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In 1956 Grothendieck published the celebrated ”Résumé de la théorie
métrique des produits tensoriels topologiques”, containing a general
theory of tensor norms on tensor products of Banach spaces, describ-
ing several operations to generate new norms from known ones, and
studying the duality theory between these norms.

The highlight of the paper, now referred to as "The Résumé” is a re-
sult that Grothendieck called " The fundamental theorem on the metric
theory of tensor products”, now called ” Grothendieck’s theorem” .

Theorem (Grothendieck 1956):

Let K7 and K5 be compact spaces. Let u : C(K;y) x C(Ky) — K
be a bounded bilinear form, where K = R or C. Then there exist
probability measures 1 and s on Kq and Ky, respectively, such that

1/2 1/2
ulf, )| < KE|Jul (/ f!zdm) ( \g\sz)
K Ky

for all f € C(K7) and g € C(K3), where K& is a universal constant.

Remarks about Grothendieck’s constant K 5 :

KX < K§ <2KE.

DN —

The left-hand side is due to Grothendieck. The right-hand side is
due to Krivine (1977).



o 1 < KE < 1.40491.

The left-hand side is due to Grothendieck. The right-hand side is
due to Haagerup (1987), who proved, more precisely, that

8
K& < ———— < 1.40491,

7T(]€0 + 1)
where kg is the unique solution in the interval [0, 1] of the equation
1
/2
where ¢(k) =k f __cos’t dt , defined for —1 < k <1.

vV 1-k2 sin?t
The previously known upper bound was obtained by Pisier in 1976,
K& <e'™ ~1.52621,

where 7y is Euler’s constant v := lim (1 + 3 L+ % —logn).
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Little Grothendieck Inequality:

Let T : C(K) — H be a bounded linear operator, where K is a
compact space and H is a Hilbert space. Then there exists a probability
measure (4 on K such that

1/2
1T < /K5 |7 (/K m%m)  feo).

Proof: Define u : C(K) x C(K) — C by

ulf,9): =T, Tg)u, [.9€CK).
Then u is a bounded bilinear form, satisfying |lul| < ||T]|*. By

Grothendieck’s theorem there exist probability measures @ and o
on K such that for all f,g € C(K),

ulf.o) < Kl ([ !f\Qdu1> ( / \g\Qduz)

Set = %(N1‘|‘M2) Then, for all f € C(K
1/2
2 r K 2 2
ITFI2 = u(f, ) < KE|u ( [ 1n dm) ( [ 1n dm)
KE 2d
< K¥|lul /K 1 dy

< K¥|T)? /K P du. -

The best constants in the Little Grothendieck Inequality are known,
namely, 1/4/7 (in the complex case) and /7/2 (in the real case).
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Theorem:

Any bounded linear operator T : C'(K1) — C(K3)* factors through a
Hilbert space H,

C(Ky) ———C(K,)"

™ 5
H
such that |[R|[||S|| < KE|T]|.

Proof: Follows from Grothendieck’s theorem applied to the bilinear
form u : C(K;) x C(K3) — C defined by

u(f,g): =(Tf)g), [feC(Ki),geC(Ky). H

Remark: Grothendieck’s theorem holds in the more general setting of
locally compact topological spaces. As an interesting application, one
can deduce the (known) fact that the Fourier transform F : LY(R) —
Co(R) is not onto.

Indeed, suppose by contradiction that F were onto. Recall that F is a
bounded linear operator, since | F(f)llcym) < I fllniw), f € L'(R).
Moreover, F is one-to-one (by the Riemann-Lebesgue Lemma).

Co(R) E L(R) - C(K)*

\/

L'(R) = j(L'(R)) = S(R(Cy(R))) = R(CH(R)) € H .



The Résumé ends with a list of 6 problems that are linked together
and revolve around the following questions:

e When does a bounded linear operator u : X — Y (X, Y Banach
spaces) factor through a Hilbert space?

e For which Banach spaces X and Y does this happen for all such
operators u ?

The fourth problem in the Résumé was the C*-algebraic version of
Grothendieck’s theorem, as conjectured by Grothendieck himself.

Conjecture (Grothendieck):

Let A be a C*-algebra and u : A x A — C a bounded bilinear form.
Then there exist f,g € S(A) such that for all a,b € A,

1/2 1/2
[u(a, b)| < Kllull f(al*)"g((b") ",
1/2
where |z| := <(x*a:' + :U:U*)/Z) ;all x € A k a universal constant.

Grothendieck Inequality (Haagerup 1985) (extension of Pisier’s
result from 1978):

Let A and B be C*-algebras and let u : A x B — C be a bounded
bilinear form. There exist f1, fo € S(A) and ¢, go € S(B) such that

1/2

uta,b)] < Jull(Aaa’) + plaa)) (oalo78) + gol00))

foralla € Aand b€ B.



Corollary (Haagerup 1985):

Any bounded linear operator T' : A — B*, where A and B are C*-

algebras, factors through a Hilbert space H

A
H
such that || R||||S]| < 2||T]|.

Little Grothendieck’s Inequality (Haagerup 1985):

Let A be a C*-algebra and H a Hilbert space. If T': A — H is a
bounded linear operator, then there exist f1, fo € S(A) such that

1/2
ITall < IT|(filaa) + folaa’)) ™, a€ A,



Let A and B be C*-algebras and v : A x B — C a bounded bilinear
form. There exists a unique bounded linear operator w : A — B* such
that foralla e A, be B,

u(a,b) = (u(a))(b).
The bilinear form u is called jointly completely bounded (j.c.b., for

short) if w : A — B* is completely bounded, in which case we set

lellien: = llwlen -

Remark: It is easily checked that

[wlljer = sup [lun]|,
neN

where u,, : M,(A) @ M,,(B) — M,(C) ® M,(C), n € N, is given by

k l koo
Uy, Z%@q,ij@dj I:ZZU(ai,bj)Ci@)dj,
i=1 J=1

i=1 j=1

foralla; € A, b; € B, ¢;,dj € M,(C), k,l € N.

Moreover, for all C*-algebras C' and D, and all a; € A, b; € B,
c,eC,djeD,k,l €N, onehas

k [
=1

2

1=1
J C®minD

k
E a; ® C;
1=1

lellsen

l
Z bj & dj
j=1

ABminC’ B®mpyin D



Conjecture (Effros-Ruan 1991):

Let A and B be C*-algebras and let v : A x B — C be a jointly
completely bounded bilinear form. Then there exist f1, fo € S(A)
and g1, g2 € S(B) such that for alla € Aand b € B,

u(a,b)] < Kjullor (filaa’)2g1(65)"2 + fola”a)gu(bb)2) (1)

where K 1s a universal constant.

Theorem (Pisier-Shlyakhtenko, Invent. Math. 2002):

Let E C A and F C B be exact operator spaces sitting in C*-algebras
Aand B. Let u: E x F — C be a j.c.b. bilinear form. Then there
exist f1,fo € S(A) and ¢1,¢92 € S(B) such that the inequality (1)
holds for all a € E and b € F with K = 2v/2ex(E)ex(F).

Theorem (Pisier-Shlyakhtenko, Invent. Math. 2002):

If either A or B is an exact C*-algebra and u: Ax B — Cisaj.c.b.
bilinear form, then there exist fi, fo € S(A) and g1, g, € S(B) such
that the inequality (1) holds for all @ € A and b € B with K = 2v/2.

Recall that an operator space E is called ezxact if there is C' > 1 such
that for every finite dimensional subspace F' C E', there exists n € N

and a subspace G C M,,(C) with du,(F,G) < C'. The infimum of all
such constants C' is denoted by ex(F) .

Theorem (Kirchberg, Pisier): A C*-algebra is exact if and only if it
is exact as an operator space. For any exact C*-algebra A, ex(A) = 1.
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Theorem (Haagerup-M., Invent. Math. 2008)

The Effros-Ruan conjecture holds for arbitrary C*-algebras A and B
with K’ = 1. and this is the best possible constant.

Corollary A:

Let A and B be C*-algebras. Any completely bounded linear map
T : A — B* admits a factorization through H, & K., where H and
K are Hilbert spaces,

satistying || Rl || Sl < 2[T'cs -

Corollary B:

Let A be a C*-algebra. If T': A — OH is a completely bounded linear
map, then there exist f1, fo € S(A) such that for all a € A,

IT(a)|] < V2||T || fr(aa*) " fo(a*a) /"

(Only an improvement of constant in the corresponding result by Pisier-
Shlyakhtenko; they had this with constant 2%/ )
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Corollary C:

Let E be an operator space such that £ and its dual £* embed com-
pletely isomorphically into preduals M, and N, , respectively, of von
Neumann algebras M and N . Then E is cb-isomorphic to a quotient
of a subspace of H, @ K., for some Hilbert spaces H and K .

Corollary D:

Let E be an operator space, and let £ C A and E* C B be com-
pletely isometric embeddings into C*-algebras A and B such that both
subspaces are cb-complemented. Then FE is cb-isomorphic to H, & K.,
for some Hilbert spaces H and K .

(These are non-commutative analogues of the classical isomorphic char-
acterization of a Hilbert space: If X is a Banach space such that both
X and its dual X* embed into Li-spaces, then X is isomorphic to a
Hilbert space. Corollaries C and D above are obtained by adjusting
the proof of the corresponding results by Pisier-Shlyakhtenko.)

Corollary E:

Let Ay, A, By and B be C*-algebras such that A C A and By C B.
Then any j.c.b. bilinear form ug : Ag X By — C extends to a bilinear

form u : A x B — C such that

[Jullen < 2||uol[jen -
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Let £ C A and F' C B be operator spaces sitting in C*-algebras A, B.
Given u : £ x F' — C a bounded bilinear form, let ||u||gr € [0, co] be
the infimum of all constants x € [0, 00] so that for alla € E, b € F,

u(a,1)] < w (filaa”) PoubB)? + fola*a) Pga(8h)?) |
for some f1, f» € S(A), 1,92 € S(B).

Lemma:

If ||u||gr < oo, then the associated map w : £ — F* admits a cb-
factorization u = vw through H, & K, for some Hilbert spaces H and
K, where E — H, @ K, — F*  satisfying ||v||e||w]a < 2||t||er .

Example:

Let E/ be an operator space which is not isomorphic to a Hilbert space,
and let u : £ x E* — C be defined by

u(a,b): =bla), a€ E,be E".

Then ||ul[;er, = 1 and ||u|lgr = 0.

Proposition:
(7) f u: A x B — Cisa bounded bilinear form, then

luller < l[ulljen < 2[|uller -

(27) Let ¢1, co denote the best constants in the inequalities
arlfuller < Jlulljen < cofluller ,

where A and B are arbitrary C*-algebras and u : A x B — Cis a
bounded bilinear form. Then ¢; =1 and ¢p = 2.
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Some preliminaries on Powers factors and Tomita-Takesaki theory

Let 0 < A < 1 be fixed, and let (M, ¢) be the Powers factor of type
[1I, with product state ¢, that is,

0

(M ) Qb) - ®(M2(C) 7w/\) )

n=1
2
where ¢ = &)~ wy, wa(-): =Tr(hy-) and hy: = ( A )
0 3
The modular automorphism group (02ZS )ter Of ¢ is given by
of =@,
n=1

where for any matrix © = [x;;]1<i j<o € M2(C) and any t € R,

, _ it
oM (z) = h&ta:h;” _ ( T A 5512) .

A "o Too

Therefore o, and af are periodic in ¢ € R with minimal period

27

to: = — :
! log A

Let M, denote the centralizer of ¢, that is,
My: ={zeM:0l(z)=x,VteR}.
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Theorem (Connes 1973):

The relative commutant of My in M is trivial, i.e.,

MyNM=C1.
Theorem (Haagerup 1989):

For all x € M,
I

o(x) - 1 € conv{vzv* :v e U(My)}
where U(M ) denotes the unitary group on M, .

Corollary 1 (Strong version of the Dixmier averaging process):

There exists a net {a; }ier C conv{ad(v) : v € U(My)} such that

lim [|os(z) — d(z) - 1| =0, ze€ M.

iel

We identify M with 74(M), where (74, Hy , &) is the GNS represen-
tation of M associated to the state ¢. Then

Hy: = Mg = L*(M,9).
By Tomita-Takesaki theory, the operator Sy defined by

So(:l?f¢): = SL’*€¢, xr e M
is closable. Its closure S: = S; has a unique polar decomposition

S = JAV?,

where A is a positive self-adjoint unbounded operator on L*(M , ¢)

and J is a conjugate-linear involution.
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Moreover, for all t € R,
of(z) = N'azA™ | zeM
and JMJ = M’ , where M’ denotes the commutant of M .

Theorem (Takesaki 1973):
For alln € Z, set
M,: = {zeM:ol(x)=\N"z, VteR}
= {z e M:d(zy) = N'¢(yx), Vy € M}.
In particular, My = M, . Moreover, for all n € Z,

M, # {0}
and A(n) = A", for every n € M, &, . Furthermore,

LM, ¢)= 5 M.& .

n=—oo

Corollary 2:
For every n € Z , there exists ¢, € M such that
d(chen) = A2 dlencs) = N2

and, moreover, (¢, Jc, Sy, ), = 1.

Since M is an injective factor, it follows (cf. Effros-Lance and Connes
1976) that the map c® d — cd (¢ € M ,d € M') extends uniquely
to a C*-algebra isomorphism

C*(./\/l ,MI> ~ M Qunin M.
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Let A, B be C*-algebras, and let
u:Ax B—C

be a jointly completely bounded bilinear form.

Lemma 3:

There is a bounded bilinear form u : (A ®in M) X (B Quin M) — C
such that foralla € A, be B,ce M,d e M,

ula®c,b@d): =ula,b){cdéy,8)n,
Moreover, ||u]| < ||ul|jcb -

Proof: Consider ay,...,ar € A, by,....bb € B, ¢cq,...,c. € M and
dy,...,d; € M, where k,l € N. Then

k [
ZZU a;,b Czd £<zﬁ £<z5>

i=1 j=1

VA
M-
M-
=
£
O

B(L*(M ,9))
kool
= Z Z u(a; ,b;)c; ®d
==l MM’
k l
< ullien || ai @ > bied
i=1 A@upinM || 7=1 B, M

16



Corollary 4:
There exist ﬁ , fg € S(ARun M), g1, € S(B Q@umin M) such that

-~ T * Tk 1/2 A~/ x ~ * 1/2
u(z,y)| < Hqucb(ﬁ(m )+ fo(w x)) (91(y y) + 92(yy )) ,
forall z € A @min M and y € B Quin M.
Lemma 5:

Let v € U(My) and set v == JvJ € M. Then

3((1d4 ® ad(v) (@), (1dp © ad(@)(v)) =l 1),

forall z € A @uin M and y € B Quin M.

Proposition 6:
There exist f1, fo € S(A), g1,90 € S(B) and ¢' € S(M') so that

i) < Jullo| ((h© @)ea") + (f2®q5)(:v*x)>1/2-

/ * / * 1/2
-((g1®(b)(y Y)+ (g2 ® ¢')(yy )) ]
forall x € A Quin M and y € B Quin M’ .

Proof: For all a,8 > 0, vaf < (a+ £)/2. By Corollary 4, it
follows that for all x € A Q@uin M and y € B Qi M,

1

file,y)| < Sl (Ales) + Bla's) + Gy + @) @)
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Let v € U(My) and v/ := JvJ. By Lemma 5 and inequality (2),
¢

u(z,y)| < %HUH;;Cb [ﬁ((IdA @ ad(v))(z2")) + fo(Ida @ ad(v))(z"x))
+g1((Idp ® ad(v"))(y"y)) + g2((Idp @ ad(v'))(yy*))| (3)
Choose a net (a;)ier C conv{ad(v) : v € U(My)} such that
lim las(c) = 6le) - 1] =0, c€ M.

For i € I, set ai(d) = Joy(JdJ)J , for all d € M.

By convexity we can replace ad(v) and ad(v') in the inequality (3) by
a; and o , respectively, to get

e, v)] < 3 lullo [Fi(101 ® 0)(wz") + Fl(1ds © @3)(z")) +
+31((1dp ® o)) (yy)) + G:((1dp © o)) (yy"))]
In the limit, this gives the inequality
e, v)] < Sl [(fi© O)aa) + (fr © B)(a"n) +
+(g1 @ ¢)(Yy) + (92 ® cb’)(yy*)] ;@)

where f;(a) = ﬁ(a@l),aeA,gi =gb®1),be B, fori=1,2
and ¢'(d) = ¢(JdJ), for all d € M’.

Substituting = by t'/?2 and y by t~"/2y in (4) for t > 0, we get

e, 9)] < Sllullo [t (@ 0)(ar") + (2@ 9)(a"n)) +

+ ' (@)WY + (2@ Ny | ()
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Since for all o, 8 > 0,

. -1 o
%Eg(toz—i—t B)=2+/ap,

the conclusion follows by taking infimum over ¢ > 0 in (5). ]

Lemma 7:

For any oo, 8 > 0,
inf (Na+A7"8) < A2+ X7V /as.

nez

Proof of the Effros-Ruan conjecture:

Let 0 < A < 1 and let (M, @) be the Powers factor of type 111y with
product state ¢, as before. Set

CN): = /(N2 4 A12) 12

Let u: A x B — C be a jointly completely bounded bilinear form on
C*-algebras A and B ..

Let f1,fo € S(A) and g1,g90 € S(B) be states as in Proposition 6.
We will prove that for alla € A and b € B,

D=

u(a,b)] < CO ulo, ( filaa”)igu(6')? + fola’a) gu(bb)?)  (6)

that is, the Effros-Ruan conjecture holds with constant C'(\). Since
C(A) — 1 as A — 1, by a simple compactness argument it follows
that the conjecture also holds with constant 1.
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To prove (6), let n € Z and choose ¢, € M as in Corollary 2. Then
P(cpcn) = AT , olenc,) = A" (7)
and (cpJenJEs, Ep)m, = 1.

Then, for all a € A and b € B, it follows by Proposition 6 that

lu(a, b)) = |u(a®c,,b® Je,J)|?

Julls,| (frlaa")olencs) + fola"a)lcien))
(91(0"0)len"cn) + g2(06)dlenc) )|

IA

Using (7), it follows that

ua,b) < JlullZ, | (N2 filaa’) + A2 ffa'a))
. (A‘”/zgl(b*b) + A”/zgg(bb*)> ]
= ||U||;;2cb [fl(aa*)gl(b*b) + fa(a"a)ga(bb*) +
A fy (aa®) ga(B6Y) + A" fo(ata) gl(b*b)] |

Since for any ao, 5 > 0,

inf A"+ A7"8) < A2+ XY /ap,

nez

and we have A\/2 + A\71/2 = 2C(\)?, we deduce that
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u(@,b)F < lullZ, | fi(aa")gr(bb) + fola”a)gs(bb") +
+20(Nfi(a"a) g, (D)} folaa") ga(bb)?

< C(N?ull? [ filaa”)2g(bb)2 + fg(a*aﬁgz(bb*)ﬂ ;

wherein we have used the fact that C'(\) > 1.

The inequality (6) follows now by taking square roots, and the proof is
complete. ]
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