Classification of hyperfinite factors up to completely bounded isomorphism of their preduals

Magdalena Musat University of Copenhagen

Copenhagen, January 28, 2010

Can one distinguish the type of a von Neumann algebra factor by the cb-isomorphism class of its predual? Let \mathcal{M} and \mathcal{N} be von Neumann algebras. A linear map $\phi \colon \mathcal{M}_* \to \mathcal{N}_*$ is cb if and only if its adjoint $\phi^* \colon \mathcal{N} \to \mathcal{M}$ is cb, and in this case,

$$\|\phi^*\|_{\rm cb} = \|\phi\|_{\rm cb}.$$

In particular, if $\mathcal{M}_* \stackrel{cb}{\simeq} \mathcal{N}_*$, then clearly $\mathcal{M} \stackrel{cb}{\simeq} \mathcal{N}$.

Problem: What about the converse statement, i.e., if $\mathcal{M} \stackrel{cb}{\simeq} \mathcal{N}$, does it follow that $\mathcal{M}_* \stackrel{cb}{\simeq} \mathcal{N}_*$?

In general, this is not true. For a simple counterexample, note that

$$L^{\infty}([0,1]) \stackrel{cb}{\simeq} l^{\infty}(\mathbb{N}),$$

however, their preduals $L^1([0, 1])$ and $l^1(\mathbb{N})$, respectively, are <u>not</u> even Banach space isomorphic. Indeed, $l_1(\mathbb{N})$ has a (unique, up to equivalence) unconditional basis, namely, the unit vector basis, while it was proved by Pelczynski that $L^1([0, 1])$ is not isomorphic to a subspace of a space with an unconditional basis.

Theorem (Christensen, Sinclair 1989):

Let \mathcal{M} and \mathcal{N} be infinite dimensional *injective* factors with separable preduals. Then

$$\mathcal{M} \stackrel{cb}{\simeq} \mathcal{N}.$$

i.e., there is $\phi \colon \mathcal{M} \to \mathcal{N}$ linear bijection, so that $\|\phi\|_{cb} \|\phi^{-1}\|_{cb} < \infty$.

Theorem (Kirchberg 1993):

Let \mathcal{A} and \mathcal{B} be simple, separable, nuclear, non-type I C^{*}-algebras. Then $\mathcal{A} \stackrel{cb}{\simeq} \mathcal{B}$. **Remark**: Injectivity is preserved under cb-isomorphisms, i.e., if \mathcal{M} is injective and $\mathcal{M} \stackrel{cb}{\simeq} \mathcal{N}$, then \mathcal{N} is injective, as well.

Theorem (Haagerup, Rosenthal, Sukochev 2003):

Let \mathcal{M} be a II₁-factor and \mathcal{N} a II_{∞}-factor with separable preduals \mathcal{M}_* and \mathcal{N}_* , respectively. Then \mathcal{M}_* and \mathcal{N}_* are not isomorphic as Banach spaces. In particular,

$$\mathcal{M}_{*} \stackrel{cb}{\not\simeq} \mathcal{N}_{*}$$
 .

Proof: It is shown that the space of trace-class op. S_1 : = $(\mathcal{B}(H))_*$ <u>does not</u> Banach space embed into the predual of any <u>finite</u> von Neumann algebra. Therefore,

$$S_1 \not\hookrightarrow \mathcal{M}_*$$
.

On the other hand, since \mathcal{N} is a II_{∞} -factor, then

$$\mathcal{N} \simeq \mathcal{N} \bar{\otimes} \mathcal{B}(H).$$

This implies that S_1 does Banach space embed into \mathcal{N}_* . Indeed, by general theory of (von Neumann algebras) tensor products, there is a normal conditional expectation onto

$$E: \mathcal{N} \bar{\otimes} \mathcal{B}(H) \to 1_{\mathcal{N}} \bar{\otimes} \mathcal{B}(H) \simeq \mathcal{B}(H).$$

Hence the predual maps yields an embedding

$$E_*: (\mathcal{B}(H))_* \hookrightarrow (\mathcal{N} \bar{\otimes} \mathcal{B}(H))_* \simeq \mathcal{N}_*,$$

that is, $S_1 \hookrightarrow \mathcal{N}_*$, and the conclusion follows.

Theorem (Pisier 2004 + Junge 2006):

Let \mathcal{M} be a semifinite von Neumann algebra, and let R_{∞} be the unique injective type III₁-factor (with separable predual). Then

$$(R_{\infty})_* \stackrel{\mathrm{cb}}{\nleftrightarrow} \mathcal{M}_*.$$

In particular, $(R_{\infty})_* \stackrel{\mathrm{cb}}{\simeq} \mathcal{M}_*.$

Proof: The key tool is Pisier's operator Hilbert space OH. Pisier (2004) showed that

$$OH \not\hookrightarrow^{\mathrm{cb}} \mathcal{M}_*,$$

while Junge (2006) proved that

$$OH \stackrel{\mathrm{cb}}{\hookrightarrow} (R_{\infty})_*.$$

Type	Model
I _n	$M_n(\mathbb{C})$
I_{∞}	$\mathcal{B}(l^2(\mathbb{N}))$
II ₁	$R = \bigotimes_{n=1}^{\infty} (M_2(\mathbb{C}), \tau_2)$ Murray-von Neumann, 1940
II_{∞}	$R \bar{\otimes} \mathcal{B}(l^2(\mathbb{N}))$ Connes, 1976
III_0	Krieger factors $L^{\infty}(\Omega, \mu) \rtimes \mathbb{Z}$, classified by non-transitive
	ergodic flows (uncountably many).
	Connes and Krieger, 1976
III_{λ}	Powers factors (unique one for each λ):
$0 < \lambda < 1$	$ \begin{array}{ c c } R_{\lambda} = \bigotimes_{n=1}^{\infty} (M_2(\mathbb{C}), \phi_{\lambda}), & \phi_{\lambda}(x) = \operatorname{Tr} \left(\left(\begin{array}{cc} \frac{\lambda}{1+\lambda} & 0\\ 0 & \frac{1}{1+\lambda} \end{array} \right) x \right). \\ \textbf{Connes, 1976} \end{array} $
III_1	Unique one: the Araki-Woods factor
	$ R_{\infty} \simeq R_{\lambda_1} \bar{\otimes} R_{\lambda_2}, \frac{\log \lambda_1}{\log \lambda_2} \notin \mathbb{Q}.$
	Connes and Haagerup, 1986-87

Connes' classification of injective factors

Main Theorem (Haagerup, M. 2007):

(1) Let \mathcal{M} and \mathcal{N} be hyperfinite factors with separable preduals \mathcal{M}_* and \mathcal{N}_* , respectively. If \mathcal{M} is semifinite and \mathcal{N} is type III, then

$$\mathcal{M}_* \not\simeq ^{\mathrm{cb}} \mathcal{N}_*$$
 .

- (2) The predual \mathcal{N}_* of a hyperfinite type III-factor (on a separable Hilbert space) is cb-isomorphic to $(R_{\infty})_*$, if and only if there exists an invariant normal state on the *flow of weights* for \mathcal{N} .
- (3) There exists a one-parameter family $(\mathcal{M}_t)_{0 \leq t < 2}$ of type III₀ hyperfinite factors (on separable Hilbert spaces) with mutually non-cbisomorphic preduals.

Remark: As a corollary of (2) (cf. also Haagerup, Rosenthal, Sukochev 2003), it follows that for all $0 < \lambda < 1$,

$$(R_{\lambda})_* \stackrel{\mathrm{cb}}{\simeq} (R_{\infty})_*$$

Ingredients in the proof of Main Theorem

Lemma A (Pelczynski): Let X, Y be Banach spaces such that 1) $X \simeq Y \oplus F$, for some Banach space F

2) $Y \simeq X \oplus E$, for some Banach space E

3) $X \simeq X \oplus X$ and $Y \simeq Y \oplus Y$

Then $X \simeq Y$.

Proof: $X \simeq X \oplus X \simeq Y \oplus Y \oplus F \oplus F \simeq Y \oplus F \oplus F \simeq X \oplus F$. Therefore, $X \simeq Y \oplus F \simeq X \oplus E \oplus F \simeq X \oplus F \oplus E \simeq X \oplus E \simeq Y$.

Note: Pelczynski's lemma holds for operator spaces and cb-isomorphisms.

Lemma: If \mathcal{M} is a properly infinite von Neumann algebra, then

 $\mathcal{M} \oplus \mathcal{M} \stackrel{\mathrm{cb}}{\simeq} \mathcal{M}, \quad \mathcal{M}_* \oplus \mathcal{M}_* \stackrel{\mathrm{cb}}{\simeq} \mathcal{M}_*.$

Proof: There exist isometries $u_1, u_2 \in \mathcal{M}$ such that $u_1 u_1^*$ and $u_2 u_2^*$ are orthogonal projections with sum equal to 1. Define $\phi \colon \mathcal{M} \to \mathcal{M} \oplus \mathcal{M}$ by

$$\phi(x) \colon = (u_1^* x, u_2^* x), \quad x \in \mathcal{M}$$

and $\psi \colon \mathcal{M} \oplus \mathcal{M} \to \mathcal{M}$ by

$$\psi(x,y)$$
: $= u_1 x + u_2 y$, $x, y \in \mathcal{M}$.

Then $\phi \circ \psi = \operatorname{Id}_{\mathcal{M} \oplus \mathcal{M}}$ and $\psi \circ \phi = \operatorname{Id}_{\mathcal{M}}$. Both ϕ and ψ are completely bounded, hence $\mathcal{M} \oplus \mathcal{M} \stackrel{\operatorname{cb}}{\simeq} \mathcal{M}$. Also, since both ϕ and ψ are normal, we get $\mathcal{M}_* \oplus M_* \stackrel{\operatorname{cb}}{\simeq} \mathcal{M}_*$.

Proposition:

Let \mathcal{M} and \mathcal{N} be *properly infinite injective* von Neumann algebras with separable preduals \mathcal{M}_* and \mathcal{N}_* . TFAE:

(1)
$$\mathcal{M}_* \stackrel{\mathrm{cb}}{\simeq} \mathcal{N}_*$$
.

- (2) $\mathrm{Id}_{\mathcal{M}_*}$ cb-factors through \mathcal{N}_* and $\mathrm{Id}_{\mathcal{N}_*}$ cb-factors through \mathcal{M}_* .
- (3) $\mathrm{Id}_{\mathcal{M}}$ cb-factors through \mathcal{N} and $\mathrm{Id}_{\mathcal{N}}$ cb-factors through \mathcal{M} , such that all four cb-maps involved are normal.
- (4) There exist von Neumann algebra embeddings $i: \mathcal{M} \hookrightarrow \mathcal{N}$ and $j: \mathcal{N} \hookrightarrow \mathcal{M}$, and normal conditional expectations

$$E: \mathcal{N} \to i(\mathcal{M}), \quad F: \mathcal{M} \to j(\mathcal{N}).$$

Remark: The requirement (hence restriction) that \mathcal{M} and \mathcal{N} be injective in the statement of Proposition is due to our method of proof. The equivalences (1) \Leftrightarrow (2) \Leftrightarrow (3) follow from Pelczynski's trick and duality, while (3) \Leftrightarrow (4) uses Stinespring-type decompositions.

Lemma B (Stinespring-Kasparov-type decomposition):

Let \mathcal{M} and \mathcal{N} be von Neumann algebras with separable preduals. Assume that \mathcal{N} is properly infinite. If

$$\alpha\colon \mathcal{M}\to \mathcal{N}$$

is a normal completely positive map, then there exists $\pi \colon \mathcal{M} \to \mathcal{N}$ normal unital *-representation and $V \in \mathcal{N}$ such that

$$\alpha(x) = V^* \pi(x) V, \quad x \in \mathcal{M}.$$

Lemma C (Stinespring-Paulsen-type decomposition):

Let \mathcal{M} and \mathcal{N} be von Neumann algebras with separable preduals. Assume that \mathcal{N} is properly infinite and injective. If

$$\beta \colon \mathcal{M} \to \mathcal{N}$$

is a normal completely bounded map, then there exists $\pi \colon \mathcal{M} \to \mathcal{N}$ normal unital *-representation and $R, S \in \mathcal{N}$ such that

$$\beta(x) = R\pi(x)S, \quad x \in \mathcal{M}$$

and $||R|| ||S|| = ||\beta||_{cb}$.

Proof of (1) in Main Theorem:

Let \mathcal{M} , \mathcal{N} be hyperfinite factors with separable preduals \mathcal{M}_* and \mathcal{N}_* , where \mathcal{M} is semifinite and \mathcal{N} is type III.

We prove that \mathcal{M}_* and \mathcal{N}_* are <u>not</u> cb-isomorphic. Assume by contradiction that

$$\mathcal{M}_* \stackrel{\mathrm{cb}}{\simeq} \mathcal{N}_*$$

Note that \mathcal{N} is properly infinite.

If \mathcal{M} is properly infinite, then by (1) \Leftrightarrow (4) in the Proposition, there exists a von Neumann algebra embedding

$$i \colon \mathcal{N} \hookrightarrow \mathcal{M}$$

and a normal conditional expectation

$$E\colon \mathcal{M}\to i(\mathcal{N})$$
.

It was proved by Tomiyama (1959) (see also Sakai (1957)), that if \mathcal{M} is semifinite and \mathcal{N} is of type III, no such normal conditional expectation exists. Hence the conclusion follows.

If \mathcal{M} is not properly infinite, one can use the same argument on $\mathcal{M} \bar{\otimes} \mathcal{B}(l^2(\mathbb{N}))$, instead.

The flow of weights of a type III-factor

(Connes-Takesaki, 1977)

Let \mathcal{M} be a type III-factor with separable predual \mathcal{M}_* . Let ϕ_0 be a normal, faithful state on \mathcal{M} . Set

$$\mathcal{N}: = \mathcal{M} \rtimes_{\sigma^{\phi_0}} \mathbb{R}$$
 .

Generators of \mathcal{N} : $x \in \mathcal{M}$, $(\lambda(t))_{t \in \mathbb{R}}$.

Dual action $(\widetilde{\theta}_s)_{s\in\mathbb{R}}$ on \mathcal{N} :

$$\begin{aligned} \theta_s(x) &= x, \quad x \in \mathcal{M} \\ \widetilde{\theta}_s(\lambda(t)) &= e^{ist}\lambda(t), \quad t \in \mathbb{R}. \end{aligned}$$

Let $Z(\mathcal{N})$ denote the center of \mathcal{N} and set

$$\theta_s: = \widetilde{\theta}_s|_{Z(\mathcal{N})}, \quad s \in \mathbb{R}.$$

Then $(\theta_s)_{s\in\mathbb{R}}$ is an ergodic action of \mathbb{R} on $Z(\mathcal{N})$.

 $(Z(\mathcal{N}), (\theta_s)_{s \in \mathbb{R}})$ is called *the flow of weights* for \mathcal{M} . It is independent of the choice of the state ϕ_0 .

Remark: Since $Z(\mathcal{N}) \simeq L^{\infty}(\Omega, \mu)$, for some standard Borel measure space (Ω, μ) , the flow $\theta := (\theta_s)_{s \in \mathbb{R}}$ can be realized as

$$(\theta_s f)(x) = f(\sigma_s^{-1}x), \quad f \in L^{\infty}(\Omega, \mu), x \in \Omega,$$

for a one-parameter family (flow) $(\sigma_s)_{s \in \mathbb{R}}$ of Borel transformations of Ω , which preserve the measure class $[\mu]$ of μ .

 \mathcal{M} is type III₀ \Leftrightarrow $(Z(\mathcal{N}), (\theta_s)_{s \in \mathbb{R}})$ is a <u>non-transitive</u> ergodic flow (μ is not concentrated on a single orbit)

$$\mathcal{M} \text{ is type III}_{\lambda} \iff \begin{cases} Z(\mathcal{N}) \simeq L^{\infty}(\mathbb{R}/(-\log \lambda)\mathbb{Z}), \\ \theta_s = \text{ translation by } s \\ 0 < \lambda < 1 \end{cases}$$

$$\mathcal{M}$$
 is type III₁ $\Leftrightarrow \begin{cases} Z(\mathcal{N}) \simeq \mathbb{C}1\\ \theta_s = \text{trivial action} \end{cases}$

Theorem (Connes-Krieger 1976): The map

$$\mathcal{M} \mapsto (Z(\mathcal{N}), (\theta_s)_{s \in \mathbb{R}})$$

is a bijection of the set of (isomorphism classes of) injective type III_0 factors <u>onto</u> the set of (isomorphism classes of) non-transitive ergodic flows on standard measure spaces.

Proof of (2) **in Main Theorem**:

Let \mathcal{M} be a hyperfinite type III-factor. We prove that

$$\mathcal{M}_* \stackrel{\mathrm{cb}}{\simeq} (R_\infty)_*$$

if and only if there exists a normal *invariant* state ϕ on the flow of weights for \mathcal{M} (i.e., $\phi \circ \theta_s = \phi$, for all $s \in \mathbb{R}$).

Proof of " \Rightarrow ": If $\mathcal{M}_* \stackrel{cb}{\simeq} (R_{\infty})_*$, then by (1) \Rightarrow (4) in the Proposition,

$$R_{\infty}\simeq \mathcal{M}_0\subseteq \mathcal{M}$$
,

where \mathcal{M}_0 is the range of a normal conditional expectation E on \mathcal{M} . Moreover, since \mathcal{M} is of type III, E can be chosen to be faithful.

Choose a normal faithful state ϕ on \mathcal{M}_0 and set

$$\psi := \phi \circ E \,.$$

By Takesaki's duality for crossed products we obtain an embedding

$$\mathcal{N}_0: = \mathcal{M}_0 \rtimes_{\sigma^{\phi}} \mathbb{R} \hookrightarrow \mathcal{M} \rtimes_{\sigma^{\psi}} \mathbb{R} =: \mathcal{N},$$

and E extends naturally to a normal faithful conditional expectation

$$\widetilde{E}\colon \mathcal{N}\to \mathcal{N}_0$$
,

which intertwines the two dual actions, i.e.,

$$\widetilde{ heta}_s^0 \circ \widetilde{E} = \widetilde{E} \circ \widetilde{ heta}_s \,, \quad s \in \mathbb{R} \,.$$

Moreover, $\widetilde{E}(Z(\mathcal{N})) \subseteq Z(\mathcal{N}_0)$.

Since $\mathcal{M}_0 \simeq R_\infty$ is type III₁, it follows that $Z(\mathcal{N}_0) = \mathbb{C}1$ and the action θ_s^0 , $s \in \mathbb{R}$ is trivial. Hence

$$\widetilde{E}(x) = \widetilde{\phi}(x)1, \quad x \in Z(\mathcal{N})$$

for a θ_s -invariant normal state ϕ on $Z(\mathcal{N})$.

Proof of " \Leftarrow " :

For $\phi, \psi \in S_{\text{nor}}(\mathcal{M})$, one writes $\phi \sim \psi$ if and only if

$$\inf_{u \in \mathcal{U}(\mathcal{M})} \| u \phi u^* - \psi \| = 0.$$

More generally, for $k, l \in \mathbb{N}$ and $\phi \in S_{nor}(M_k(\mathcal{M})), \psi \in S_{nor}(M_l(\mathcal{M}))$, we write $\phi \sim \psi$ if and only if

$$\inf_{u \in \mathcal{U}(M_{lk}(\mathcal{M}))} \|u\phi u^* - \psi\| = 0,$$

where $\mathcal{U}(M_{lk}(\mathcal{M}))$ is the set of $l \times k$ matrices u over \mathcal{M} , for which $u^*u = 1_{M_k(\mathcal{M})}$ and $uu^* = 1_{M_l(\mathcal{M})}$.

As an application of the main result of [Haagerup, Størmer 1990], we show that there exists a normal invariant state on the flow of weights for \mathcal{M} if and only if $\exists \phi \in S_{nor}(\mathcal{M})$ such that for all $n \in \mathbb{N}$,

$$\phi \sim \frac{1}{n} \begin{pmatrix} \phi & 0 \\ \phi & \\ & \ddots & \\ 0 & & \phi \end{pmatrix} \in S_{\operatorname{nor}}(M_n(\mathcal{M})).$$

This can be used to construct an embedding $i: R_{\infty} \hookrightarrow \mathcal{M}$ with a normal faithful conditional expectation $E: \mathcal{M} \to i(R_{\infty})$.

Since $\mathcal{M} \bar{\otimes} R_{\infty} \simeq R_{\infty}$, there exists also an embedding $j \colon \mathcal{M} \hookrightarrow R_{\infty}$ with a normal faithful conditional expectation $F \colon R_{\infty} \to j(\mathcal{M})$.

By $(4) \Rightarrow (1)$ in Proposition, we then conclude that

$$\mathcal{M}_* \stackrel{\mathrm{cb}}{\simeq} (R_\infty)_* \,.$$

Remark: The relation \sim is an equivalence relation on $S_{\text{nor}}(\mathcal{M})$, and thus $S_{\text{nor}}(\mathcal{M})/\sim$ becomes a metric space with

$$d([\phi], [\psi]): = \inf_{u \in \mathcal{U}(\mathcal{M})} \|u\phi u^* - \psi\|.$$

Theorem (Connes, Haagerup, Størmer 1983): If \mathcal{M} is a factor of type III_{λ} , where $0 \leq \lambda \leq 1$, then diameter $(S_{nor}(\mathcal{M})/\sim) = 2\frac{1-\sqrt{\lambda}}{1+\sqrt{\lambda}}$.

Therefore the diameter of $S_{nor}(\mathcal{M})/\sim$ determines uniquely the parameter λ for a type III factor.

Proof of (3) **in Main Theorem**:

Lemma D:

Let \mathcal{M}_1 and \mathcal{M}_2 be hyperfinite type III-factors with separable preduals. Let $(Z(\mathcal{N}_1), \theta^{(1)}), (Z(\mathcal{N}_2), \theta^{(2)})$ be their flow of weights. If

$$(\mathcal{M}_1)_* \stackrel{\mathrm{cb}}{\simeq} (\mathcal{M}_2)_*,$$

then there exist normal unital positive maps

$$R: Z(\mathcal{N}_1) \to Z(\mathcal{N}_2), \qquad S: Z(\mathcal{N}_2) \to Z(\mathcal{N}_1)$$

intertwining the actions $\theta^{(1)}$ and $\theta^{(2)}$, i.e., for all $s \in \mathbb{R}$,

$$R\circ\theta_s^{(1)}=\theta_s^{(2)}\circ R\,,\quad S\circ\theta_s^{(2)}=\theta_s^{(1)}\circ S$$

Lemma E:

For each $0 \le t < 2$, there exists a non-transitive ergodic flow

 $(A_t, (\theta_s^{(t)})_{s \in \mathbb{R}})$

with separable predual $(A_t)_*$ such that for all $\omega \in S_{nor}(A_t)$,

$$\lim_{n \to \infty} \|\omega \circ \theta_{2^n}^{(t)} - \omega\| = t.$$

We now prove (3) in Main Theorem, based on Lemmas D and E:

Let $(\mathcal{M}_t)_{0 \leq t < 2}$ be the hyperfinite III₀ factors with flow of weights equal to $(A_t, (\theta_s^{(t)})_{s \in \mathbb{R}})$, respectively, as given by Lemma E.

We prove that if $t_1 \neq t_2$, then

$$(\mathcal{M}_{t_1})_* \stackrel{\mathrm{cb}}{\simeq} (\mathcal{M}_{t_2})_*.$$

Assume by contradiction that $(\mathcal{M}_{t_1})_* \stackrel{\mathrm{cb}}{\simeq} (\mathcal{M}_{t_2})_*$. By Lemma D, there exist normal, positive, unital maps $R: A_{t_1} \to A_{t_2}$ and $S: A_{t_2} \to A_{t_1}$ which are $\theta^{(t_1)}$, respectively, $\theta^{(t_2)}$ -intertwiners, i.e.,

$$R \circ \theta_s^{(t_1)} = \theta_s^{(t_2)} \circ R, \quad s \in \mathbb{R}$$
$$S \circ \theta_s^{(t_2)} = \theta_s^{(t_1)} \circ S, \quad s \in \mathbb{R}.$$

Since $||S|| \leq 1$, it follows from Lemma E that for all $\omega \in S_{nor}(A_{t_1})$,

$$t_{2} = \lim_{n \to \infty} \|(\omega \circ S) \circ \theta_{2^{n}}^{(t_{2})} - (\omega \circ S)\|$$
$$= \lim_{n \to \infty} \|(\omega \circ \theta_{2^{n}}^{(t_{1})} - \omega) \circ S\|$$
$$\leq \lim_{n \to \infty} \|\omega \circ \theta_{2^{n}}^{(t_{1})} - \omega\|$$
$$= t_{1}.$$

Similarly, $t_1 \leq t_2$. Hence $t_1 = t_2$, which gives a contradiction.

Proof of Lemma E:

 $(A_t, (\theta_s^{(t)})_{s \in \mathbb{R}})$ is obtained by building a flow under the constant ceiling function $\phi(x) = 1$:

For $t \in [0, 2)$ write

$$t = 2 - 4a$$
, $a \in (0, 1/2]$.

 Set

$$(\Omega,\mu_a):=(\{0,1\}^{\infty},\otimes_{n=1}^{\infty}\nu_a),$$

where

$$\nu_a:=a\delta_0+(1-a)\delta_1.$$

Let g be the dyadic odometer transformation (= dyadic adding machine) on Ω , namely,

For
$$x = (x_1, x_2, x_3, \dots) \in \Omega = \{0, 1\}^{\infty}$$
 put

$$g(0, x_2, x_3, \dots) = (1, x_2, x_3, \dots)$$

$$g(1, 0, x_3, \dots) = (0, 1, x_3, \dots)$$

$$\vdots$$

$$g(1, 1, \dots, 1, 0, x_{n+1}, \dots) = (0, 0, \dots, 0, 1, x_{n+1}, \dots)$$

$$g(1, 1, 1, \dots) = (0, 0, 0, \dots)$$

Then g is an ergodic transformation on (Ω, μ_a) .

Define

$$\widetilde{\Omega} := \Omega \times \left[0,1 \right), \quad \widetilde{\mu}_a := \mu_a \times dm \,,$$

where dm is the Lebesgue measure on [0, 1).

The flow $(\widetilde{g}_s)_{s\in\mathbb{R}}$ on $(\widetilde{\Omega}, \widetilde{\mu}_a)$ built from (g, Ω, μ) under the constant ceiling function $\phi(x) = 1$ is given by

$$\widetilde{g}_s(x,y)$$
: = $(g^n x, r)$, $(x,y) \in \widetilde{\Omega}$,

where $n: = [s - t] \in \mathbb{Z}$ and $r: = s - t - [s - t] \in [0, 1)$.

Now let

$$A_t := L^{\infty}(\widetilde{\Omega}, \widetilde{\mu}_a)$$

and

$$(\theta_s^{(t)}f)(z)$$
: = $(f \circ \widetilde{g}_{-s})(z)$, $f \in A_t, z \in \Omega \times [0, 1)$.

Then $(A_t, (\theta_s^{(t)})_{s \in \mathbb{R}})$ satisfies the condition in Lemma E, namely,

$$\lim_{n \to \infty} \|\omega \circ \theta_{2^n}^{(t)} - \omega\| = t, \quad \forall \, \omega \in S_{\text{nor}}(A_t) \qquad \Box$$