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Von Neumann algebras were introduced by John von Neumann in 1929-
1930 as rings of operators. It was Dieudonné’s suggestion to Dixmier
to call them von Neumann algebras. The theory of von Neumann
algebras on a separable Hilbert space was developed by Murray and

von Neumann in 1936-1943.

C* — algebras ~ noncommutative topological spaces.

(Gelfand): A unital commutative C*-algebra is isometrically isomor-
phic to C'(A), for some compact Hausdorff topological space A.

A projection is the indicator function of a clopen set.

von Neumann algebras ~ mnoncommutative measure spaces.

(von Neumann): A commutative von Neumann algebra is isometrically
isomorphic to L* (€2, u), for some standard Borel measure space (€2, ).

A projection is the indicator function of a measurable set.

Although any von Neumann algebra is a C*-algebra, the converse is
seldom true. The behavior of a generic von Neumann algebra differs
strikingly from that of an arbitrary C*-algebra. For example:

e There are many C*-algebras without non-trivial projections.
Non-simple: C'(X), where X is connected, compact Hausdorff.
Simple: C*(FF,,), n > 2 (Pimsner-Voiculescu).

In contrast, any von Neumann algebra is generated by projections.
e Infinite-dimensional von Neumann algebras are non-separable, while

the interesting examples of infinite-dimensional C*-algebras are
separable. E.g.; C[0,1] is separable, while L>°[0, 1] is not.



Topologies on B(H)
Let H be a (separable) Hilbert space with inner product (-, -) .

e Norm topology:

ngMU iff ||x,—2x|| —0 as n—o0.

e Strong operator topology (s.o.t.):

S.0.t.

v, —x iff |[(zo—2)¢]| — 0, VEEH.

e Weak operator topology (w.o.t.):

w.o.t.

v, — v iff [((zo—2)¢,m)| — 0, VE&,neH.

e w*-topology is the topology induced by B(H) = ST (where Sy are
the trace-class operators on H):

Tq W iff tr(zoy) — tr(zy), Yy e 5.

The norm topology is stronger than s.o.t., which, in turn, is stronger
than w.o.t. Norm topology is also stronger than w*-topology, which,
in turn, is stronger than w.o.t.

Example: Forn > 1, let
[1...00 \
0. 10,
0 0 00 ...

\z : : )
S.0.t.

Then p, — I, but not in norm.

Pn = € B(lx(N)).




Example: Let s be the unilateral shift on [5(N), ie., se, = e, 1,
for n > 1, where e, are the canonical unit vectors in l5(N). Then

s" 2% 0 as n — 00, but (s"),=1 does not converge (at all) in s.0.t.

Theorem (von Neumann’s bicommutant theorem):

Suppose M is a x-closed, unital subalgebra of B(H). Then the fol-
lowing are equivalent:

(i) M =M".
(77) M is w.o.t. closed.

(ii1) M is s.0.t. closed.

Definition: A von Neumann algebra M on a separable Hilbert space
H is a x-closed unital subalgebra of B(H ) which is w.o.t.-closed.

The algebra K(H) of compact operators on an infinite dimensional
(separable) Hilbert space H is not a von Neumann algebra. The iden-
tity operator I : H — H belongs to (K(H))”, but I is not compact.
Examples of von Neumann algebras:

(i) B(H) and matrix algebras.

(27) L>([0, 1], dm) is a von Neumann algebra acting on the (separable)
Hilbert space H: = L?*([0, 1], dm) by multiplication, i.e.,

fe L>(0,1],dm) ~ M;: H— H,
where M;(g) = fg € H,Vg € H.



(731) If Gisagroupand g € G N u, € U(H) is a unitary repres. of G
on a (sep.) Hilbert space H , then the bicommutant {u, : g € G}”
is a von Neumann algebra.

In the special case when U is the left reqular representation of G

on*(G):={£:G—=C: >, o1E@t)]> < oo}, Le,

(ug()(t) = E&(g7't), £ E€P(G)t€G,

then the von Neumann algebra L(G) = {u, : ¢ € G}" is called
the group von Neumann algebra of G.

(iv) If M and N are vN algebras on Hilbert spaces H and K, respec-
tively, then there are obvious notions of direct sum M @& N and
tensor product M®QAN acting on H ® K and H ® K, respectively.

The Gelfand-Naimark-Segal (GNS) representation provides a useful
procedure of constructing von Neumann algebras.

The necessary ingredients are a unital C*-algebra A and a positive
linear functional ¢ on A. Then there exists a Hilbert space Hy, a
unital s-representation = : A — B(Hy) and a vector £ € H, with
I€]* = [[¢]] such that

¢(x) = (n(z)§, ), r€A.
vl

Moreover, H, = (m(A)§) " " and A acts on Hy by left multiplication.

W.0.t

The completion 7(A)  C B(H,) is a von Neumann algebra.



An abstract characterization of von Neumann algebras:

Theorem (Sakai):

A von Neumann algebra M is a C*-algebra which, as a Banach space
is a dual space, 1.e., there exists a Banach space M, such that

M = (M.,)".
Moreover, the Banach space M, with this property is unique (up to
isomorphism), and it is called the predual of M.

Note that M, C M*. A positive, linear functional ¢ : M — C
belongs to M, if and only if ¢ is normal, i.e., whenever (4 )ae; € M
is an increasing net of positive elements converging s.0.t. to some
r € M, then lim, ¢(x,) = ¢(x). It was proved by Dixmier that ¢ is
normal if and only if it is continuous with respect to the w*-topology

on M.

Example: Let £ € H and set

ge(x) = (2€,§), x € M.
Then ¢¢ : M — C is normal.

In particular, if M = L>([0, 1], dm), since the function f =1 € L?,
then functional ¢: L>°([0, 1], dm) — C defined by

o(f) = / fdm, e L%(0,1),dm)

1s normal.



Definition: A von Neumann algebra M is called a factorif its center
ZM): ={xeM: zy=yx,Vy e M}

consists of scalar multiples of the identity of M.

Examples of factors:
(i) B(H) and matrix algebras.

(74) The group von Neumann algebra L(G) of an ICC group G (e.g.,
F,,, n > 2 or the group Sy, of finite permutations of N).

(i11) MQN |, where M and N are factors.

(iv) Let A be the UHF algebra of type 2°° (=the CAR algebra),
equipped with its natural trace. The von Neumann algebra ob-
tained as the completion of A via the GNS construction is a factor.

Murray and von Neumann’s classification of factors

Let M be a factor on a separable Hilbert space H. Let P(M) denote
the set of (orthogonal) projections in M | i.e.,

PM): ={peM: p’=p=p'}.

It can be shown that P(M) is a complete lattice.

Two projections p,q in M are called equivalent (written p ~ q) if
there exists u € M such that p = v*u and ¢ = uu*.

Note: If M = B(H), then two projections p, g in M are equivalent
if and only if their ranges have the same dimension.
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This suggested the idea that equivalence classes of projections repre-
sent an abstract notion of dimension for an arbitrary factor.

Theorem (Murray-von Neumann 1936):

For every factor M on a separable Hilbert space H there exists a
dimension function d: P(M) — |0, oo] such that

1) Ifp L g, then d(p+q) =d(p) +dl(q).
2)p~q it d(p)=d(q).
The dimension function is unique, up to multiplication by positive

scalars.

By studying the possible range sets d(P(M)), Murray and von Neu-
mann found that, after a suitable normalization of the dimension func-
tion, factors can be classified into the following types:

Type | d(P(M))

I, {0,1,2,...,n}, neN
I [{0,1,2,... 00}

Hl [07 1}
[l ][0, 00]

| {0,00}




The only factors of type I, and type I are the matrix algebras M,,(C)
and B(H) (on an infinite dimensional Hilbert space H), respectively.

The factor constructed in example (iv) above is of type II;. More-
over, it is hyperfinite. (A factor M is called hyperfinite if there is an
increasing sequence of finite-dimensional von Neumann subalgebras of
M whose union is w.o.t. dense in M.) It is a deep result of Murray
and von Neumann (1940) that there is a unique (up to algebraic iso-
morphism) hyperfinite II; factor, denoted by R. The factor L(Sy) is
also hyperfinite of type Il;, and therefore L(S,) = R. However, it
can be proved that L(F,) 2 R, n > 2.

Furthermore, Murray and von Neumann proved that every factor M of
type Il is of the form M = N®B(H) , for some factor N of type II; .

Murray and von Neumann constructed examples of factors of type III,
as well. However, factors of type III remained a mystery until 1970’s,
when using the developments of the Tomita-Takesaki theory, Connes
classified them into types III,, with 0 < A < 1.

In 1975, Connes proved his celebrated result that a factor M C B(H)
is hyperfinite if and only if it is injective, i.e., there exists a projection
of norm 1 from B(H) onto M. As a corollary, all hyperfinite factors
of type Il are isomorphic to RQB(I*(N)).

In the same fundamental paper, Connes completed the classification of
hyperfinite factors of type III, for all 0 < A < 1. Haagerup (1986)
settled in the affirmative the long-standing problem of uniqueness of
hyperfinite type I1I; factors.



Operator spaces and completely bounded maps

Let H be a Hilbert space and E C B(H) a closed subspace. Then

E becomes an operator space with the sequence of norms on M, (F)
inherited from B(H"), n € N, via the isometric embeddings

M, () € M,(B(H)) = B(H").

An abstract operator space is a vector space E equipped with matrix
norms || - ||, on M,(F), for each n > 1, satisfying the axioms

1z @ Yllnsm = max{|[z]ln, [yllm}
lezBlln < {leflizlal5]

for all x € M,(E),y € M,,(F) and a, 8 € M,(C) .

Let E/, F' be operator spaces, ¢: E — F' linear, bounded. Consider
o ®Id,: M,(F)— M,(F), né&eN.
The map ¢ is called completely bounded (for short, c.b.) if

[¢]ler: = sup ||¢ @ Id, || < oco.
neN

The map ¢ is a complete isometry if all ¢, are isometries, and a com-

plete isomorphism if it is an isomorphism with [|@||e, [[¢7||e < 0o

Theorem (Ruan 1985):

If E/ is an abstract operator space, then there is a Hilbert space H, a
concrete operator space F' C B(H), and a complete isometry ¢ from
E onto F . If E is separable as a normed space, then we can let H = [2.
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Let CB(E,F):={¢: E = F : ||¢|la, < 00}.

If E is an operator space, then the dual £* = B(E,C) = CB(F, C)
endowed with matrix norms given by

M, (E*) := CB(E, M,(C)), n>1

is again an operator space, called the operator space dual of E.

Examples of operator spaces:

1. C*-algebras are operator spaces.

2. The predual M, of a von Neumann algebra M is an operator
space, with norms inherited from the isometric embedding

M,(M,) C M, (M*): =CB(M,M,(C)), neN.
3. Let ey, eq, ... be the standard unit vector basis in [*(N).

() The row Hilbert space R is [?(N) as a Banach space, and for
neN,
1/2

r r
E T & € E Ti%;
1=1 My (R) =1

for all r € Nand zy, ..., 2, € M,(C).

(44) The column Hilbert space C'is [*(N) as a Banach space, and
for n € N,

1/2

Yz e > aiw
1=1 My (C) 1=1
for all r € Nand zq,...,2, € M,(C).
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The following simple computation shows that R and C' are different
operator spaces.

Letxlz((l) 8),1‘2:((1) 8) € M5(C). Then

1/2
o1 @ €1+ 22 @ eallanny = llzaat + wos |2 = H( )

=1,

0 1

while
1/2

— 2.

o 20
lor @ ert 22 @ esllaney = oz + 2ol = H ( 0 0>

Fact: R* = C and C* = R (complete isometries).

Theorem (Pisier):

There exists an operator space, called OH, such that
(1) OH is isometric to [*(N) (as a Banach space)

(2) The canonical identification between OH and OH™ (correspond-
ing to the canonical identification between (*(N) and [2(N)") is a
complete isometry:.

Moreover, O H is the unique operator space (up to complete isometry)
satisfying (1) and (2). Forn € N, r € Nand xy,...,2, € M,(C),

r r 1/2
1=1 1=1

My (OH) Mp(C)©My(C)
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By the classical Khintchine inequalities, the Rademacher functions
ro(t) = sgn(sin(2"tm)), t € [0,1], n > 1 span an isomorphic copy
of I?(N) inside L'. Moreover, (by using Gaussian random variables),
the embedding of L*([0, 1]) into L([0, 1]) is isometric. The Khintchine
inequalities for Rademachers do not give the isometric result, as the
best constant for the lower bound estimate is 1/v/2 (Szarek, 1974).

Problem: Does OH admit a completely isometric embedding into
the predual of a von Neumann algebra?

Some results:

(Pisier 2004): OH does not embed (cb-isomorphically) into the pred-
ual of any semifinite von Neumann algebra.

(Junge 2005): OH admits a ch-embedding into the predual of a type
III von Neumann algebra. A year later, Junge showed that OH cb-
embeds into the predual of the hyperfinite type III;-factor, with cb-
isomorphism constant ~ 200 .

(Haagerup-M. 2007): OH admits a cb-embedding into the predual of
the hyperfinite type I1I;-factor, with cb-isomorphism constant < v/2.

Our proof is based on an improvement of a result of Junge concerning
Khintchine-type inequalities for subspaces of R & C', for which we ob-
tain a sharp lower bound of 1/v/2.

The fascinating question whether the analogue of the classical result
that L?[0, 1] embeds isometrically into L'[0,1] holds in the noncom-
mutative setting remains open.
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Idea of the proof of the OH embedding;:

Let H be a closed subspace of R @& C', and associate to it A € B(H),
0 < A < Iy so that the operator space structure on H is given by

Z T Q&
i=1

My (H)
1
r 2 r :
ij=1 i,j=1

foralln,r e N, z; € M,(C), & € H.

Let A be the CAR-algebra built on H. Recall that A is a unital
C*-algebra (unique up to *-isomorphism) with the property that there
exists a linear map

H> f—a(f)e A

whose range generates A, satisfying for all f, g € H the anticommu-
tation relations

a(fla(g)" +alg)alf) = (f,9)ul
a(f)a(g) +alg)a(f) = 0.

Let wy be the gauge-invariant quasi-free state on A corresponding to
A that is, for alln,m € N,

wala(fn)” .. alfi)"a(g) ... algn)) = dnmdet((Agi, fi)m ,i,7)
forall fi,..., 1, 01,....,9n € H.
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Use Riesz representation theorem to define a map E4: A — H by

(fs Ba(b)) i = wala(f)V" +b%a(f)), [f€H,
forallbe A.

Let m4 be the unital x-representation from the GNS construction for
(A,wa4). Then E4 extends to a bounded linear operator on

M = m4(A)
By a result of Powers-Stgrmer (1970), M is a hyperfinite factor.

S.0.t

Theorem (Haagerup-M. 2007):
The map Ey : A — H yields a complete isomorphism
H = A/Ker(Ey)

with cb-isomorphism constant < v/2. Furthermore, the dual map E%
is a complete isomorphism of H* onto a subspace of M, .

Now, let R4 denote the hyperfinite type I1I;-factor. Then

and hence M, cb-embeds into (R )« . Therefore by the above Theo-
rem, H* cb-embeds into (Ra )« , with cb-isomorphism constant < /2.

Therefore any quotient (and further, any subspace of a quotient) of
(R®C)* cb-embeds into (R )y , with cb-isomorphism constant < /2.
Pisier (2004) showed that OH is a subspace of a quotient of R & C'.
Since OH is self-dual, OH is also a sub-quotient of (R & C')*. Hence
OH ch-embeds into (Ru)s, with cb-isomorphism constant < /2.
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