mathbb{C}) \otimes N$ and

$$\tau_N(v_i^*v_j) = \delta_{ij} \,, \quad 1 \le i, j \le d \,.$$

Corollary 1:

Let $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be a $(M_n(\mathbb{C}), \tau_n)$ -Markov map of the form

$$Tx = \sum_{i=1}^{d} a_i^* x a_i, \quad x \in M_n(\mathbb{C}),$$

where $a_1, \ldots, a_d \in M_n(\mathbb{C})$. If $d \ge 2$ and the set $\{a_i^*a_j : 1 \le i, j \le d\}$ is linearly independent, then T is not factorizable.

Proof: Assume that T is factorizable. By Theorem 1, there exists a finite von Neumann algebra N with a normal faithful tracial state τ_N and $v_1, \ldots, v_d \in N$ such that

$$u\colon = \sum_{i=1}^d a_i \otimes v_i$$

is unitary. Since $\sum_{i=1}^{d} a_i^* a_i = 1$, it follows that

$$\sum_{i,j=1}^{d} a_i^* a_j \otimes (v_i^* v_j - \delta_{ij} 1_N) = u^* u - \left(\sum_{i=1}^{d} a_i^* a_i\right) \otimes 1_N = 0.$$

By the linear independence of the set $\{a_i^*a_j : 1 \le i, j \le d\}$,

$$v_i^* v_j - \delta_{ij} 1_N = 0, \quad 1 \le i, j \le d.$$

Since $d \ge 2$, it follows in particular that $v_1^*v_1 = v_2^*v_2 = 1$ and $v_1^*v_2 = 0$. Since N is finite, v_1 and v_2 are unitary operators, which gives rise to a contradiction. This proves that T is <u>not</u> factorizable.

Example 1 (Haagerup-M.): Set

$$a_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad a_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
$$a_{3} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Then $\sum_{i=1}^{3} a_i^* a_i = \sum_{i=1}^{3} a_i a_i^* = 1$. Hence the operator T defined by

$$Tx: = \sum_{i=1}^{3} a_i^* x a_i, \quad x \in M_3(\mathbb{C})$$

is a $(M_3(\mathbb{C}), \tau_3)$ -Markov map. The set

$$\{a_i^*a_j: 1 \le i, j \le 3\}$$

is linearly independent. Hence, by Corollary 1, T is <u>not</u> factorizable.

Remark: Let $\mathcal{FM}(M_n(\mathbb{C}), \tau_n)$ be the set of factorizable $(M_n(\mathbb{C}), \tau_n)$ -Markov maps. It can be checked that

$$\operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C}), \tau_n))) \subset \mathcal{FM}(M_n(\mathbb{C}), \tau_n).$$
 (1)

All automorphisms of $M_n(\mathbb{C})$ are inner. The map T from above is an example of a completely positive, unital, trace-preserving map on $M_3(\mathbb{C})$ which is not a convex combination of inner automorphisms.

Question: Is the inclusion (1) strict?

Proposition 1 (Haagerup-M.):

Let $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be a $(M_n(\mathbb{C}), \tau_n)$ -Markov map written in the form

$$Tx = \sum_{i=1}^{d} a_i^* x a_i, \quad x \in M_n(\mathbb{C}),$$

where $a_1, \ldots, a_d \in M_n(\mathbb{C})$ are linearly independent. Then the following conditions are equivalent:

- (a) $T \in \operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C})))$.
- (b) T satisfies condition (2) of Theorem 1 with N abelian.
- (c) T satisfies condition (3) of Theorem 1 with N abelian.

Corollary 2:

Let $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be a $(M_n(\mathbb{C}), \tau_n)$ -Markov map of the form

$$Tx = \sum_{i=1}^{d} a_i^* x a_i, \quad x \in M_n(\mathbb{C}),$$

where $a_1, \ldots, a_d \in M_n(\mathbb{C})$ are self-adjoint, $\sum_{i=1}^d a_i^2 = 1$ and satisfy $a_i a_j = a_j a_i$, $1 \leq i, j \leq d$. Then the following hold:

- (a) T is factorizable.
- (b) If $d \ge 3$ and the set $\{a_i a_j : 1 \le i, j \le d\}$ is linearly independent, then $T \notin \operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C})))$.

Schur multipliers

If $B = (b_{ij})_{i,j=1}^n$ is a positive semi-definite matrix, then the map $T : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ given by

$$Tx: = (b_{ij}x_{ij})_{1 \le i,j \le n}, \quad x = (x_{ij})_{i,j=1}^n \in M_n(\mathbb{C})$$

is called the Schur multiplier associated to the matrix B . Note that T is completely positive. If, moreover,

$$b_{11} = b_{22} = \ldots = b_{nn} = 1$$
,

then T(1) = 1 and $\tau_n \circ T = \tau_n$. Hence T is an $(M_n(\mathbb{C}), \tau_n)$ -Markov map.

Example 2 (Haagerup-M.): Let $\beta = 1/\sqrt{5}$ and set

$$B: = \begin{pmatrix} 1 & \beta & \beta & \beta & \beta & \beta \\ \beta & 1 & \beta & -\beta & -\beta & -\beta \\ \beta & \beta & 1 & \beta & -\beta & -\beta \\ \beta & -\beta & \beta & 1 & \beta & -\beta \\ \beta & -\beta & -\beta & \beta & 1 & \beta \\ \beta & \beta & -\beta & -\beta & \beta & 1 \end{pmatrix}$$

We can show that the associated Schur multiplier T_B satisfies the hypotheses of Corollary 2, hence T_B is a factorizable Markov map on $M_6(\mathbb{C})$, but

 $T_B \notin \operatorname{conv}(\operatorname{Aut}(M_6(\mathbb{C})))$.

Example 3 (Haagerup-M.): Let 0 < s < 1 and set

$$B(s): = \begin{pmatrix} 1 & \sqrt{s} & \sqrt{s} & \sqrt{s} \\ \sqrt{s} & s & s & s \\ \sqrt{s} & s & s & s \\ \sqrt{s} & s & s & s \end{pmatrix} + (1-s) \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & \omega & \overline{\omega} \\ 0 & \overline{\omega} & 1 & \omega \\ 0 & \omega & \overline{\omega} & 1 \end{pmatrix},$$

where $\omega = e^{i2\pi/3} = -1/2 + i\sqrt{3}/2$ and $\overline{\omega}$ is its complex conjugate. Then B(s) is positive semi-definite matrix of rank 2. Moreover,

$$T_{B(s)}(x) = \sum_{i=1}^{2} a_i(s)^* x a_i(s), \quad x \in M_4(\mathbb{C}),$$

where $a_1(s) = \text{diag}(1, \sqrt{s}, \sqrt{s}, \sqrt{s}), a_2(s) = \sqrt{1-s} \text{diag}(0, 1, \omega, \overline{\omega})$. The set $\{a_i^* a_j : i, j = 1, 2\}$ is linearly independent, hence $T_{B(s)}$ is <u>not</u> factorizable, by Corollary 1.

Furthermore, set

$$L = \frac{dB(s)}{ds}_{|s=1} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 1 & 1\\ 1 & 0 & 3 - i\sqrt{3} & 3 + i\sqrt{3}\\ 1 & 3 + i\sqrt{3} & 0 & 3 - i\sqrt{3}\\ 1 & 3 - i\sqrt{3} & 3 + i\sqrt{3} & 0 \end{pmatrix}$$

Then

$$N(t) := (e^{-L_{ij}t})_{1 \le i,j \le 4}, \quad t \ge 0$$

is a semigroup of positive definite matrices having 1 on the diagonal. Hence

$$T(t):=T_{N(t)}, \quad t\geq 0$$

is a semigroup of Schur multipliers which are $(M_4(\mathbb{C}), \tau_4)$ -Markov maps.

For t > 0, N(t) has rank 4, and therefore Corollary 1 cannot be applied. Using a different method we can obtain from Theorem 1 that there exists $t_0 > 0$ such that T(t) is <u>not</u> factorizable, for any $0 < t < t_0$.

Remarks:

(1) Eric Ricard proved in 2007 that if a $(M_n(\mathbb{C}), \tau_n)$ -Markov map T is a Schur multiplier $T = T_B$ associated to a matrix B having <u>real</u> entries, then T is always factorizable.

(2) By a result of Kümmerer and Maassen (1987), it follows that if

$$T(t): = e^{-Lt}, \quad t \ge 0$$

is a one-parameter semigroup of $(M_n(\mathbb{C}), \tau_n)$ -Markov maps satisfying

$$T(t)^* = T(t) \,, \quad t \ge 0 \,,$$

then

$$T(t) \in \operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C}))), \quad t \ge 0.$$

In particular, T(t) is factorizable, for all $t \ge 0$.

On the connection between Anantharaman-Delaroche's work and Kümmerer's work (Communicated by Claus Koestler, May 2008)

Definition (Kümmerer, JFA 1985):

Let (M, ϕ) be a von Neumann algebra with a normal, faithful state ϕ . A ϕ -Markov map $T: M \to M$ has a *dilation* if there exists

- (N,ψ) von Neumann algebra with a normal faithful state ψ
- $i: M \to N \ (\phi, \psi)$ -Markov *-monomorphism
- $\alpha \in \operatorname{Aut}(N, \psi)$

such that

$$T^n = i^* \circ \alpha^n \circ i \,, \quad n \ge 1 \,.$$

Combining results from Anantharaman-Delaroche (2004) with results from Kümmerer's unpublished Habilitationsschrift (1986), one gets the following

Theorem (Anantharaman-Delaroche, 2004 + Kümmerer, 1986):

Let $T: M \to M$ be a ϕ -Markov map. The following are equivalent:

- (1) T is factorizable.
- (2) T has a dilation.

In his Habilitationsschrift (1986), Kümmerer constructs examples of τ_n -Markov maps on $M_n(\mathbb{C})$ having <u>no</u> dilation. His examples are similar to our examples 1 and 3, but he does not consider the one-parameter semigroup case.

Proposition (Kümmerer, 1986, cf. Cor. 3.4.5 and Prop. 3.5.5): (1) Let $T: M_3(\mathbb{C}) \to M_3(\mathbb{C})$ be the τ_3 -Markov map

$$Tx: = \sum_{i=1}^{3} a_i^* x a_i, \quad x \in M_3(\mathbb{C})$$

where

$$a_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad a_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
$$a_{3} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Then T has <u>no</u> dilation.

(2) Let $n \geq 4$ and $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be the τ_n -Markov map

$$Tx: = \sum_{i=1}^{2} a_i^* x a_i, \quad x \in M_n(\mathbb{C})$$

where

$$a_1 = \operatorname{diag}\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \dots, 0\right), a_2 = \operatorname{diag}\left(0, \frac{1}{\sqrt{2}}, \frac{i}{\sqrt{2}}, 1, \dots, 1\right)$$

Then *T* is a Solur multiplier which has no dilation

Then T is a Schur multiplier which has <u>no</u> dilation.

The noncommutative Rota dilation property

Definition (Junge, Le Merdy, Xu, 2006):

Let (M, τ) be a (finite) von Neumann algebra with a normal, faithful tracial state τ . A τ -Markov map $T: M \to M$ has the *Rota dilation property* if there exists

- N von Neumann algebra with a normal faithful tracial state τ_N
- $(N_n)_{n\geq 1}$ decreasing sequence of von Neumann subalgebras of N
- $i: M \hookrightarrow N$ trace-preserving embedding

such that

$$T^n = i^* \circ E_{N_n} \circ i \,, \quad n \ge 1 \,,$$

where E_{N_n} is the trace-preserving conditional expect. of N onto N_n .

Remark: If $T: M \to M$ has the Rota dilation property, then T is factorizable. The converse is not necessarily true, as shown by following example:

Let
$$T: M_2(\mathbb{C}) \to M_2(\mathbb{C})$$
 given by
 $T\left(x = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix}\right) = \begin{pmatrix} x_{11} & -x_{12} \\ -x_{21} & x_{22} \end{pmatrix}, \quad x \in M_2(\mathbb{C}).$

Then $T \in \operatorname{Aut}(M_2(\mathbb{C}))$, and hence it is factorizable, but T does not have the Rota dilation property, since it is not positive (as an operator on $L_2(M_2(\mathbb{C}), \tau_2))$. **Theorem** (Anantharaman-Delaroche, 2004, cf. E. Ricard, 2007): If $T: M \to M$ is a factorizable Markov map and $T^* = T$, then T^2 has the Rota dilation property.

Remark: If M is abelian, then any Markov map $T: M \to M$ is automatically factorizable. If, moreover, $T = T^*$, then the Rota dilation for T^2 in the above theorem can be chosen such that N is abelian. This is the classical Rota dilation theorem.

Theorem 2 (Haagerup-M.):

For some large $n \in \mathbb{N}$, there exists a Markov map T on $(M_n(\mathbb{C}), \tau_n)$ such that $T^* = T$, but T^2 is not factorizable. In particular, T^2 does <u>not</u> have the Rota dilation property.

Key Lemma: Let $n, d \in \mathbb{N}$ with $d \ge 5$ and set

$$Tx: = \sum_{i=1}^{n} a_i^* x a_i, \quad x \in M_n(\mathbb{C}),$$

where $a_1, \ldots, a_d \in M_n(\mathbb{C})$ satisfy:

(1)
$$a_i = a_i^*, 1 \le i \le d$$

(2) $\sum_{i=1}^d a_i^2 = 1$
(3) $a_i^2 a_j = a_j a_i^2, 1 \le i, j \le d$
(4) $A: = \{a_i a_j : 1 \le i, j \le d\}$ is linearly independent
(5) $B: = \bigcup_{i=1}^6 B_i$ is linearly independent, where

 $B_{1}: = \{a_{i}a_{j}a_{k}a_{l}: i \neq j \neq k \neq l\}, B_{2}: = \{a_{i}a_{j}a_{k}^{2}: i \neq j \neq k \neq k\}, \\ B_{3}: = \{a_{i}^{3}a_{j}: i \neq j\}, B_{4}: = \{a_{i}a_{j}^{3}: i \neq j\}, B_{5}: = \{a_{i}^{2}a_{j}^{2}: i < j\}, \\ B_{6}: = \{a_{i}^{4}: 1 \leq i \leq d\}.$

Then T is a $(M_n(\mathbb{C}), \tau_n)$ -Markov map, but T^2 is not factorizable. In particular, T^2 does <u>not</u> have the Rota dilation property.

Remark: Operators a_1, \ldots, a_d satisfying conditions (1) - (5) can be realized in

$$L_{\infty}(S^{d-1})\bar{\otimes}L(\mathbb{Z}_2*\ldots*\mathbb{Z}_2),$$

namely as

$$a_i = b_i \otimes u_i, \quad 1 \le i \le d$$

where b_1, \ldots, b_d are the coordinate functions on S^{d-1} (the unit sphere in \mathbb{R}^d) and $u_1, \ldots, u_d \in L(\mathbb{Z}_2 * \ldots * \mathbb{Z}_2)$ are the self-adjoint unitaries corresponding to the generators g_1, \ldots, g_d of $\mathbb{Z}_2 * \ldots * \mathbb{Z}_2$. Using the fact that this group is residually finite, it is possible to get examples of $n \times n$ matrices a_1, \ldots, a_d satisfying (1) - (5) for large values of n.

Theorem 2 (Haagerup-M.):

Let M be a finite von Neumann algebra with normal faithful tracial state τ , and let $S: M \to M$ be a τ -Markov map on M. Then the following are equivalent:

- (1) S has the Rota dilation property
- (2) S has a Rota dilation of order 1
- (3) $S = T^*T$, where $T: M \to N$ is a factorizable (τ, τ_N) -Markov map, for some von Neumann algebra N with a normal faithful tracial state τ_N .

Further results

Recall the noncommutative little Grothendieck inequality (cb-version):

Theorem (Pisier–Shlyakhtenko, 2002, Haagerup-M, 2008): Let A be a C*-algebra. If $T : A \to OH(I)$ is a completely bounded linear map, then there exist states f_1, f_2 on A such that

$$||T(x)|| \le \sqrt{2} ||T||_{cb} f_1(xx^*)^{1/4} f_2(x^*x)^{1/4}, \quad x \in A$$

Problem: What is the best constant C_0 in the inequality

$$||T(x)|| \le C ||T||_{cb} f_1(xx^*)^{1/4} f_2(x^*x)^{1/4}, \quad x \in A.$$
(2)

for all choices of A and T.

Note: $1 \le C_0 \le \sqrt{2}$.

Theorem 4 (Haagerup-M): $C_0 > 1$.

More precisely,

- (1) There exists $T: M_3(\mathbb{C}) \to OH(\{1,2,3\})$ such that (2) does not hold with C = 1, for any choice of states f_1, f_2 .
- (2) There exists $T: l_{\infty}\{1, 2, 3, 4\} \to OH(\{1, 2\})$ such that (2) does not hold with C = 1, for any choice of states f_1, f_2 .

On the asymptotic quantum Birkhoff conjecture

Classical Birkhoff theorem (Birkhoff, 1946):

Every doubly stochastic matrix is a convex combination of permutation matrices.

Consider the abelian von Neumann algebra $D := l_{\infty}(\{1, 2, ..., n\})$ with trace given by $\tau(\{i\}) = 1/n, 1 \le i \le n$. The positive unital trace-preserving maps on D are the linear operators on D which are given by doubly stochastic $n \times n$ matrices. Note that every automorphism of D is given by a permutation of $\{1, 2, ..., n\}$.

The quantum Birkhoff conjecture:

Does every *completely positive* unital trace-preserving map

$$T: (M_n(\mathbb{C}), \tau_n) \to (M_n(\mathbb{C}), \tau_n), \quad n \ge 1$$

lie in conv $(\operatorname{Aut}(M_n(\mathbb{C})))$?

This turns out to be false for $n \ge 3$ (see, e.g, Example 1), and it was first shown by Landau-Streater (1993).

The asymptotic quantum Birkhoff conjecture:

Let $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be a τ_n -Markov map, $n \ge 1$. Then

$$\lim_{k \to \infty} d_{\rm cb} \left(\bigotimes_{i=1}^{k} T, \operatorname{conv}(\operatorname{Aut}(\bigotimes_{i=1}^{k} M_n(\mathbb{C}))) \right) = 0.$$
 (3)

Theorem 5 (Haagerup-M):

Let $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ be a τ_n -Markov map, $n \ge 1$. Then

$$d_{\rm cb}\left(\bigotimes_{i=1}^k T, \operatorname{conv}(\operatorname{Aut}(\bigotimes_{i=1}^k M_n(\mathbb{C})))\right) \ge d_{\rm cb}(T, \mathcal{FM}(M_n(\mathbb{C}))).$$

Hence, if T is not factorizable, then (3) does not hold. Therefore the asymptotic quantum Birkhoff conjecture is not true.

Proof: It suffices to prove that given $m, n \geq 1$, then for any τ_n -Markov map T on $M_n(\mathbb{C})$ and any τ_m -Markov map S on $M_m(\mathbb{C})$,

$$d_{\rm cb}(T \otimes S, \operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C})) \otimes M_m(\mathbb{C}))) \ge d_{\rm cb}(T, \mathcal{FM}(M_n(\mathbb{C}))).$$

Let $i: M_n(\mathbb{C}) \to M_n(\mathbb{C}) \otimes M_m(\mathbb{C})$ be given by

$$i(x)$$
: = $x \otimes 1$, $x \in M_n(\mathbb{C})$.

It is easily checked that

$$i^*(T \otimes S)i = T$$

where i^* is the adjoint of i. Since $||i||_{cb} = ||i^*||_{cb} = 1$, we get

$$d_{\rm cb}(T \otimes S, \operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C})) \otimes M_m(\mathbb{C}))) \ge$$

$$d_{\rm cb}(T, i^* \operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C})) \otimes M_m(\mathbb{C}))i).$$

$$(4)$$

Since for every $u \in \mathcal{U}(M_n(\mathbb{C}) \otimes M_m(\mathbb{C}))$, the map $i^* \circ \mathrm{ad}(u) \circ i$ is factorizable, and $\mathcal{FM}(M_n(\mathbb{C}))$ is a convex set, we deduce that

$$i^* \operatorname{conv}(\operatorname{Aut}(M_n(\mathbb{C})) \otimes M_m(\mathbb{C})) i \subset \mathcal{FM}(M_n(\mathbb{C})),$$

which together with (4) completes the proof.