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Can one distinguish the type of a von Neumann algebra factor

by the cb-isomorphism class of its predual?



Let M and N be von Neumann algebras. A linear map ¢: M, — N,
is ¢b if and only if its adjoint ¢*: NV — M is cb, and in this case,

19" b = [|Dllen-

In particular, if M, g N, , then clearly M SN

b
Problem: What about the converse statement, i.e., if M ~ N , does
b
it follow that M, ~ N.?

In general, this is not true. For a simple counterexample, note that
b
L>>([0, 1]) = I*(N),

however, their preduals L([0,1]) and I}(N), respectively, are not even
Banach space isomorphic. Indeed, [;(N) has a (unique, up to equiva-
lence) unconditional basis, namely, the unit vector basis, while it was
proved by Pelczynski that L([0, 1]) is not isomorphic to a subspace of
a space with an unconditional basis.

Theorem (Christensen, Sinclair 1989):

Let M and N be infinite dimensional injective factors with separable
preduals. Then

b
MZ=N.
i.e., there is ¢: M — N linear bijection, so that ||¢||e||¢ e, < oo.

Theorem (Kirchberg 1993):
Let A and B be simple, separable, nuclear, non-type I C*-algebras.

Then A fczb B.



Remark: Injectivity is preserved under cb-isomorphisms, i.e., if M is

b o
injective and M ~ N , then AV is injective, as well.

Theorem (Haagerup, Rosenthal, Sukochev 2003):

Let M be a IIj-factor and NV a Il -factor with separable preduals M,
and N, respectively. Then M, and N, are not isomorphic as Banach
spaces. In particular,

M, %N,

Proof: It is shown that the space of trace-class op. S1: = (B(H))s
does not Banach space embed into the predual of any finite von Neu-
mann algebra. Therefore,

St M, .
On the other hand, since N is a Il -factor, then
N >~ NQB(H).

This implies that S; does Banach space embed into N, . Indeed, by
general theory of (von Neumann algebras) tensor products, there is a
normal conditional expectation onto

E:NQBH)— 1ly&B(H) ~B(H).
Hence the predual maps yields an embedding
E,: (B(H)).— NRB(H)), =~ N,,

that is, S; < N, , and the conclusion follows. [



Theorem (Pisier 2004 + Junge 2006):

Let M be a semifinite von Neumann algebra, and let R, be the unique
injective type I11;-factor (with separable predual). Then

cb
(Roo)s 7 M.
cb
In particular, (R )« 22 M,

Proof: The key tool is Pisier’s operator Hilbert space OH .
Pisier (2004) showed that

cb
OH #» M.,
while Junge (2006) proved that

OH S (Ry),. O



Connes’ classification of injective factors

Type Model
L, M,(C)
loc B(I*(N))
[T, R= é(MQ((C),TQ) Murray-von Neumann, 1940
Il R®B(I*(N)) Connes, 1976
I11 Krieger factors L>(€), i) x Z , classified by non-transitive
ergodic flows (uncountably many).
Connes and Krieger, 1976
I11, Powers factors (unique one for each \):
0< A<

00 A
R = @000, o) = (7 1))
n=1 1+A
Connes, 1976

I

Unique one: the Araki-Woods factor

Ry~ R\®R,,, 2¢Q.

Connes and Haagerup, 1986-87




Main Theorem (Haagerup, M. 2007):

(1) Let M and N be hyperfinite factors with separable preduals M,
and N, respectively. If M is semifinite and N is type III, then

M, % N,

(2) The predual N, of a hyperfinite type ITI-factor (on a separable
Hilbert space) is cb-isomorphic to (Ru)s, if and only if there ex-
ists an invariant normal state on the flow of weights for N.

(3) There exists a one-parameter family (M;)o<i<o of type 1y hyper-
finite factors (on separable Hilbert spaces) with mutually non-cb-
isomorphic preduals.

Remark: Asa corollary of (2) (cf. also Haagerup, Rosenthal, Sukochev
2003), it follows that for all 0 < A < 1,

(Ra)s = (Ra), .



Ingredients in the proof of Main Theorem

Lemma A (Pelezynski): Let X | Y be Banach spaces such that
1) X ~Y @ F, for some Banach space F

2) Y ~ X @ F, for some Banach space E

XX XandY Y DY
Then X ~ Y.

Proof: X~ X X~YPYPFPF~~YPFpF~XF.
Therefore, X ~Y S F >~ XPLEPF > XPFOoE~~XPE~Y .

Note: Pelczynski’s lemma holds for operator spaces and cb-isomorphisms.

Lemma: If M is a properly infinite von Neumann algebra, then

MMM, M, DM, = M,.

Proof: There exist isometries uy ,uy € M such that wjui and usub
are orthogonal projections with sum equal to 1.

Define ¢p: M — M & M by
o(x): = (ujr,usx), x €M
and v: M & M — M by
V(z,y): =wr+uy, T,yEM.
Then o) = Idpaam and Yo = Idy,. Both ¢ and ¢ are completely
bounded, hence M & M < M . Also, since both ¢ and 1) are normal,
WegetM*@M*gM*. []



Proposition:

Let M and N be properly infinite injective von Neumann algebras
with separable preduals M, and N, . TFAE:

(1) M, 2 N,
(2) Idpy, cb-factors through N, and Idy; cb-factors through M., .

(3) Idp cb-factors through N and Idy cb-factors through M, such
that all four cb-maps involved are normal.

(4) There exist von Neumann algebra embeddings i: M <— AN and
j: N < M, and normal conditional expectations

E-N —=iM), F:M—=jN).

Remark: The requirement (hence restriction) that M and N be
injective in the statement of Proposition is due to our method of proof.
The equivalences (1) < (2) < (3) follow from Pelezynski’s trick and
duality, while (3) < (4) uses Stinespring-type decompositions.



Lemma B (Stinespring-Kasparov-type decomposition):

Let M and N be von Neumann algebras with separable preduals.
Assume that N is properly infinite. If

a: M= N

is a normal completely positive map, then there exists 7: M — N

normal unital *-representation and V' € N such that

alz)=Vr(x)V, xe M.

Lemma C (Stinespring-Paulsen-type decomposition):

Let M and N be von Neumann algebras with separable preduals.
Assume that N is properly infinite and injective. If

B:M—=N

is a normal completely bounded map, then there exists m7: M — N

normal unital *-representation and R, S € N such that
pB(x) = Rr(x)S, xeM
and || R[|[|S]| = [|B]]eb -



Proof of (1) in Main Theorem:

Let M, N be hyperfinite factors with separable preduals M, and N, ,
where M is semifinite and N is type III.

We prove that M, and N, are not cb-isomorphic. Assume by contra-
diction that .
M, = N..

Note that A is properly infinite.

If M is properly infinite, then by (1) < (4) in the Proposition, there
exists a von Neumann algebra embedding

i N — M
and a normal conditional expectation

[t was proved by Tomiyama (1959) (see also Sakai (1957)), that if M is
semifinite and A is of type III, no such normal conditional expectation
exists. Hence the conclusion follows.

If M is not properly infinite, one can use the same argument on

M®B(I*(N)) , instead. O
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The flow of weights of a type IlI-factor
( Connes-Takesaki, 1977)

Let M be a type Ill-factor with separable predual M, . Let ¢y be a
normal, faithful state on M . Set

N: =M X o R.
Generators of N: © € M, (A(t))ser -

~

Dual action (0y)ser on N

~

Os(x) = =z, xeM
0(\(t) = e*'A(t), teR.

Let Z(N) denote the center of N and set
0, :53!2(/\/), seR.

Then (6s)ser is an ergodic action of R on Z(N).

(Z(N), (0s)ser) is called the flow of weights for M. Tt is independent
of the choice of the state ¢.

Remark: Since Z(N) ~ L>®(Q, u), for some standard Borel measure
space (€, 1), the flow 8: = (6;)ser can be realized as

(s f)(x) = flos'x), feLXQu),z€Q,

for a one-parameter family (flow) (oy)ser of Borel transformations of
(), which preserve the measure class [u] of p .

11



M is type Il < (Z(N), (05)ser) is a non-transitive ergodic flow

(@ is not concentrated on a single orbit)

Z(N) =~ L®(R/(—log \)Z),

fs = translation by s

M is type 111, < {

O< A<l

Z(N) ~Cl1

0, = trivial action.

M is type IlII; < {

Theorem (Connes-Krieger 1976): The map
M = (Z(N), (QS)SGR)

is a bijection of the set of (isomorphism classes of) injective type 11l
factors onto the set of (isomorphism classes of ) non-transitive ergodic
flows on standard measure spaces.

Proof of (2) in Main Theorem:
Let M be a hyperfinite type III-factor. We prove that

cb

M = (Rao)s

if and only if there exists a normal invariant state 5 on the flow of

~

weights for M (i.e., po O, = ¢, for all s € R).

12



Proof of 7=":
It M., < (Roo)s , then by (1) = (4) in the Proposition,

ROOZMOQM7

where M) is the range of a normal conditional expectation £ on M.
Moreover, since M is of type III, E can be chosen to be faithful.

Choose a normal faithful state ¢ on M and set
Y =¢ok.
By Takesaki’s duality for crossed products we obtain an embedding
M: =Mix R & Mx_,R=: N,
and E extends naturally to a normal faithful conditional expectation
E: N — No ,
which intertwines the two dual actions, i.e.,
ggoE:Eogs, seR.
Moreover, E(Z(N)) C Z(Nj).

Since M ~ Ry is type Il , it follows that Z(Ny) = C1 and the
action 07| s € R is trivial. Hence

~ ~

E(x)=¢(x)l, z€ ZN)

for a f-invariant normal state ¢ on Z (N).

13



Proof of 7<” :
For ¢, 1 € Spor(M) , one writes ¢ ~ 1) if and only if

inf T—||=0.
Lt uu’ — v

More generally, for k,1 € Nand ¢ € Syor(Mp(M)), ¥ € Spor(Mi(M)) |
we write ¢ ~ 1 if and only if

inf uou® — || =0,
o T =

UGU(Mlk

where U (M, (M)) is the set of [ x k matrices u over M, for which
u'u = Ly, vy and wu® = 1y -

As an application of the main result of [Haagerup, Stgrmer 1990], we
show that there exists a normal invariant state on the flow of weights

for M if and only if 3¢ € Sy (M) such that for all n € N,

) 0
1
b~ 7

n

. € Snor(Mp(M)).
0 ¢
This can be used to construct an embedding i: R, — M with a nor-

mal faithful conditional expectation E: M — i(Ry).

Since M®R, ~ R, , there exists also an embedding j: M <— R
with a normal faithful conditional expectation F': Ry — j(M).

By (4) = (1) in Proposition, we then conclude that

cb

M, 2 (Ry), . O
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Remark: The relation ~ is an equivalence relation on Sy (M), and
thus Sper(M)/~ becomes a metric space with

d . = inf =
(0. ): = it ugu” ~
Theorem (Connes, Haagerup, Stgrmer 1983):
If M is a factor of type III,, where 0 < A <1, then
1— VA
1+VA

diameter (Spor(M)/~) = 2

Therefore the diameter of Syor(M)/~ determines uniquely the param-
eter A\ for a type III factor.
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Proof of (3) in Main Theorem:

Lemma D:

Let M7 and M be hyperfinite type IlI-factors with separable predu-
als. Let (Z(N7),0W), (Z(N3),0P) be their flow of weights. If

(M), 2 (M),
then there exist normal unital positive maps
R: Z(N1) = Z(N>), S: Z(N2) = Z(M)
intertwining the actions 8 and 8@ | ie., for all s € R,

RobW=02oR, SofP=0Vog.

S S

Lemma E:

For each 0 <t < 2, there exists a non-transitive ergodic flow

(Ata (3@)8@1&)
with separable predual (A;), such that for all w € Spo(Ay),
1w =t.

lim ||jwo by —w
n—oo
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We now prove (3) in Main Theorem, based on Lemmas D and E:

Let (M})p<t<2 be the hyperfinite 111, factors with flow of weights equal
to (A, (99) scR), Tespectively, as given by Lemma E.

We prove that if £; # 9, then

cb

(Mtl)* ;é <Mt2)*'

. b
Assume by contradiction that (M, ), ~ (My,).. By Lemma D, there
exist normal, positive, unital maps R: Ay, — Ay, and S: A, — Ay
which are 811 | respectively, 82)-intertwiners, i.e.,

2 o R, seR
2 — oS, seR.
Since ||.S|| < 1, it follows from Lemma E that for all w € Spe(Ay),

ty = lim |[(woS)od¥ — (wo )

n—oo

= lim ||(wo 9;11) —w)o S

n—o0

< lim Hwo@é@l) — w|
n—o0

= 11.

Similarly, t1 < ts. Hence t; = to, which gives a contradiction. [
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Proof of Lemma E:

(A, (9,(;)) ser) 1s obtained by building a flow under the constant ceiling
function ¢(x) = 1:
For t € [0,2) write

t=2—4da, ac(0,1/2].

Set
(Qv Na)z — ({07 1}00 3 ®ZO:1V@) 3
where
Ve: = ady+ (1 —a)dy.

Let g be the dyadic odometer transformation (= dyadic adding ma-
chine) on €2, namely,

For x = (x1, 29, x3,...) € Q2 ={0,1}* put
90,29, 23,...) = (1,29,23,...)
9(1,0,23,...) = (0,1, x3,...)
g(l,l,...,1,0,$n+1,...) = (0707---707175571—1—17-'-)
g(1,1,1,...) = (0,0,0,...)

Then g is an ergodic transformation on (€2, ) -

Define

~

Q=0 x[0,1), fig:= pe X dm,

where dm is the Lebesgue measure on [0, 1).
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The flow (s)ser on (2, f,) built from (g, €, x) under the constant
ceiling function ¢(x) = 1 is given by

Gol,y): = (g"w,r), (w,y) €,
wheren: =[s—t|€Zandr: =s—t—[s—1t] €][0,1).

Now let N
Atﬁ = LOO(Q , /ja)

and
09F)(z): = (fog o )(z), feA,zeQx0,1).
Then (A, (9§t>)seR) satisfies the condition in Lemma E, namely,

lim Hw O 6;1) — CUH = t, Vw e Snor(At) L]

n—oo
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