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In 1956 Grothendieck published the celebrated ”Résumé de la théorie

métrique des produits tensoriels topologiques”, containing a general

theory of tensor norms on tensor products of Banach spaces, describ-

ing several operations to generate new norms from known ones, and

studying the duality theory between these norms.

The highlight of the paper, now referred to as ”The Résumé” is a re-

sult that Grothendieck called ”The fundamental theorem on the metric

theory of tensor products”, now called ”Grothendieck’s theorem”.

Theorem (Grothendieck 1956):

Let K1 and K2 be compact spaces. Let u : C(K1) × C(K2) → K
be a bounded bilinear form, where K = R or C . Then there exist

probability measures µ1 and µ2 on K1 and K2 , respectively, such that

|u(f, g)| ≤ KK
G∥u∥

(∫
K1

|f |2 dµ1

)1/2(∫
K2

|g|2 dµ2

)1/2

for all f ∈ C(K1) and g ∈ C(K2) , where K
K
G is a universal constant.

Remarks about Grothendieck’s constant KK
G :

• 1
2K

R
G ≤ KC

G ≤ 2KR
G .

• π
2 ≤ KR

G ≤ π
2 log(1+

√
2)
= 1.782...

The left-hand side is due to Grothendieck. The right-hand side is

due to Krivine (1977).
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• 4
π ≤ KC

G < 1.40491 .

The left-hand side is due to Grothendieck. The right-hand side is

due to Haagerup (1987), who proved, more precisely, that

KC
G ≤ 8

π(k0 + 1)
< 1.40491 ,

where k0 is the unique solution in the interval [0, 1] of the equation

ϕ(k) =
1

8
π(k + 1) ,

where ϕ(k) := k
π/2∫
0

cos2 t√
1−k2 sin2 t

dt , defined for −1 ≤ k ≤ 1 .

The previously known upper bound was obtained by Pisier in 1976,

KC
G ≤ e1−γ ≈ 1.52621 ,

where γ is Euler’s constant γ := lim
n→∞

(1 + 1
2 + . . . + 1

n − log n) .
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Little Grothendieck Inequality:

Let T : C(K) → H be a bounded linear operator, where K is a

compact space andH is a Hilbert space. Then there exists a probability

measure µ on K such that

∥T (f)∥ ≤
√

KK
G ∥T∥

(∫
K

|f |2 dµ
)1/2

, f ∈ C(K) .

Proof: Define u : C(K)× C(K) → C by

u(f, g) : = ⟨Tf, T ḡ⟩H , f , g ∈ C(K) .

Then u is a bounded bilinear form, satisfying ∥u∥ ≤ ∥T∥2 . By

Grothendieck’s theorem there exist probability measures µ1 and µ2

on K such that for all f , g ∈ C(K) ,

|u(f, g)| ≤ KK
G∥u∥

(∫
K

|f |2 dµ1

)1/2(∫
K

|g|2 dµ2

)1/2

.

Set µ := 1
2(µ1 + µ2) . Then, for all f ∈ C(K) ,

∥Tf∥2 = u(f, f̄) ≤ KK
G∥u∥

(∫
K

|f |2 dµ1

)1/2(∫
K

|f |2 dµ2

)1/2

≤ KK
G∥u∥

∫
K

|f |2 dµ

≤ KK
G∥T∥2

∫
K

|f |2 dµ . �

The best constants in the Little Grothendieck Inequality are known,

namely,
√
4/π (in the complex case) and

√
π/2 (in the real case).
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Theorem:

Any bounded linear operator T : C(K1) → C(K2)
∗ factors through a

Hilbert space H ,

C(K1)
T //

R ##G
GGGGGGGG

C(K2)
∗

H
S

::uuuuuuuuu

such that ∥R∥∥S∥ ≤ KK
G∥T∥ .

Proof: Follows from Grothendieck’s theorem applied to the bilinear

form u : C(K1)× C(K2) → C defined by

u(f, g) : = (Tf )(g) , f ∈ C(K1) , g ∈ C(K2) . �

Remark: Grothendieck’s theorem holds in the more general setting of

locally compact topological spaces. As an interesting application, one

can deduce the (known) fact that the Fourier transform F : L1(R) →
C0(R) is not onto.
Indeed, suppose by contradiction that F were onto. Recall that F is a

bounded linear operator, since ∥F(f)∥C0(R) ≤ ∥f∥L1(R) , f ∈ L1(R) .
Moreover, F is one-to-one (by the Riemann-Lebesgue Lemma).

C0(R)

R %%KKKKKKKKKKK

F−1
//L1(R) j //C(K)∗

H
S

99rrrrrrrrrrr

L1(R) ∼= j(L1(R)) = S(R(C0(R))) ∼= R(C0(R)) ⊆ H .
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The Résumé ends with a list of 6 problems that are linked together

and revolve around the following questions:

• When does a bounded linear operator u : X → Y (X , Y Banach

spaces) factor through a Hilbert space?

• For which Banach spaces X and Y does this happen for all such

operators u ?

The fourth problem in the Résumé was the C∗-algebraic version of

Grothendieck’s theorem, as conjectured by Grothendieck himself.

Conjecture (Grothendieck):

Let A be a C∗-algebra and u : A × A → C a bounded bilinear form.

Then there exist f , g ∈ S(A) such that for all a , b ∈ A ,

|u(a, b)| ≤ k∥u∥f(|a|2)1/2g(|b|2)1/2,

where |x| :=
(
(x∗x + xx∗)/2

)1/2

, all x ∈ A , k a universal constant.

Grothendieck Inequality (Haagerup 1985) (extension of Pisier’s

result from 1978):

Let A and B be C∗-algebras and let u : A × B → C be a bounded

bilinear form. There exist f1 , f2 ∈ S(A) and g1 , g2 ∈ S(B) such that

|u(a, b)| ≤ ∥u∥
(
f1(aa

∗) + f2(a
∗a)

)1/2(
g1(b

∗b) + g2(bb
∗)
)1/2

,

for all a ∈ A and b ∈ B .
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Corollary (Haagerup 1985):

Any bounded linear operator T : A → B∗ , where A and B are C∗-

algebras, factors through a Hilbert space H ,

A
T //

R   A
AA

AA
AA

B∗

H
S

=={{{{{{{{

such that ∥R∥∥S∥ ≤ 2∥T∥ .

Little Grothendieck’s Inequality (Haagerup 1985):

Let A be a C∗-algebra and H a Hilbert space. If T : A → H is a

bounded linear operator, then there exist f1 , f2 ∈ S(A) such that

∥Ta∥ ≤ ∥T∥
(
f1(a

∗a) + f2(aa
∗)
)1/2

, a ∈ A .
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Let A and B be C∗-algebras and u : A × B → C a bounded bilinear

form. There exists a unique bounded linear operator ũ : A → B∗ such

that for all a ∈ A , b ∈ B ,

u(a, b) = (ũ(a))(b) .

The bilinear form u is called jointly completely bounded (j.c.b., for

short) if ũ : A → B∗ is completely bounded, in which case we set

∥u∥jcb : = ∥ũ∥cb .

Remark: It is easily checked that

∥u∥jcb = sup
n∈N

∥un∥ ,

where un : Mn(A)⊗Mn(B) → Mn(C)⊗Mn(C) , n ∈ N, is given by

un

 k∑
i=1

ai ⊗ ci ,

l∑
j=1

bj ⊗ dj

 : =

k∑
i=1

l∑
j=1

u(ai, bj)ci ⊗ dj ,

for all ai ∈ A , bj ∈ B , ci , dj ∈ Mn(C) , k , l ∈ N .

Moreover, for all C∗-algebras C and D , and all ai ∈ A , bj ∈ B ,

ci ∈ C , dj ∈ D , k , l ∈ N , one has∥∥∥∥∥∥
k∑

i=1

l∑
j=1

u(ai , bj)ci ⊗ dj

∥∥∥∥∥∥
C⊗minD

≤

∥u∥jcb

∥∥∥∥∥
k∑

i=1

ai ⊗ ci

∥∥∥∥∥
A⊗minC

∥∥∥∥∥∥
l∑

j=1

bj ⊗ dj

∥∥∥∥∥∥
B⊗minD

.
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Conjecture (Effros-Ruan 1991):

Let A and B be C∗-algebras and let u : A × B → C be a jointly

completely bounded bilinear form. Then there exist f1 , f2 ∈ S(A)

and g1 , g2 ∈ S(B) such that for all a ∈ A and b ∈ B ,

|u(a, b)| ≤ K∥u∥jcb
(
f1(aa

∗)1/2g1(b
∗b)1/2 + f2(a

∗a)1/2g2(bb
∗)1/2

)
(1)

where K is a universal constant.

Theorem (Pisier-Shlyakhtenko, Invent. Math. 2002):

Let E ⊆ A and F ⊆ B be exact operator spaces sitting in C∗-algebras

A and B . Let u : E × F → C be a j.c.b. bilinear form. Then there

exist f1 , f2 ∈ S(A) and g1 , g2 ∈ S(B) such that the inequality (1)

holds for all a ∈ E and b ∈ F with K = 2
√
2 ex(E)ex(F ) .

Theorem (Pisier-Shlyakhtenko, Invent. Math. 2002):

If either A or B is an exact C∗-algebra and u : A×B → C is a j.c.b.

bilinear form, then there exist f1 , f2 ∈ S(A) and g1 , g2 ∈ S(B) such

that the inequality (1) holds for all a ∈ A and b ∈ B with K = 2
√
2 .

Recall that an operator space E is called exact if there is C ≥ 1 such

that for every finite dimensional subspace F ⊆ E , there exists n ∈ N
and a subspace G ⊆ Mn(C) with dcb(F,G) ≤ C . The infimum of all

such constants C is denoted by ex(E) .

Theorem (Kirchberg, Pisier): A C∗-algebra is exact if and only if it

is exact as an operator space. For any exact C∗-algebra A , ex(A) = 1.
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Theorem (Haagerup-M., Invent. Math. 2008)

The Effros-Ruan conjecture holds for arbitrary C∗-algebras A and B

with K = 1 , and this is the best possible constant.

Corollary A:

Let A and B be C∗-algebras. Any completely bounded linear map

T : A → B∗ admits a factorization through Hr ⊕Kc , where H and

K are Hilbert spaces,

A
T //

R %%JJJJJJJJJJ B∗

Hr ⊕Kc

S

99ssssssssss

satisfying ∥R∥cb∥S∥cb ≤ 2∥T∥cb .

Corollary B:

Let A be a C∗-algebra. If T : A → OH is a completely bounded linear

map, then there exist f1 , f2 ∈ S(A) such that for all a ∈ A ,

∥T (a)∥ ≤
√
2∥T∥cbf1(aa∗)1/4f2(a∗a)1/4 .

(Only an improvement of constant in the corresponding result by Pisier-

Shlyakhtenko; they had this with constant 29/4 .)

10



Corollary C:

Let E be an operator space such that E and its dual E∗ embed com-

pletely isomorphically into preduals M∗ and N∗ , respectively, of von

Neumann algebras M and N . Then E is cb-isomorphic to a quotient

of a subspace of Hr ⊕Kc , for some Hilbert spaces H and K .

Corollary D:

Let E be an operator space, and let E ⊆ A and E∗ ⊆ B be com-

pletely isometric embeddings into C∗-algebras A and B such that both

subspaces are cb-complemented. Then E is cb-isomorphic to Hr⊕Kc ,

for some Hilbert spaces H and K .

(These are non-commutative analogues of the classical isomorphic char-

acterization of a Hilbert space: If X is a Banach space such that both

X and its dual X∗ embed into L1-spaces, then X is isomorphic to a

Hilbert space. Corollaries C and D above are obtained by adjusting

the proof of the corresponding results by Pisier-Shlyakhtenko.)

Corollary E:

Let A0 , A , B0 and B be C∗-algebras such that A0 ⊆ A and B0 ⊆ B .

Then any j.c.b. bilinear form u0 : A0 × B0 → C extends to a bilinear

form u : A×B → C such that

∥u∥jcb ≤ 2∥u0∥jcb .
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Let E ⊆ A and F ⊆ B be operator spaces sitting in C∗-algebras A ,B.

Given u : E×F → C a bounded bilinear form, let ∥u∥ER ∈ [0,∞] be

the infimum of all constants κ ∈ [0,∞] so that for all a ∈ E , b ∈ F ,

|u(a, b)| ≤ κ
(
f1(aa

∗)1/2g1(b
∗b)1/2 + f2(a

∗a)1/2g2(bb
∗)1/2

)
,

for some f1 , f2 ∈ S(A) , g1 , g2 ∈ S(B) .

Lemma:

If ∥u∥ER < ∞ , then the associated map ũ : E → F ∗ admits a cb-

factorization ũ = vw through Hr ⊕Kc for some Hilbert spaces H and

K , where E
v−→ Hr⊕Kc

w−→ F ∗ , satisfying ∥v∥cb∥w∥cb ≤ 2∥ũ∥ER .

Example:

Let E be an operator space which is not isomorphic to a Hilbert space,

and let u : E × E∗ → C be defined by

u(a, b) : = b(a) , a ∈ E , b ∈ E∗ .

Then ∥u∥jcb = 1 and ∥u∥ER = ∞ .

Proposition:

(i) If u : A×B → C is a bounded bilinear form, then

∥u∥ER ≤ ∥u∥jcb ≤ 2∥u∥ER .

(ii) Let c1 , c2 denote the best constants in the inequalities

c1∥u∥ER ≤ ∥u∥jcb ≤ c2∥u∥ER ,

where A and B are arbitrary C∗-algebras and u : A × B → C is a

bounded bilinear form. Then c1 = 1 and c2 = 2 .
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Some preliminaries on Powers factors and Tomita-Takesaki theory

Let 0 < λ < 1 be fixed, and let (M , ϕ) be the Powers factor of type

IIIλ with product state ϕ , that is,

(M , ϕ) =

∞⊗
n=1

(M2(C) , ωλ) ,

where ϕ =
⊗∞

n=1 ωλ , ωλ( · ) : = Tr(hλ · ) and hλ : =

(
λ

1+λ 0

0 1
1+λ

)
.

The modular automorphism group (σϕ
t )t∈R of ϕ is given by

σϕ
t =

∞⊗
n=1

σ
ωλ
t ,

where for any matrix x = [xij]1≤i,j≤2 ∈ M2(C) and any t ∈ R ,

σ
ωλ
t (x) = hit

λxh
−it
λ =

(
x11 λitx12

λ−itx21 x22

)
.

Therefore σ
ωλ
t and σϕ

t are periodic in t ∈ R with minimal period

t0 : = − 2π

log λ
.

Let Mϕ denote the centralizer of ϕ , that is,

Mϕ : = {x ∈ M : σϕ
t (x) = x , ∀t ∈ R} .
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Theorem (Connes 1973):

The relative commutant of Mϕ in M is trivial, i.e.,

M′
ϕ ∩M = C1 .

Theorem (Haagerup 1989):

For all x ∈ M ,

ϕ(x) · 1 ∈ conv{vxv∗ : v ∈ U(Mϕ)}
∥·∥

,

where U(Mϕ) denotes the unitary group on Mϕ .

Corollary 1 (Strong version of the Dixmier averaging process):

There exists a net {αi}i∈I ⊆ conv{ad(v) : v ∈ U(Mϕ)} such that

lim
i∈I

∥αi(x)− ϕ(x) · 1∥ = 0 , x ∈ M .

We identify M with πϕ(M) , where (πϕ , Hϕ , ξϕ) is the GNS represen-

tation of M associated to the state ϕ . Then

Hϕ : = Mξϕ = L2(M , ϕ) .

By Tomita-Takesaki theory, the operator S0 defined by

S0(xξϕ) : = x∗ξϕ , x ∈ M

is closable. Its closure S : = S0 has a unique polar decomposition

S = J∆1/2 ,

where ∆ is a positive self-adjoint unbounded operator on L2(M , ϕ)

and J is a conjugate-linear involution.
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Moreover, for all t ∈ R ,

σϕ
t (x) = ∆itx∆−it , x ∈ M

and JMJ = M′ , where M′ denotes the commutant of M .

Theorem (Takesaki 1973):

For all n ∈ Z , set

Mn : = {x ∈ M : σϕ
t (x) = λintx , ∀t ∈ R}

= {x ∈ M : ϕ(xy) = λnϕ(yx) , ∀y ∈ M} .
In particular, M0 = Mϕ . Moreover, for all n ∈ Z ,

Mn ̸= {0}
and ∆(η) = λnη , for every η ∈ Mnξϕ . Furthermore,

L2(M , ϕ) =

∞⊕
n=−∞

Mnξϕ .

Corollary 2:

For every n ∈ Z , there exists cn ∈ M such that

ϕ(c∗ncn) = λ−n/2 , ϕ(cnc
∗
n) = λn/2

and, moreover, ⟨cnJcnJξϕ , ξϕ⟩Hϕ
= 1 .

Since M is an injective factor, it follows (cf. Effros-Lance and Connes

1976) that the map c ⊗ d 7→ cd (c ∈ M , d ∈ M′) extends uniquely

to a C∗-algebra isomorphism

C∗(M ,M′) ≃ M⊗min M′ .
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Let A ,B be C∗-algebras, and let

u : A×B → C

be a jointly completely bounded bilinear form.

Lemma 3:

There is a bounded bilinear form û : (A⊗minM)× (B⊗minM′) → C
such that for all a ∈ A , b ∈ B , c ∈ M , d ∈ M′ ,

û(a⊗ c , b⊗ d) : = u(a , b)⟨cdξϕ , ξϕ⟩Hϕ
.

Moreover, ∥û∥ ≤ ∥u∥jcb .

Proof: Consider a1, . . . , ak ∈ A , b1, . . . , bl ∈ B , c1, . . . , ck ∈ M and

d1, . . . , dl ∈ M′ , where k, l ∈ N . Then∣∣∣∣∣∣
k∑

i=1

l∑
j=1

u(ai , bj)⟨cidjξϕ , ξϕ⟩Hϕ

∣∣∣∣∣∣
≤

∥∥∥∥∥∥
k∑

i=1

l∑
j=1

u(ai , bj)cidj

∥∥∥∥∥∥
B(L2(M ,ϕ))

=

∥∥∥∥∥∥
k∑

i=1

l∑
j=1

u(ai , bj)ci ⊗ dj

∥∥∥∥∥∥
M⊗minM′

≤ ∥u∥jcb

∥∥∥∥∥
k∑

i=1

ai ⊗ ci

∥∥∥∥∥
A⊗minM

∥∥∥∥∥∥
l∑

j=1

bj ⊗ dj

∥∥∥∥∥∥
B⊗minM′

.
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Corollary 4:

There exist f̂1 , f̂2 ∈ S(A⊗minM) , ĝ1 , ĝ2 ∈ S(B⊗minM′) such that

|û(x, y)| ≤ ∥u∥jcb
(
f̂1(xx

∗) + f̂2(x
∗x)

)1/2(
ĝ1(y

∗y) + ĝ2(yy
∗)
)1/2

,

for all x ∈ A⊗min M and y ∈ B ⊗min M′ .

Lemma 5:

Let v ∈ U(Mϕ) and set v′ := JvJ ∈ M′ . Then

û
(
(IdA ⊗ ad(v))(x) , (IdB ⊗ ad(v′))(y)

)
= û(x , y) ,

for all x ∈ A⊗min M and y ∈ B ⊗min M′ .

Proposition 6:

There exist f1 , f2 ∈ S(A) , g1 , g2 ∈ S(B) and ϕ′ ∈ S(M′) so that

|û(x, y)| ≤ ∥u∥jcb
[(

(f1 ⊗ ϕ)(xx∗) + (f2 ⊗ ϕ)(x∗x)
)1/2

·

·
(
(g1 ⊗ ϕ′)(y∗y) + (g2 ⊗ ϕ′)(yy∗)

)1/2]
,

for all x ∈ A⊗min M and y ∈ B ⊗min M′ .

Proof: For all α , β ≥ 0 ,
√
αβ ≤ (α + β)/2 . By Corollary 4, it

follows that for all x ∈ A⊗min M and y ∈ B ⊗min M′ ,

|û(x, y)| ≤ 1

2
∥u∥jcb

(
f̂1(xx

∗) + f̂2(x
∗x) + ĝ1(y

∗y) + ĝ2(yy
∗)
)

(2)
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Let v ∈ U(Mϕ) and v′ := JvJ . By Lemma 5 and inequality (2) ,

|û(x, y)| ≤ 1

2
∥u∥jcb

[
f̂1((IdA ⊗ ad(v))(xx∗)) + f̂2((IdA ⊗ ad(v))(x∗x))

+ĝ1((IdB ⊗ ad(v′))(y∗y)) + ĝ2((IdB ⊗ ad(v′))(yy∗))
]
(3)

Choose a net (αi)i∈I ⊆ conv{ad(v) : v ∈ U(Mϕ)} such that

lim
i∈I

∥αi(c)− ϕ(c) · 1∥ = 0 , c ∈ M .

For i ∈ I , set α′
i(d) = Jαi(JdJ)J , for all d ∈ M′ .

By convexity we can replace ad(v) and ad(v′) in the inequality (3) by

αi and α′
i , respectively, to get

|û(x, y)| ≤ 1

2
∥u∥jcb

[
f̂1((IdA ⊗ αi)(xx

∗)) + f̂2((IdA ⊗ αi)(x
∗x)) +

+ĝ1((IdB ⊗ α′
i)(y

∗y)) + ĝ2((IdB ⊗ α′
i)(yy

∗))
]
.

In the limit, this gives the inequality

|û(x, y)| ≤ 1

2
∥u∥jcb

[
(f1 ⊗ ϕ)(xx∗) + (f2 ⊗ ϕ)(x∗x) +

+(g1 ⊗ ϕ′)(y∗y) + (g2 ⊗ ϕ′)(yy∗)
]
, (4)

where fi(a) := f̂i(a⊗ 1) , a ∈ A , gi := ĝi(b⊗ 1) , b ∈ B , for i = 1 , 2

and ϕ′(d) = ϕ(JdJ) , for all d ∈ M′ .

Substituting x by t1/2x and y by t−1/2y in (4) for t > 0 , we get

|û(x, y)| ≤ 1

2
∥u∥jcb

[
t ((f1 ⊗ ϕ)(xx∗) + (f2 ⊗ ϕ)(x∗x)) +

+t−1 ((g1 ⊗ ϕ′)(y∗y) + (g2 ⊗ ϕ′)(yy∗))
]

(5)
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Since for all α , β > 0 ,

inf
t>0

(tα + t−1β) = 2
√

αβ ,

the conclusion follows by taking infimum over t > 0 in (5). �

Lemma 7:

For any α , β ≥ 0 ,

inf
n∈Z

(λnα + λ−nβ) ≤ (λ1/2 + λ−1/2)
√

αβ .

Proof of the Effros-Ruan conjecture:

Let 0 < λ < 1 and let (M , ϕ) be the Powers factor of type IIIλ with

product state ϕ , as before. Set

C(λ) : =
√(

λ1/2 + λ−1/2
)
/2 .

Let u : A×B → C be a jointly completely bounded bilinear form on

C∗-algebras A and B .

Let f1 , f2 ∈ S(A) and g1 , g2 ∈ S(B) be states as in Proposition 6.

We will prove that for all a ∈ A and b ∈ B ,

|u(a, b)| ≤ C(λ)∥u∥jcb
(
f1(aa

∗)
1
2g1(b

∗b)
1
2 + f2(a

∗a)
1
2g2(bb

∗)
1
2

)
(6)

that is, the Effros-Ruan conjecture holds with constant C(λ) . Since

C(λ) → 1 as λ → 1 , by a simple compactness argument it follows

that the conjecture also holds with constant 1.
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To prove (6) , let n ∈ Z and choose cn ∈ M as in Corollary 2. Then

ϕ(c∗ncn) = λ−n/2 , ϕ(cnc
∗
n) = λn/2 (7)

and ⟨cnJcnJξϕ , ξϕ⟩Hϕ
= 1 .

Then, for all a ∈ A and b ∈ B , it follows by Proposition 6 that

|u(a, b)|2 = |û(a⊗ cn , b⊗ JcnJ)|2

≤ ∥u∥2jcb
[(

f1(aa
∗)ϕ(cnc

∗
n) + f2(a

∗a)ϕ(c∗ncn)
)
·

·
(
g1(b

∗b)ϕ(cn
∗cn) + g2(bb

∗)ϕ(cncn
∗)
)]

Using (7), it follows that

|u(a, b)|2 ≤ ∥u∥2jcb
[ (

λn/2f1(aa
∗) + λ−n/2f2(a

∗a)
)
·

·
(
λ−n/2g1(b

∗b) + λn/2g2(bb
∗)
) ]

= ∥u∥2jcb
[
f1(aa

∗)g1(b
∗b) + f2(a

∗a)g2(bb
∗) +

+λnf1(aa
∗)g2(bb

∗) + λ−nf2(a
∗a)g1(b

∗b)
]
.

Since for any α , β ≥ 0 ,

inf
n∈Z

(λnα + λ−nβ) ≤ (λ1/2 + λ−1/2)
√

αβ ,

and we have λ1/2 + λ−1/2 = 2C(λ)2 , we deduce that
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|u(a, b)|2 ≤ ∥u∥2jcb
[
f1(aa

∗)g1(b
∗b) + f2(a

∗a)g2(bb
∗) +

+2C(λ)2f1(a
∗a)

1
2g1(b

∗b)
1
2f2(aa

∗)
1
2g2(bb

∗)
1
2

]
≤ C(λ)2∥u∥2jcb

[
f1(aa

∗)
1
2g1(b

∗b)
1
2 + f2(a

∗a)
1
2g2(bb

∗)
1
2

]2
,

wherein we have used the fact that C(λ) > 1 .

The inequality (6) follows now by taking square roots, and the proof is

complete. �
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