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Von Neumann algebras were introduced by John von Neumann in 1929-

1930 as rings of operators. It was Dieudonné’s suggestion to Dixmier

to call them von Neumann algebras. The theory of von Neumann

algebras on a separable Hilbert space was developed by Murray and

von Neumann in 1936-1943.

C∗ − algebras ∼ noncommutative topological spaces.

(Gelfand): A unital commutative C∗-algebra is isometrically isomor-

phic to C(∆), for some compact Hausdorff topological space ∆.

A projection is the indicator function of a clopen set.

von Neumann algebras ∼ noncommutative measure spaces.

(von Neumann): A commutative von Neumann algebra is isometrically

isomorphic to L∞(Ω, µ), for some standard Borel measure space (Ω, µ).

A projection is the indicator function of a measurable set.

Although any von Neumann algebra is a C∗-algebra, the converse is

seldom true. The behavior of a generic von Neumann algebra differs

strikingly from that of an arbitrary C∗-algebra. For example:

• There are many C∗-algebras without non-trivial projections.

Non-simple: C(X) , where X is connected, compact Hausdorff.

Simple: C∗
r (Fn), n ≥ 2 (Pimsner-Voiculescu).

In contrast, any von Neumann algebra is generated by projections.

• Infinite-dimensional von Neumann algebras are non-separable, while

the interesting examples of infinite-dimensional C∗-algebras are

separable. E.g., C[0, 1] is separable, while L∞[0, 1] is not.

2



Topologies on B(H)

Let H be a (separable) Hilbert space with inner product ⟨·, ·⟩ .
• Norm topology:

xn
∥·∥−→ x iff ∥xn − x∥ −→ 0 as n → ∞ .

• Strong operator topology (s.o.t.):

xα
s.o.t.−→ x iff ∥(xα − x)ξ∥ −→

α
0 , ∀ξ ∈ H .

• Weak operator topology (w.o.t.):

xα
w.o.t.−→ x iff |⟨(xα − x)ξ , η⟩| −→

α
0 , ∀ξ , η ∈ H .

• w∗-topology is the topology induced by B(H) = S∗
1 (where S1 are

the trace-class operators on H):

xα
w∗
−→ x iff tr(xαy) −→ tr(xy) , ∀y ∈ S1 .

The norm topology is stronger than s.o.t., which, in turn, is stronger

than w.o.t. Norm topology is also stronger than w∗-topology, which,

in turn, is stronger than w.o.t.

Example: For n ≥ 1 , let

pn :=


1 . . . 0 0 . . .
... . . . ... ...

0 . . . 1 0 . . .

0 0 0 0 . . .
... ... ... . . .

 ∈ B(l2(N)) .

Then pn
s.o.t.−→ Il2(N), but not in norm.
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Example: Let s be the unilateral shift on l2(N), i.e., sen = en+1,

for n ≥ 1, where en are the canonical unit vectors in l2(N) . Then

sn
w.o.t.−→ 0 as n → ∞, but (sn)n≥1 does not converge (at all) in s.o.t.

Theorem (von Neumann’s bicommutant theorem):

Suppose M is a ∗-closed, unital subalgebra of B(H) . Then the fol-

lowing are equivalent:

(i) M = M′′.

(ii) M is w.o.t. closed.

(iii) M is s.o.t. closed.

Definition: A von Neumann algebra M on a separable Hilbert space

H is a ∗-closed unital subalgebra of B(H) which is w.o.t.-closed.

The algebra K(H) of compact operators on an infinite dimensional

(separable) Hilbert space H is not a von Neumann algebra. The iden-

tity operator I : H → H belongs to (K(H))′′, but I is not compact.

Examples of von Neumann algebras:

(i) B(H) and matrix algebras.

(ii) L∞([0, 1], dm) is a von Neumann algebra acting on the (separable)

Hilbert space H : = L2([0, 1], dm) by multiplication, i.e.,

f ∈ L∞([0, 1], dm) Mf : H → H ,

where Mf(g) = fg ∈ H , ∀g ∈ H .
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(iii) IfG is a group and g ∈ G
U7−→ ug ∈ U(H) is a unitary repres. ofG

on a (sep.) Hilbert spaceH , then the bicommutant {ug : g ∈ G}′′
is a von Neumann algebra.

In the special case when U is the left regular representation of G

on l2(G) := {ξ : G → C :
∑

t∈G |ξ(t)|2 < ∞}, i.e.,

(ug(ξ))(t) := ξ(g−1t) , ξ ∈ l2(G), t ∈ G,

then the von Neumann algebra L(G) := {ug : g ∈ G}′′ is called
the group von Neumann algebra of G.

(iv) If M and N are vN algebras on Hilbert spaces H and K, respec-

tively, then there are obvious notions of direct sum M⊕N and

tensor product M⊗̄N acting on H⊕K and H⊗K, respectively.

The Gelfand-Naimark-Segal (GNS) representation provides a useful

procedure of constructing von Neumann algebras.

The necessary ingredients are a unital C∗-algebra A and a positive

linear functional ϕ on A . Then there exists a Hilbert space Hϕ , a

unital ∗-representation π : A → B(Hϕ) and a vector ξ ∈ Hϕ with

∥ξ∥2 = ∥ϕ∥ such that

ϕ(x) = ⟨π(x)ξ, ξ⟩ , x ∈ A .

Moreover, Hϕ = (π(A)ξ)
∥·∥

and A acts on Hϕ by left multiplication.

The completion π(A)
w.o.t ⊆ B(Hϕ) is a von Neumann algebra.
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An abstract characterization of von Neumann algebras:

Theorem (Sakai):

A von Neumann algebra M is a C∗-algebra which, as a Banach space

is a dual space, i.e., there exists a Banach space M∗ such that

M = (M∗)
∗ .

Moreover, the Banach space M∗ with this property is unique (up to

isomorphism), and it is called the predual of M .

Note that M∗ ⊆ M∗ . A positive, linear functional ϕ : M → C
belongs to M∗ if and only if ϕ is normal, i.e., whenever (xα)α∈I ⊆ M
is an increasing net of positive elements converging s.o.t. to some

x ∈ M , then limα ϕ(xα) = ϕ(x) . It was proved by Dixmier that ϕ is

normal if and only if it is continuous with respect to the w∗-topology

on M .

Example: Let ξ ∈ H and set

ϕξ(x) := ⟨xξ, ξ⟩ , x ∈ M.

Then ϕξ : M → C is normal.

In particular, if M = L∞([0, 1], dm), since the function f ≡ 1 ∈ L2,

then functional ϕ : L∞([0, 1], dm) → C defined by

ϕ(f ) =

∫
fdm, f ∈ L∞([0, 1], dm)

is normal.
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Definition: A von Neumann algebraM is called a factor if its center

Z(M) : = {x ∈ M : xy = yx , ∀y ∈ M}

consists of scalar multiples of the identity of M .

Examples of factors:

(i) B(H) and matrix algebras.

(ii) The group von Neumann algebra L(G) of an ICC group G (e.g.,

Fn , n ≥ 2 or the group S∞ of finite permutations of N).

(iii) M⊗̄N , where M and N are factors.

(iv) Let A be the UHF algebra of type 2∞ (=the CAR algebra),

equipped with its natural trace. The von Neumann algebra ob-

tained as the completion ofA via the GNS construction is a factor.

Murray and von Neumann’s classification of factors

Let M be a factor on a separable Hilbert space H . Let P(M) denote

the set of (orthogonal) projections in M , i.e.,

P(M) : = {p ∈ M : p2 = p = p∗} .

It can be shown that P(M) is a complete lattice.

Two projections p, q in M are called equivalent (written p ∼ q) if

there exists u ∈ M such that p = u∗u and q = uu∗ .

Note: If M = B(H), then two projections p, q in M are equivalent

if and only if their ranges have the same dimension.
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This suggested the idea that equivalence classes of projections repre-

sent an abstract notion of dimension for an arbitrary factor.

Theorem (Murray-von Neumann 1936):

For every factor M on a separable Hilbert space H there exists a

dimension function d : P(M) → [0,∞] such that

1) If p ⊥ q , then d(p + q) = d(p) + d(q) .

2) p ∼ q iff d(p) = d(q) .

The dimension function is unique, up to multiplication by positive

scalars.

By studying the possible range sets d(P(M)) , Murray and von Neu-

mann found that, after a suitable normalization of the dimension func-

tion, factors can be classified into the following types:

Type d(P(M))

In {0, 1, 2, . . . , n} , n ∈ N

I∞ {0, 1, 2, . . . ,∞}

II1 [0, 1]

II∞ [0,∞]

III {0,∞}

8



The only factors of type In and type I∞ are the matrix algebras Mn(C)
and B(H) (on an infinite dimensional Hilbert space H), respectively.

The factor constructed in example (iv) above is of type II1. More-

over, it is hyperfinite. (A factor M is called hyperfinite if there is an

increasing sequence of finite-dimensional von Neumann subalgebras of

M whose union is w.o.t. dense in M.) It is a deep result of Murray

and von Neumann (1940) that there is a unique (up to algebraic iso-

morphism) hyperfinite II1 factor, denoted by R. The factor L(S∞) is

also hyperfinite of type II1, and therefore L(S∞) ∼= R. However, it

can be proved that L(Fn) � R , n ≥ 2.

Furthermore, Murray and von Neumann proved that every factorM of

type II∞ is of the formM = N⊗̄B(H) , for some factorN of type II1 .

Murray and von Neumann constructed examples of factors of type III,

as well. However, factors of type III remained a mystery until 1970’s,

when using the developments of the Tomita-Takesaki theory, Connes

classified them into types IIIλ , with 0 ≤ λ ≤ 1 .

In 1975, Connes proved his celebrated result that a factor M ⊆ B(H)

is hyperfinite if and only if it is injective, i.e., there exists a projection

of norm 1 from B(H) onto M . As a corollary, all hyperfinite factors

of type II∞ are isomorphic to R⊗̄B(l2(N)).
In the same fundamental paper, Connes completed the classification of

hyperfinite factors of type IIIλ , for all 0 ≤ λ < 1. Haagerup (1986)

settled in the affirmative the long-standing problem of uniqueness of

hyperfinite type III1 factors.
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Operator spaces and completely bounded maps

Let H be a Hilbert space and E ⊆ B(H) a closed subspace. Then

E becomes an operator space with the sequence of norms on Mn(E)

inherited from B(Hn) , n ∈ N , via the isometric embeddings

Mn(E) ⊆ Mn(B(H)) = B(Hn) .

An abstract operator space is a vector space E equipped with matrix

norms ∥ · ∥n on Mn(E) , for each n ≥ 1 , satisfying the axioms

∥x⊕ y∥n+m = max{∥x∥n, ∥y∥m} ,
∥αxβ∥n ≤ ∥α∥∥x∥n∥β∥ ,

for all x ∈ Mn(E) , y ∈ Mm(E) and α , β ∈ Mn(C) .

Let E , F be operator spaces, ϕ : E → F linear, bounded. Consider

ϕ⊗ Idn : Mn(E) → Mn(F ), n ∈ N .

The map ϕ is called completely bounded (for short, c.b.) if

∥ϕ∥cb : = sup
n∈N

∥ϕ⊗ Idn∥ < ∞.

The map ϕ is a complete isometry if all ϕm are isometries, and a com-

plete isomorphism if it is an isomorphism with ∥ϕ∥cb , ∥ϕ−1∥cb < ∞ .

Theorem (Ruan 1985):

If E is an abstract operator space, then there is a Hilbert space H , a

concrete operator space F ⊆ B(H) , and a complete isometry ϕ from

E onto F . IfE is separable as a normed space, then we can letH = l2 .
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Let CB(E,F ) := {ϕ : E → F : ∥ϕ∥cb < ∞} .

If E is an operator space, then the dual E∗ = B(E,C) = CB(E,C)
endowed with matrix norms given by

Mn(E
∗) := CB(E,Mn(C)) , n ≥ 1

is again an operator space, called the operator space dual of E.

Examples of operator spaces:

1. C∗-algebras are operator spaces.

2. The predual M∗ of a von Neumann algebra M is an operator

space, with norms inherited from the isometric embedding

Mn(M∗) ⊆ Mn(M∗) : = CB(M,Mn(C)) , n ∈ N.

3. Let e1, e2, . . . be the standard unit vector basis in l2(N).

(i) The row Hilbert space R is l2(N) as a Banach space, and for

n ∈ N , ∥∥∥∥∥
r∑

i=1

xi ⊗ ei

∥∥∥∥∥
Mn(R)

: =

∥∥∥∥∥
r∑

i=1

xix
∗
i

∥∥∥∥∥
1/2

,

for all r ∈ N and x1, . . . , xr ∈ Mn(C) .
(ii) The column Hilbert space C is l2(N) as a Banach space, and

for n ∈ N ,∥∥∥∥∥
r∑

i=1

xi ⊗ ei

∥∥∥∥∥
Mn(C)

: =

∥∥∥∥∥
r∑

i=1

x∗ixi

∥∥∥∥∥
1/2

,

for all r ∈ N and x1, . . . , xr ∈ Mn(C) .
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The following simple computation shows that R and C are different

operator spaces.

Let x1 :=

(
1 0

0 0

)
, x2 :=

(
0 0

1 0

)
∈ M2(C) . Then

∥x1 ⊗ e1 + x2 ⊗ e2∥M2(R) = ∥x1x∗1 + x2x
∗
2∥1/2 =

∥∥∥∥( 1 0

0 1

)∥∥∥∥1/2 = 1 ,

while

∥x1⊗ e1+ x2⊗ e2∥M2(C) = ∥x∗1x1+ x∗2x2∥1/2 =
∥∥∥∥( 2 0

0 0

)∥∥∥∥1/2 = √
2 .

Fact: R∗ ∼= C and C∗ ∼= R (complete isometries).

Theorem (Pisier):

There exists an operator space, called OH , such that

(1) OH is isometric to l2(N) (as a Banach space)

(2) The canonical identification between OH and OH∗ (correspond-

ing to the canonical identification between l2(N) and l2(N)∗) is a
complete isometry.

Moreover, OH is the unique operator space (up to complete isometry)

satisfying (1) and (2) . For n ∈ N , r ∈ N and x1, . . . , xr ∈ Mn(C) ,∥∥∥∥∥
r∑

i=1

xi ⊗ ei

∥∥∥∥∥
Mn(OH)

: =

∥∥∥∥∥
r∑

i=1

xi ⊗ xi

∥∥∥∥∥
1/2

Mn(C)⊗Mn(C)

.
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By the classical Khintchine inequalities, the Rademacher functions

rn(t) := sgn(sin(2ntπ)) , t ∈ [0, 1] , n ≥ 1 span an isomorphic copy

of l2(N) inside L1. Moreover, (by using Gaussian random variables),

the embedding of L2([0, 1]) into L1([0, 1]) is isometric. The Khintchine

inequalities for Rademachers do not give the isometric result, as the

best constant for the lower bound estimate is 1/
√
2 (Szarek, 1974).

Problem: Does OH admit a completely isometric embedding into

the predual of a von Neumann algebra?

Some results:

(Pisier 2004): OH does not embed (cb-isomorphically) into the pred-

ual of any semifinite von Neumann algebra.

(Junge 2005): OH admits a cb-embedding into the predual of a type

III von Neumann algebra. A year later, Junge showed that OH cb-

embeds into the predual of the hyperfinite type III1-factor, with cb-

isomorphism constant ≈ 200 .

(Haagerup-M. 2007): OH admits a cb-embedding into the predual of

the hyperfinite type III1-factor, with cb-isomorphism constant ≤
√
2 .

Our proof is based on an improvement of a result of Junge concerning

Khintchine-type inequalities for subspaces of R⊕C, for which we ob-

tain a sharp lower bound of 1/
√
2 .

The fascinating question whether the analogue of the classical result

that L2[0, 1] embeds isometrically into L1[0, 1] holds in the noncom-

mutative setting remains open.
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Idea of the proof of the OH embedding:

Let H be a closed subspace of R⊕C , and associate to it A ∈ B(H) ,

0 ≤ A ≤ IH so that the operator space structure on H is given by∥∥∥∥∥
r∑

i=1

xi ⊗ ξi

∥∥∥∥∥
Mn(H)

=

= max


∥∥∥∥∥∥

r∑
i,j=1

⟨(IH − A)ξi, ξj⟩Hxix∗j

∥∥∥∥∥∥
1
2

,

∥∥∥∥∥∥
r∑

i,j=1

⟨Aξi, ξj⟩Hx∗ixj

∥∥∥∥∥∥
1
2


for all n , r ∈ N , xi ∈ Mn(C) , ξi ∈ H .

Let A be the CAR-algebra built on H . Recall that A is a unital

C∗-algebra (unique up to ∗-isomorphism) with the property that there

exists a linear map

H ∋ f 7→ a(f ) ∈ A
whose range generates A , satisfying for all f, g ∈ H the anticommu-

tation relations

a(f )a(g)∗ + a(g)∗a(f) = ⟨f, g⟩HI
a(f )a(g) + a(g)a(f) = 0 .

Let ωA be the gauge-invariant quasi-free state on A corresponding to

A , that is, for all n ,m ∈ N ,

ωA(a(fn)
∗ . . . a(f1)

∗a(g1) . . . a(gm)) = δnmdet(⟨Agi, fj⟩H , i, j) ,

for all f1, . . . , fn, g1, . . . , gm ∈ H .
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Use Riesz representation theorem to define a map EA : A → H by

⟨f, EA(b)⟩H = ωA(a(f )b
∗ + b∗a(f)) , f ∈ H ,

for all b ∈ A .

Let πA be the unital ∗-representation from the GNS construction for

(A , ωA) . Then EA extends to a bounded linear operator on

M := πA(A)
s.o.t

.

By a result of Powers-Størmer (1970), M is a hyperfinite factor.

Theorem (Haagerup-M. 2007):

The map EA : A → H yields a complete isomorphism

H ∼= A/Ker(EA)

with cb-isomorphism constant ≤
√
2 . Furthermore, the dual map E∗

A

is a complete isomorphism of H∗ onto a subspace of M∗ .

Now, let R∞ denote the hyperfinite type III1-factor. Then

M⊗̄R∞ ∼= R∞ ,

and hence M∗ cb-embeds into (R∞)∗ . Therefore by the above Theo-

rem, H∗ cb-embeds into (R∞)∗ , with cb-isomorphism constant ≤
√
2 .

Therefore any quotient (and further, any subspace of a quotient) of

(R⊕C)∗ cb-embeds into (R∞)∗ , with cb-isomorphism constant≤
√
2 .

Pisier (2004) showed that OH is a subspace of a quotient of R ⊕ C .

Since OH is self-dual, OH is also a sub-quotient of (R⊕ C)∗ . Hence

OH cb-embeds into (R∞)∗ , with cb-isomorphism constant ≤
√
2 .
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