Factorization and dilation problems for completely positive maps on von Neumann algebras

Magdalena Musat
University of Copenhagen

Copenhagen, January 29, 2010

Definition (Anantharaman-Delaroche, 2004):
Let (M, ϕ) and (N, ψ) be two von Neumann algebras equipped with normal, faithful states ϕ, ψ. A linear map $T: M \rightarrow N$ is called a (ϕ, ψ)-Markov map if
(a) T is completely positive
(b) $T\left(1_{M}\right)=1_{N}$
(c) $\psi \circ T=\phi$
(d) $T \circ \sigma_{t}^{\phi}=\sigma_{t}^{\psi} \circ T, \quad t \in \mathbb{R}$.

If $(M, \phi)=(N, \psi)$, then T is called a ϕ-Markov map on M.

Note: $\mathrm{A}(\phi, \psi)$-Markov map $T: M \rightarrow N$ has an $\operatorname{adjoint}(\psi, \phi)$ Markov map $T^{*}: N \rightarrow M$ uniquely determined by

$$
\psi(y T(x))=\phi\left(T^{*}(y) x\right), \quad x \in M, y \in N
$$

Definition (Anantharaman-Delaroche, 2004):
A (ϕ, ψ)-Markov map $T: M \rightarrow N$ is called factorizable if there exists a finite von Neumann algebra P with a normal, faithful state χ and two *-monomorphisms

$$
\alpha: M \rightarrow P, \quad \beta: N \rightarrow P
$$

such that α is (ϕ, χ)-Markov, β is (ψ, χ)-Markov and

$$
T=\beta^{*} \circ \alpha
$$

Remarks:

(a) $\beta^{*}=\beta^{-1} \circ E_{\beta(N)}$, where $E_{\beta(N)}$ is the unique χ-preserving conditional expectation of P onto $\beta(N)$.
(b) If ϕ and ψ are traces and T is factorizable, then (P, χ) in the definition above can be chosen such that χ is also a trace. This can be achieved by replacing (P, χ) by $\left(P_{\chi}, \chi_{\left.\right|_{P_{\chi}}}\right)$, where P_{χ} denotes the centralizer of χ, since both $\phi(M)$ and $\psi(N)$ are contained in P_{χ}.

Problem (Anantharaman-Delaroche, 2004):
Is every Markov map factorizable?

Markov maps on $\left.\left(M_{n}(\mathbb{C}), \tau_{n}\right)\right)$

Here $\tau_{n}=\frac{1}{n} \operatorname{Tr}$ is the normalized trace on $M_{n}(\mathbb{C})$.
A linear map $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ is $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov if
(a) T is completely positive
(b) $T(1)=1$
(c) $\tau_{n} \circ T=\tau_{n}$.

By a result of Choi (1973), condition (a) is equivalent to the fact that T has the form

$$
T x=\sum_{i=1}^{d} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C})
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$ can be chosen to be linearly independent. Note that in this case,

$$
\begin{aligned}
T(1)=1 & \Longleftrightarrow \sum_{i=1}^{d} a_{i}^{*} a_{i}=1 \\
\tau_{n} \circ T=\tau_{n} & \Longleftrightarrow \sum_{i=1}^{d} a_{i} a_{i}^{*}=1
\end{aligned}
$$

Theorem 1 (Haagerup-M.):
Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map, written in the form

$$
T x=\sum_{i=1}^{d} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C})
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$ are linearly independent. Then the following conditions are equivalent:
(1) T is factorizable
(2) There exists a finite von Neumann algebra N with a normal faithful tracial state τ_{N} and a unitary $u \in M_{n}(N)$ such that

$$
T x=\left(\operatorname{id}_{M_{n}(\mathbb{C})} \otimes \tau_{N}\right)\left(u^{*}(x \otimes 1) u\right), \quad x \in M_{n}(\mathbb{C}) .
$$

(3) There exists a finite von Neumann algebra N with a normal faithful tracial state τ_{N} and $v_{1}, \ldots, v_{d} \in N$ such that $u:=\sum_{i=1}^{d} a_{i} \otimes v_{i}$ is a unitary operator in $M_{n}(\mathbb{C}) \otimes N$ and

$$
\tau_{N}\left(v_{i}^{*} v_{j}\right)=\delta_{i j}, \quad 1 \leq i, j \leq d
$$

Corollary 1:

Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map of the form

$$
T x=\sum_{i=1}^{d} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C})
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$. If $d \geq 2$ and the set $\left\{a_{i}^{*} a_{j}: 1 \leq i, j \leq d\right\}$ is linearly independent, then T is not factorizable.

Proof: Assume that T is factorizable. By Theorem 1, there exists a finite von Neumann algebra N with a normal faithful tracial state τ_{N} and $v_{1}, \ldots, v_{d} \in N$ such that

$$
u:=\sum_{i=1}^{d} a_{i} \otimes v_{i}
$$

is unitary. Since $\sum_{i=1}^{d} a_{i}^{*} a_{i}=1$, it follows that

$$
\sum_{i, j=1}^{d} a_{i}^{*} a_{j} \otimes\left(v_{i}^{*} v_{j}-\delta_{i j} 1_{N}\right)=u^{*} u-\left(\sum_{i=1}^{d} a_{i}^{*} a_{i}\right) \otimes 1_{N}=0
$$

By the linear independence of the set $\left\{a_{i}^{*} a_{j}: 1 \leq i, j \leq d\right\}$,

$$
v_{i}^{*} v_{j}-\delta_{i j} 1_{N}=0, \quad 1 \leq i, j \leq d
$$

Since $d \geq 2$, it follows in particular that $v_{1}^{*} v_{1}=v_{2}^{*} v_{2}=1$ and $v_{1}^{*} v_{2}=$ 0 . Since N is finite, v_{1} and v_{2} are unitary operators, which gives rise to a contradiction. This proves that T is not factorizable.

Example 1 (Haagerup-M.): Set

$$
\begin{gathered}
a_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), \quad a_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) \\
a_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Then $\sum_{i=1}^{3} a_{i}^{*} a_{i}=\sum_{i=1}^{3} a_{i} a_{i}^{*}=1$. Hence the operator T defined by

$$
T x:=\sum_{i=1}^{3} a_{i}^{*} x a_{i}, \quad x \in M_{3}(\mathbb{C})
$$

is a $\left(M_{3}(\mathbb{C}), \tau_{3}\right)$-Markov map. The set

$$
\left\{a_{i}^{*} a_{j}: 1 \leq i, j \leq 3\right\}
$$

is linearly independent. Hence, by Corollary $1, T$ is not factorizable.

Remark: Let $\mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C}), \tau_{n}\right)$ be the set of factorizable $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$ Markov maps. It can be checked that

$$
\begin{equation*}
\left.\operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C}), \tau_{n}\right)\right)\right) \subset \mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C}), \tau_{n}\right) \tag{1}
\end{equation*}
$$

All automorphisms of $M_{n}(\mathbb{C})$ are inner. The map T from above is an example of a completely positive, unital, trace-preserving map on $M_{3}(\mathbb{C})$ which is not a convex combination of inner automorphisms.

Question: Is the inclusion (1) strict?

Proposition 1 (Haagerup-M.):
Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map written in the form

$$
T x=\sum_{i=1}^{d} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C})
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$ are linearly independent. Then the following conditions are equivalent:
(a) $T \in \operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right)\right.$.
(b) T satisfies condition (2) of Theorem 1 with N abelian.
(c) T satisfies condition (3) of Theorem 1 with N abelian.

Corollary 2:

Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map of the form

$$
T x=\sum_{i=1}^{d} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C})
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$ are self-adjoint, $\sum_{i=1}^{d} a_{i}^{2}=1$ and satisfy $a_{i} a_{j}=a_{j} a_{i}, 1 \leq i, j \leq d$. Then the following hold:
(a) T is factorizable.
(b) If $d \geq 3$ and the set $\left\{a_{i} a_{j}: 1 \leq i, j \leq d\right\}$ is linearly independent, then $T \notin \operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right)\right)$.

Schur multipliers

If $B=\left(b_{i j}\right)_{i, j=1}^{n}$ is a positive semi-definite matrix, then the map T : $M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ given by

$$
T x:=\left(b_{i j} x_{i j}\right)_{1 \leq i, j \leq n}, \quad x=\left(x_{i j}\right)_{i, j=1}^{n} \in M_{n}(\mathbb{C})
$$

is called the Schur multiplier associated to the matrix B. Note that T is completely positive. If, moreover,

$$
b_{11}=b_{22}=\ldots=b_{n n}=1,
$$

then $T(1)=1$ and $\tau_{n} \circ T=\tau_{n}$. Hence T is an $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map.

Example 2 (Haagerup-M.): Let $\beta=1 / \sqrt{5}$ and set

$$
B:=\left(\begin{array}{cccccc}
1 & \beta & \beta & \beta & \beta & \beta \\
\beta & 1 & \beta & -\beta & -\beta & -\beta \\
\beta & \beta & 1 & \beta & -\beta & -\beta \\
\beta & -\beta & \beta & 1 & \beta & -\beta \\
\beta & -\beta & -\beta & \beta & 1 & \beta \\
\beta & \beta & -\beta & -\beta & \beta & 1
\end{array}\right) .
$$

We can show that the associated Schur multiplier T_{B} satisfies the hypotheses of Corollary 2 , hence T_{B} is a factorizable Markov map on $M_{6}(\mathbb{C})$, but

$$
T_{B} \notin \operatorname{conv}\left(\operatorname{Aut}\left(M_{6}(\mathbb{C})\right)\right) .
$$

Example 3 (Haagerup-M.): Let $0<s<1$ and set

$$
B(s):=\left(\begin{array}{cccc}
1 & \sqrt{s} & \sqrt{s} & \sqrt{s} \\
\sqrt{s} & s & s & s \\
\sqrt{s} & s & s & s \\
\sqrt{s} & s & s & s
\end{array}\right)+(1-s)\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & \omega & \bar{\omega} \\
0 & \bar{\omega} & 1 & \omega \\
0 & \omega & \bar{\omega} & 1
\end{array}\right)
$$

where $\omega=e^{i 2 \pi / 3}=-1 / 2+i \sqrt{3} / 2$ and $\bar{\omega}$ is its complex conjugate. Then $B(s)$ is positive semi-definite matrix of rank 2 . Moreover,

$$
T_{B(s)}(x)=\sum_{i=1}^{2} a_{i}(s)^{*} x a_{i}(s), \quad x \in M_{4}(\mathbb{C}),
$$

where $a_{1}(s)=\operatorname{diag}(1, \sqrt{s}, \sqrt{s}, \sqrt{s}), a_{2}(s)=\sqrt{1-s} \operatorname{diag}(0,1, \omega, \bar{\omega})$. The set $\left\{a_{i}^{*} a_{j}: i, j=1,2\right\}$ is linearly independent, hence $T_{B(s)}$ is not factorizable, by Corollary 1 .

Furthermore, set

$$
L=\left.\frac{d B(s)}{d s}\right|_{s=1}=\frac{1}{2}\left(\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & 3-i \sqrt{3} & 3+i \sqrt{3} \\
1 & 3+i \sqrt{3} & 0 & 3-i \sqrt{3} \\
1 & 3-i \sqrt{3} & 3+i \sqrt{3} & 0
\end{array}\right) .
$$

Then

$$
N(t):=\left(e^{-L_{i j} t}\right)_{1 \leq i, j \leq 4}, \quad t \geq 0
$$

is a semigroup of positive definite matrices having 1 on the diagonal. Hence

$$
T(t):=T_{N(t)}, \quad t \geq 0
$$

is a semigroup of Schur multipliers which are $\left(M_{4}(\mathbb{C}), \tau_{4}\right)$-Markov maps.

For $t>0, N(t)$ has rank 4 , and therefore Corollary 1 cannot be applied. Using a different method we can obtain from Theorem 1 that there exists $t_{0}>0$ such that $T(t)$ is not factorizable, for any $0<t<t_{0}$.

Remarks:

(1) Eric Ricard proved in 2007 that if a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map T is a Schur multiplier $T=T_{B}$ associated to a matrix B having real entries, then T is always factorizable.
(2) By a result of Kümmerer and Maassen (1987), it follows that if

$$
T(t):=e^{-L t}, \quad t \geq 0
$$

is a one-parameter semigroup of $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov maps satisfying

$$
T(t)^{*}=T(t), \quad t \geq 0,
$$

then

$$
T(t) \in \operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right)\right), \quad t \geq 0 .
$$

In particular, $T(t)$ is factorizable, for all $t \geq 0$.

On the connection between Anantharaman-Delaroche's work and Kümmerer's work (Communicated by Claus Koestler, May 2008)

Definition (Kümmerer, JFA 1985):
Let (M, ϕ) be a von Neumann algebra with a normal, faithful state ϕ. A ϕ-Markov map $T: M \rightarrow M$ has a dilation if there exists

- (N, ψ) von Neumann algebra with a normal faithful state ψ
- $i: M \rightarrow N(\phi, \psi)$-Markov $*$-monomorphism
- $\alpha \in \operatorname{Aut}(N, \psi)$
such that

$$
T^{n}=i^{*} \circ \alpha^{n} \circ i, \quad n \geq 1 .
$$

Combining results from Anantharaman-Delaroche (2004) with results from Kümmerer's unpublished Habilitationsschrift (1986), one gets the following

Theorem (Anantharaman-Delaroche, $2004+$ Kümmerer, 1986):
Let $T: M \rightarrow M$ be a ϕ-Markov map. The following are equivalent:
(1) T is factorizable.
(2) T has a dilation.

In his Habilitationsschrift (1986), Kümmerer constructs examples of τ_{n}-Markov maps on $M_{n}(\mathbb{C})$ having no dilation. His examples are similar to our examples 1 and 3, but he does not consider the one-parameter semigroup case.

Proposition (Kümmerer, 1986, cf. Cor. 3.4.5 and Prop. 3.5.5):
(1) Let $T: M_{3}(\mathbb{C}) \rightarrow M_{3}(\mathbb{C})$ be the τ_{3}-Markov map

$$
T x:=\sum_{i=1}^{3} a_{i}^{*} x a_{i}, \quad x \in M_{3}(\mathbb{C})
$$

where

$$
\begin{gathered}
a_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad a_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
a_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Then T has no dilation.
(2) Let $n \geq 4$ and $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be the τ_{n}-Markov map

$$
T x:=\sum_{i=1}^{2} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C})
$$

where
$a_{1}=\operatorname{diag}\left(1, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, \ldots, 0\right), a_{2}=\operatorname{diag}\left(0, \frac{1}{\sqrt{2}}, \frac{i}{\sqrt{2}}, 1, \ldots, 1\right)$.
Then T is a Schur multiplier which has no dilation.

The noncommutative Rota dilation property

Definition (Junge, Le Merdy, Xu, 2006):
Let (M, τ) be a (finite) von Neumann algebra with a normal, faithful tracial state τ. A τ-Markov map $T: M \rightarrow M$ has the Rota dilation property if there exists

- N von Neumann algebra with a normal faithful tracial state τ_{N}
- $\left(N_{n}\right)_{n \geq 1}$ decreasing sequence of von Neumann subalgebras of N
- $i: M \hookrightarrow N$ trace-preserving embedding
such that

$$
T^{n}=i^{*} \circ E_{N_{n}} \circ i, \quad n \geq 1
$$

where $E_{N_{n}}$ is the trace-preserving conditional expect. of N onto N_{n}.

Remark: If $T: M \rightarrow M$ has the Rota dilation property, then T is factorizable. The converse is not necessarily true, as shown by following example:

Let $T: M_{2}(\mathbb{C}) \rightarrow M_{2}(\mathbb{C})$ given by

$$
T\left(x=\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)\right)=\left(\begin{array}{cc}
x_{11} & -x_{12} \\
-x_{21} & x_{22}
\end{array}\right), \quad x \in M_{2}(\mathbb{C})
$$

Then $T \in \operatorname{Aut}\left(M_{2}(\mathbb{C})\right)$, and hence it is factorizable, but T does not have the Rota dilation property, since it is not positive (as an operator on $\left.L_{2}\left(M_{2}(\mathbb{C}), \tau_{2}\right)\right)$.

Theorem (Anantharaman-Delaroche, 2004, cf. E. Ricard, 2007):
If $T: M \rightarrow M$ is a factorizable Markov map and $T^{*}=T$, then T^{2} has the Rota dilation property.

Remark: If M is abelian, then any Markov map $T: M \rightarrow M$ is automatically factorizable. If, moreover, $T=T^{*}$, then the Rota dilation for T^{2} in the above theorem can be chosen such that N is abelian. This is the classical Rota dilation theorem.

Theorem 2 (Haagerup-M.):
For some large $n \in \mathbb{N}$, there exists a Markov map T on $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$ such that $T^{*}=T$, but T^{2} is not factorizable. In particular, T^{2} does not have the Rota dilation property.

Key Lemma: Let $n, d \in \mathbb{N}$ with $d \geq 5$ and set

$$
T x:=\sum_{i=1}^{n} a_{i}^{*} x a_{i}, \quad x \in M_{n}(\mathbb{C})
$$

where $a_{1}, \ldots, a_{d} \in M_{n}(\mathbb{C})$ satisfy:
(1) $a_{i}=a_{i}^{*}, 1 \leq i \leq d$
(2) $\sum_{i=1}^{d} a_{i}^{2}=1$
(3) $a_{i}^{2} a_{j}=a_{j} a_{i}^{2}, 1 \leq i, j \leq d$
(4) $A:=\left\{a_{i} a_{j}: 1 \leq i, j \leq d\right\}$ is linearly independent
(5) $B:=\cup_{i=1}^{6} B_{i}$ is linearly independent, where
$B_{1}:=\left\{a_{i} a_{j} a_{k} a_{l}: i \neq j \neq k \neq l\right\}, B_{2}:=\left\{a_{i} a_{j} a_{k}^{2}: i \neq j \neq k \neq k\right\}$, $B_{3}:=\left\{a_{i}^{3} a_{j}: i \neq j\right\}, B_{4}:=\left\{a_{i} a_{j}^{3}: i \neq j\right\}, B_{5}:=\left\{a_{i}^{2} a_{j}^{2}: i<j\right\}$, $B_{6}:=\left\{a_{i}^{4}: 1 \leq i \leq d\right\}$.
Then T is a $\left(M_{n}(\mathbb{C}), \tau_{n}\right)$-Markov map, but T^{2} is not factorizable. In particular, T^{2} does not have the Rota dilation property.

Remark: Operators a_{1}, \ldots, a_{d} satisfying conditions (1) - (5) can be realized in

$$
L_{\infty}\left(S^{d-1}\right) \bar{\otimes} L\left(\mathbb{Z}_{2} * \ldots * \mathbb{Z}_{2}\right),
$$

namely as

$$
a_{i}=b_{i} \otimes u_{i}, \quad 1 \leq i \leq d
$$

where b_{1}, \ldots, b_{d} are the coordinate functions on S^{d-1} (the unit sphere in $\left.\mathbb{R}^{d}\right)$ and $u_{1}, \ldots, u_{d} \in L\left(\mathbb{Z}_{2} * \ldots * \mathbb{Z}_{2}\right)$ are the self-adjoint unitaries corresponding to the generators g_{1}, \ldots, g_{d} of $\mathbb{Z}_{2} * \ldots * \mathbb{Z}_{2}$. Using the fact that this group is residually finite, it is possible to get examples of $n \times n$ matrices a_{1}, \ldots, a_{d} satisfying (1) - (5) for large values of n.

Theorem 2 (Haagerup-M.):

Let M be a finite von Neumann algebra with normal faithful tracial state τ, and let $S: M \rightarrow M$ be a τ-Markov map on M. Then the following are equivalent:
(1) S has the Rota dilation property
(2) S has a Rota dilation of order 1
(3) $S=T^{*} T$, where $T: M \rightarrow N$ is a factorizable $\left(\tau, \tau_{N}\right)$-Markov map, for some von Neumann algebra N with a normal faithful tracial state τ_{N}.

Further results

Recall the noncommutative little Grothendieck inequality (cb-version):

Theorem (Pisier-Shlyakhtenko, 2002, Haagerup-M, 2008):
Let A be a C^{*}-algebra. If $T: A \rightarrow O H(I)$ is a completely bounded linear map, then there exist states f_{1}, f_{2} on A such that

$$
\|T(x)\| \leq \sqrt{2}\|T\|_{\mathrm{cb}} f_{1}\left(x x^{*}\right)^{1 / 4} f_{2}\left(x^{*} x\right)^{1 / 4}, \quad x \in A .
$$

Problem: What is the best constant C_{0} in the inequality

$$
\begin{equation*}
\|T(x)\| \leq C\|T\|_{\text {cb }} f_{1}\left(x x^{*}\right)^{1 / 4} f_{2}\left(x^{*} x\right)^{1 / 4}, \quad x \in A . \tag{2}
\end{equation*}
$$

for all choices of A and T.

Note: $1 \leq C_{0} \leq \sqrt{2}$.

Theorem 4 (Haagerup-M): $C_{0}>1$.
More precisely,
(1) There exists $T: M_{3}(\mathbb{C}) \rightarrow O H(\{1,2,3\})$ such that (2) does not hold with $C=1$, for any choice of states f_{1}, f_{2}.
(2) There exists $T: l_{\infty}\{1,2,3,4\} \rightarrow O H(\{1,2\})$ such that (2) does not hold with $C=1$, for any choice of states f_{1}, f_{2}.

On the asymptotic quantum Birkhoff conjecture

Classical Birkhoff theorem (Birkhoff, 1946):

Every doubly stochastic matrix is a convex combination of permutation matrices.

Consider the abelian von Neumann algebra $D:=l_{\infty}(\{1,2, \ldots, n\})$ with trace given by $\tau(\{i\})=1 / n, 1 \leq i \leq n$. The positive unital trace-preserving maps on D are the linear operators on D which are given by doubly stochastic $n \times n$ matrices. Note that every automorphism of D is given by a permutation of $\{1,2, \ldots, n\}$.

The quantum Birkhoff conjecture:

Does every completely positive unital trace-preserving map

$$
T:\left(M_{n}(\mathbb{C}), \tau_{n}\right) \rightarrow\left(M_{n}(\mathbb{C}), \tau_{n}\right), \quad n \geq 1
$$

lie in $\operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right)\right.$?
This turns out to be false for $n \geq 3$ (see, e.g, Example 1), and it was first shown by Landau-Streater (1993).

The asymptotic quantum Birkhoff conjecture:

Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a τ_{n}-Markov map, $n \geq 1$. Then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d_{\mathrm{cb}}\left(\bigotimes_{i=1}^{k} T, \operatorname{conv}\left(\operatorname{Aut}\left(\bigotimes_{i=1}^{k} M_{n}(\mathbb{C})\right)\right)\right)=0 \tag{3}
\end{equation*}
$$

Theorem 5 (Haagerup-M):

Let $T: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C})$ be a τ_{n}-Markov map, $n \geq 1$. Then

$$
d_{\mathrm{cb}}\left(\bigotimes_{i=1}^{k} T, \operatorname{conv}\left(\operatorname{Aut}\left(\bigotimes_{i=1}^{k} M_{n}(\mathbb{C})\right)\right)\right) \geq d_{\mathrm{cb}}\left(T, \mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C})\right)\right)
$$

Hence, if T is not factorizable, then (3) does not hold. Therefore the asymptotic quantum Birkhoff conjecture is not true.

Proof: It suffices to prove that given $m, n \geq 1$, then for any τ_{n} Markov map T on $M_{n}(\mathbb{C})$ and any τ_{m}-Markov map S on $M_{m}(\mathbb{C})$,
$d_{\mathrm{cb}}\left(T \otimes S, \operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right) \otimes M_{m}(\mathbb{C})\right)\right) \geq d_{\mathrm{cb}}\left(T, \mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C})\right)\right)$.
Let $i: M_{n}(\mathbb{C}) \rightarrow M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})$ be given by

$$
i(x):=x \otimes 1, \quad x \in M_{n}(\mathbb{C}) .
$$

It is easily checked that

$$
i^{*}(T \otimes S) i=T
$$

where i^{*} is the adjoint of i. Since $\|i\|_{\mathrm{cb}}=\left\|i^{*}\right\|_{\mathrm{cb}}=1$, we get

$$
\begin{align*}
& d_{\mathrm{cb}}\left(T \otimes S, \operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right) \otimes M_{m}(\mathbb{C})\right)\right) \geq \tag{4}\\
& \quad d_{\mathrm{cb}}\left(T, i^{*} \operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right) \otimes M_{m}(\mathbb{C})\right) i\right) .
\end{align*}
$$

Since for every $u \in \mathcal{U}\left(M_{n}(\mathbb{C}) \otimes M_{m}(\mathbb{C})\right)$, the map $i^{*} \circ \operatorname{ad}(u) \circ i$ is factorizable, and $\mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C})\right.$) is a convex set, we deduce that

$$
i^{*} \operatorname{conv}\left(\operatorname{Aut}\left(M_{n}(\mathbb{C})\right) \otimes M_{m}(\mathbb{C})\right) i \subset \mathcal{F} \mathcal{M}\left(M_{n}(\mathbb{C})\right),
$$

which together with (4) completes the proof.

