

Property (T)

Rough outline

- Property (T) for groups
- Compact and discrete quantum groups
- Property (T) for quantum groups
- Different characterizations of property (T)

Property (T) for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for groups

We start with the following data:

- 「 discrete, countable group,
- $\pi: \Gamma \rightarrow U(H)$ a representation,
- $E \subseteq \Gamma$ finite, $\delta>0$ and $\xi \in(H)_{1}$.

Property (T) for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum groups

Property (T) for groups

We start with the following data:

- 「 discrete, countable group,
- $\pi: \Gamma \rightarrow U(H)$ a representation,
- $E \subseteq \Gamma$ finite, $\delta>0$ and $\xi \in(H)_{1}$.

Then

- ξ is called (E, δ)-invariant if $\|\pi(\gamma) \xi-\xi\|<\delta$ for $\gamma \in E$.
- 「 is said to have Kazhdan's property (T) if every π that has almost invariant vectors actually has a non-zero invariant vector

Property (T)

Property (T) for groups

We start with the following data:

- 「 discrete, countable group,
- $\pi: \Gamma \rightarrow U(H)$ a representation,
- $E \subseteq \Gamma$ finite, $\delta>0$ and $\xi \in(H)_{1}$.

Then

- ξ is called (E, δ)-invariant if $\|\pi(\gamma) \xi-\xi\|<\delta$ for $\gamma \in E$.
- π is said to have almost invariant vectors if such ξ exists for all E and δ.
- Γ is said to have Kazhdan's property (T) if every π that
has almost invariant vectors actually has a non-zero
invariant vector.
Property (T) is of importance in many fields - in particular
operator algebras.

Property (T)

Property (T) for groups

We start with the following data:

- 「 discrete, countable group,
- $\pi: \Gamma \rightarrow U(H)$ a representation,
- $E \subseteq \Gamma$ finite, $\delta>0$ and $\xi \in(H)_{1}$.

Then

- ξ is called (E, δ)-invariant if $\|\pi(\gamma) \xi-\xi\|<\delta$ for $\gamma \in E$.
- π is said to have almost invariant vectors if such ξ exists for all E and δ.
- Γ is said to have Kazhdan's property (T) if every π that has almost invariant vectors actually has a non-zero invariant vector.

Property (T) is of importance in many fields - in particular operator algebras.

Property (T) for groups

We start with the following data:

- 「 discrete, countable group,
- $\pi: \Gamma \rightarrow U(H)$ a representation,
- $E \subseteq \Gamma$ finite, $\delta>0$ and $\xi \in(H)_{1}$.

Then

- ξ is called (E, δ)-invariant if $\|\pi(\gamma) \xi-\xi\|<\delta$ for $\gamma \in E$.
- π is said to have almost invariant vectors if such ξ exists for all E and δ.
- Γ is said to have Kazhdan's property (T) if every π that has almost invariant vectors actually has a non-zero invariant vector.
Property (T) is of importance in many fields - in particular operator algebras.

Property (T) for quantum groups from the dual point of view David Kyed

There are many ways to describe property (T). Here are two:

Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent

- 「 has property (T).
- Any sequence $\varphi_{n}: \Gamma \rightarrow \mathbb{C}$ of normalized, positive definite functions converging pointwise to 1 has to converge uniformly.
- For any $\pi: \Gamma \rightarrow U(H)$ we have $H^{1}(\Gamma, H)=0$.

Property (T) for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum groups

There are many ways to describe property (T). Here are two:

Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent

- 「 has property (T).
- Any sequence $\varphi_{n}: \Gamma \rightarrow \mathbb{C}$ of normalized, positive definite functions converging pointwise to 1 has to converge uniformly.
- For any $\pi: \Gamma \rightarrow U(H)$ we have $H^{1}(\Gamma, H)=0$.
i.e. $\varphi_{n}(e)=1$ and $\varphi_{n}\left(x^{*} x\right) \geq 0$ for $x \in \mathbb{C} \Gamma$.

The aim of the talk is to discuss a similar result for quantum orouns. We first introduce these ohiects:

There are many ways to describe property (T). Here are two:

Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent

- 「 has property (T).
- Any sequence $\varphi_{n}: \Gamma \rightarrow \mathbb{C}$ of normalized, positive definite functions converging pointwise to 1 has to converge uniformly.
- For any $\pi: \Gamma \rightarrow U(H)$ we have $H^{1}(\Gamma, H)=0$.
i.e. $\varphi_{n}(e)=1$ and $\varphi_{n}\left(x^{*} x\right) \geq 0$ for $x \in \mathbb{C} Г$.

First group cohomology of $\Gamma=$ first Hochschild cohomology $H^{1}\left(\mathbb{C} \Gamma,{ }_{\pi} H_{\varepsilon}\right)$.

groups. We first introduce these objects:

There are many ways to describe property (T). Here are two:

Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent

- 「 has property (T).
- Any sequence $\varphi_{n}: \Gamma \rightarrow \mathbb{C}$ of normalized, positive definite functions converging pointwise to 1 has to converge uniformly.
- For any $\pi: \Gamma \rightarrow U(H)$ we have $H^{1}(\Gamma, H)=0$.
i.e. $\varphi_{n}(e)=1$ and $\varphi_{n}\left(x^{*} x\right) \geq 0$ for $x \in \mathbb{C} \Gamma$.

First group cohomology of $\Gamma=$ first Hochschild cohomology $H^{1}\left(\mathbb{C} \Gamma,{ }_{\pi} H_{\varepsilon}\right)$.
The aim of the talk is to discuss a similar result for quantum groups. We first introduce these objects:

Property (T) for quantum groups from the dual point of view David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Compact quantum groups

Definition (Woronowicz)

A compact quantum group \mathbb{G} consists of a unital, separable C^{*}-algebra $C(\mathbb{G})$ together with a unital $*$-homomorphism
$\Delta: C(\mathbb{G}) \rightarrow C(\mathbb{G}) \otimes C(\mathbb{G})$ satisfying

- (id $\otimes \Delta) \Delta=(\Delta \otimes \mathrm{id}) \Delta$,
- a certain density condition.

Example

Property (T)
for quantum groups from the dual point of view David Kyed

Property (T) for groups

Compact quantum groups

Definition (Woronowicz)

A compact quantum group \mathbb{G} consists of a unital, separable
C^{*}-algebra $C(\mathbb{G})$ together with a unital $*$-homomorphism
$\Delta: C(\mathbb{G}) \rightarrow C(\mathbb{G}) \otimes C(\mathbb{G})$ satisfying

- (id $\otimes \Delta) \Delta=(\Delta \otimes \mathrm{id}) \Delta$,
- a certain density condition.

Example: $C(G)$ with G compact group and $\Delta(f)(s, t)=f(s t)$.
\square
Theorem (Woronowicz)
Anv commact nuantum arou with C(G) abelian is of the form
$C(G)$ for an honest compact group G
As groups have representations, quantum groups have corepresentations:

Property (T)
for quantum groups from the dual point of view David Kyed

Property (T) for groups

Compact quantum groups

Definition (Woronowicz)

A compact quantum group \mathbb{G} consists of a unital, separable C*-algebra $C(\mathbb{G})$ together with a unital $*$-homomorphism
$\Delta: C(\mathbb{G}) \rightarrow C(\mathbb{G}) \otimes C(\mathbb{G})$ satisfying

- (id $\otimes \Delta) \Delta=(\Delta \otimes \mathrm{id}) \Delta$,
- a certain density condition.

Example: $C(G)$ with G compact group and $\Delta(f)(s, t)=f(s t)$. Example: $C_{\text {red }}^{*}(\Gamma)$ with Γ discrete and $\Delta \gamma=\gamma \otimes \gamma$.

Theorem (Woronowicz)

Any compact quantum group with $C(\mathbb{G})$ abelian is of the form
$C(G)$ for an honest compact group G
As groups have representations, quantum groups have corepresentations:

Property (T) for groups

Compact quantum groups

Definition (Woronowicz)

A compact quantum group \mathbb{G} consists of a unital, separable C^{*}-algebra $C(\mathbb{G})$ together with a unital $*$-homomorphism
$\Delta: C(\mathbb{G}) \rightarrow C(\mathbb{G}) \otimes C(\mathbb{G})$ satisfying

- (id $\otimes \Delta) \Delta=(\Delta \otimes \mathrm{id}) \Delta$,
- a certain density condition.

Example: $C(G)$ with G compact group and $\Delta(f)(s, t)=f(s t)$. Example: $C_{\text {red }}^{*}(\Gamma)$ with Γ discrete and $\Delta \gamma=\gamma \otimes \gamma$.

Theorem (Woronowicz)

Any compact quantum group with $C(\mathbb{G})$ abelian is of the form $C(G)$ for an honest compact group G.

As groups have representations, quantum groups have corepresentations:

```
Property (T)
```

for quantum groups from the dual point of view

David Kyed

A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes \mathrm{id}) u=u_{(13)} u_{(23)}$.

Property (T)
A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying
$(\Delta \otimes \mathrm{id}) u=u_{(13)} u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.

Property (T)

A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes \mathrm{id}) u=u_{(13)} u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.

Property (T) for quantum groups from the dual point of view David Kyed

A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes \mathrm{id}) u=u_{(13)} u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.
- A notion of direct sums and tensor products of corepresentations.

A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes \mathrm{id}) u=u_{(13)} u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.
- A notion of direct sums and tensor products of corepresentations.
- Complete decomposability into irreducibles.

A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying
$(\Delta \otimes \mathrm{id}) u=u_{(13)} u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.
- A notion of direct sums and tensor products of corepresentations.
- Complete decomposability into irreducibles.

We now choose a complete set $\left(u^{\alpha}\right)_{\alpha \in I}$ of representatives for the set of equivalence classes of irreducible corepresentations $\operatorname{Irred}(\mathbb{G})$:

$$
u^{\alpha} \in C(\mathbb{G}) \otimes B\left(H_{\alpha}\right) \simeq \mathbb{M}_{n_{\alpha}}(C(\mathbb{G}))
$$

A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying
$(\Delta \otimes \mathrm{id}) u=u_{(13)} u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.
- A notion of direct sums and tensor products of corepresentations.
- Complete decomposability into irreducibles.

We now choose a complete set $\left(u^{\alpha}\right)_{\alpha \in I}$ of representatives for the set of equivalence classes of irreducible corepresentations $\operatorname{Irred}(\mathbb{G})$:

$$
u^{\alpha} \in C(\mathbb{G}) \otimes B\left(H_{\alpha}\right) \simeq \mathbb{M}_{n_{\alpha}}(C(\mathbb{G}))
$$

Theorem (Woronowicz)

$\operatorname{Pol}(\mathbb{G}):=\operatorname{span}_{\mathbb{C}}\left\{u_{i j}^{\alpha} \mid \alpha \in I, 1 \leq i, j \leq n_{\alpha}\right\}$ is a Hopf $*$-algebra.

```
Property (T)
for quantum
groups from
the dual point
    of view
David Kyed
```

A compact quantum group comes with a distinguished state $h: C(\mathbb{G}) \rightarrow \mathbb{C}$ called the Haar state.

Property (T) for quantum groups from the dual point of view

David Kyed

A compact quantum group comes with a distinguished state $h: C(\mathbb{G}) \rightarrow \mathbb{C}$ called the Haar state. This yields

- A GNS space $L^{2}(\mathbb{G}):=L^{2}(C(\mathbb{G}), h)$.
Property (T)
for groups
Quantum
groups

Property (T) for quantum groups from the dual point of view

David Kyed

A compact quantum group comes with a distinguished state $h: C(\mathbb{G}) \rightarrow \mathbb{C}$ called the Haar state. This yields

- A GNS space $L^{2}(\mathbb{G}):=L^{2}(C(\mathbb{G}), h)$.
- A GNS representation $\lambda: C(\mathbb{G}) \rightarrow B\left(L^{2}(\mathbb{G})\right)$ whose image $\lambda(C(\mathbb{G}))=: C\left(\mathbb{G}_{\text {red }}\right)$ is again a compact quantum group.

A compact quantum group comes with a distinguished state $h: C(\mathbb{G}) \rightarrow \mathbb{C}$ called the Haar state. This yields

- A GNS space $L^{2}(\mathbb{G}):=L^{2}(C(\mathbb{G}), h)$.
- A GNS representation $\lambda: C(\mathbb{G}) \rightarrow B\left(L^{2}(\mathbb{G})\right)$ whose image $\lambda(C(\mathbb{G}))=: C\left(\mathbb{G}_{\text {red }}\right)$ is again a compact quantum group.
- A von Neumann algebra $L^{\infty}(\mathbb{G}):=\lambda(C(\mathbb{G}))^{\prime \prime}$ which becomes a von Neumann algebraic quantum group.

Property (T)

Summing up we have:

A compact quantum group \mathbb{G} has a discrete dual quantum group $\widehat{\mathbb{G}}$.

Property (T) for quantum groups from the dual point of view David Kyed Property (T) for groups Quantum groups

A compact quantum group \mathbb{G} has a discrete dual quantum group $\hat{\mathbb{G}}$. It comes with 3 algebras

Property (T) for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum groups
and a comultiplication $\hat{\Delta}: \ell^{\infty}(\hat{\mathbb{G}}) \rightarrow \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} \ell^{\infty}(\hat{\mathbb{G}})$.

Definition

Property (T) for quantum groups from the dual point of view David Kyed

A compact quantum group \mathbb{G} has a discrete dual quantum group $\hat{\mathbb{G}}$. It comes with 3 algebras

and a comultiplication $\hat{\Delta}: \ell^{\infty}(\hat{\mathbb{G}}) \rightarrow \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} \ell^{\infty}(\hat{\mathbb{G}})$.
Example: For $C_{\text {red }}^{*}(\Gamma)$ we get the following

$$
c_{f}(\Gamma) \subseteq c_{0}(\Gamma) \subseteq \ell^{\infty}(\Gamma)
$$

[^0]Property (T) for quantum groups from the dual point of view

David Kyed
roperty (T) for groups

A compact quantum group \mathbb{G} has a discrete dual quantum group $\hat{\mathbb{G}}$. It comes with 3 algebras

and a comultiplication $\hat{\Delta}: \ell^{\infty}(\hat{\mathbb{G}}) \rightarrow \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} \ell^{\infty}(\hat{\mathbb{G}})$.
Example: For $C_{\text {red }}^{*}(\Gamma)$ we get the following

$$
c_{f}(\Gamma) \subseteq c_{0}(\Gamma) \subseteq \ell^{\infty}(\Gamma)
$$

Definition

A corepresentation of $\hat{\mathbb{G}}$ on a Hilbert space H is a unitary $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ such that $(\hat{\Delta} \otimes \mathrm{id}) V=V_{(13)} V_{(23)}$

We write such a corepresentation as $V=\left(V_{\alpha}\right)_{\alpha \in I}$.

Property (T)
for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for quantum groups

We begin with the following data:

- $\hat{\mathbb{G}}$ a discrete quantum group,
- $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ a corepresentation,
- $E \subseteq \operatorname{lrred}(\mathbb{G})$ and $\delta>0$.

Property (T) for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

We begin with the following data:

- $\hat{\mathbb{G}}$ a discrete quantum group,
- $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ a corepresentation,
- $E \subseteq \operatorname{lrred}(\mathbb{G})$ and $\delta>0$.

Definition (Fima)

- $\xi \in H$ is called invariant if $V_{\alpha}(\eta \otimes \xi)=\eta \otimes \xi$ for all $\alpha \in I$ and $\eta \in H_{\alpha}$.

Property (T)
for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for quantum groups

We begin with the following data:

- $\widehat{\mathbb{G}}$ a discrete quantum group,
- $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ a corepresentation,
- $E \subseteq \operatorname{lrred}(\mathbb{G})$ and $\delta>0$.

Definition (Fima)

- $\xi \in H$ is called invariant if $V_{\alpha}(\eta \otimes \xi)=\eta \otimes \xi$ for all $\alpha \in I$ and $\eta \in H_{\alpha}$.
- $\xi \in(H)_{1}$ is called (E, δ)-invariant if $\left\|V_{\alpha}(\eta \otimes \xi)-\eta \otimes \xi\right\|<\delta$ for each $\alpha \in E$ and each $\eta \in\left(H_{\alpha}\right)_{1}$.

Property (T)
for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for quantum groups

We begin with the following data:

- $\widehat{\mathbb{G}}$ a discrete quantum group,
- $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ a corepresentation,
- $E \subseteq \operatorname{lrred}(\mathbb{G})$ and $\delta>0$.

Definition (Fima)

- $\xi \in H$ is called invariant if $V_{\alpha}(\eta \otimes \xi)=\eta \otimes \xi$ for all $\alpha \in I$ and $\eta \in H_{\alpha}$.
- $\xi \in(H)_{1}$ is called (E, δ)-invariant if $\left\|V_{\alpha}(\eta \otimes \xi)-\eta \otimes \xi\right\|<\delta$ for each $\alpha \in E$ and each $\eta \in\left(H_{\alpha}\right)_{1}$.
- V has almost invariant vectors if such ξ exists for each (E, δ).

Property (T) for quantum groups

We begin with the following data:

- $\widehat{\mathbb{G}}$ a discrete quantum group,
- $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ a corepresentation,
- $E \subseteq \operatorname{lrred}(\mathbb{G})$ and $\delta>0$.

Definition (Fima)

- $\xi \in H$ is called invariant if $V_{\alpha}(\eta \otimes \xi)=\eta \otimes \xi$ for all $\alpha \in I$ and $\eta \in H_{\alpha}$.
- $\xi \in(H)_{1}$ is called (E, δ)-invariant if $\left\|V_{\alpha}(\eta \otimes \xi)-\eta \otimes \xi\right\|<\delta$ for each $\alpha \in E$ and each $\eta \in\left(H_{\alpha}\right)_{1}$.
- V has almost invariant vectors if such ξ exists for each (E, δ).
- $\widehat{\mathbb{G}}$ has property (T) if each corepresentation that has almost invariant vectors, has a non-zero invariant vector.

Property (T)
for quantum
groups from
the dual point
of view
David Kyed
Property (T)
for groups
Quantum
groups
Property (T) for quantum groups The dual picture

> Unraveling the definition for $\mathbb{G}=C_{\text {red }}^{*}(\Gamma)$ we get that $\hat{\mathbb{G}}$ has property (T) iff Γ has property (T).

Theorem (Fima)

Property (T)

Unraveling the definition for $\mathbb{G}=C_{\text {red }}^{*}(\Gamma)$ we get that $\hat{\mathbb{G}}$ has property (T) iff Γ has property (T).

Theorem (Fima)

Let $\hat{\mathbb{G}}$ be a discrete quantum group. Then

- if $\hat{\mathbb{G}}$ has property (T) then \mathbb{G} is Kac and $\operatorname{Corep}(\mathbb{G})$ is finitely generated.
- if $\hat{\mathbb{G}}$ has property (T) then there exists Kazhdan pairs; i.e. there exists $\left(E_{0}, \delta_{0}\right)$ such that any corepresentation with an $\left(E_{0}, \delta_{0}\right)$-invariant vector has a non-zero invariant vector.

Property (T)

Unraveling the definition for $\mathbb{G}=C_{\text {red }}^{*}(\Gamma)$ we get that $\hat{\mathbb{G}}$ has property (T) iff Γ has property (T).

Theorem (Fima)

Let $\hat{\mathbb{G}}$ be a discrete quantum group. Then

- if $\hat{\mathbb{G}}$ has property (T) then \mathbb{G} is Kac and $\operatorname{Corep}(\mathbb{G})$ is finitely generated.
- if $\hat{\mathbb{G}}$ has property (T) then there exists Kazhdan pairs; i.e. there exists $\left(E_{0}, \delta_{0}\right)$ such that any corepresentation with an $\left(E_{0}, \delta_{0}\right)$-invariant vector has a non-zero invariant vector.
- if $L^{\infty}(\mathbb{G})$ is a factor then $\hat{\mathbb{G}}$ has property (T) iff $L^{\infty}(\mathbb{G})$ is a $\mathbf{I I}_{1}$-factor with property (T), in the sense of Connes-Jones.

Unraveling the definition for $\mathbb{G}=C_{\text {red }}^{*}(\Gamma)$ we get that $\hat{\mathbb{G}}$ has property (T) iff Γ has property (T).

Theorem (Fima)

Let $\hat{\mathbb{G}}$ be a discrete quantum group. Then

- if $\hat{\mathbb{G}}$ has property (T) then \mathbb{G} is Kac and $\operatorname{Corep}(\mathbb{G})$ is finitely generated.
- if $\hat{\mathbb{G}}$ has property (T) then there exists Kazhdan pairs; i.e. there exists $\left(E_{0}, \delta_{0}\right)$ such that any corepresentation with an $\left(E_{0}, \delta_{0}\right)$-invariant vector has a non-zero invariant vector.
- if $L^{\infty}(\mathbb{G})$ is a factor then $\hat{\mathbb{G}}$ has property (T) iff $L^{\infty}(\mathbb{G})$ is a $\mathbf{I I}_{1}$-factor with property (T), in the sense of Connes-Jones.

Goal: express property (T) completely in terms of \mathbb{G}.

Property (T)

From discrete to compact

Notice that
Corepresentations of $\hat{\mathbb{G}} \stackrel{1: 1}{\longleftrightarrow} *$-representations of $\operatorname{Pol}(\mathbb{G})$.
We can now mimic the definition from the dual point of view:

Definition

Property (T)

From discrete to compact

Notice that

$$
\text { Corepresentations of } \hat{\mathbb{G}} \stackrel{1: 1}{\longleftrightarrow} * \text {-representations of } \operatorname{Pol}(\mathbb{G}) \text {. }
$$

We can now mimic the definition from the dual point of view:

Definition

Let $\pi: \operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ be a $*-r e p, E \subseteq \operatorname{lrred}(\mathbb{G})$ and $\delta>0$.
Then

- $\xi \in H$ is called invariant if $\pi(a) \xi=\varepsilon(a) \xi$ for every $a \in \operatorname{Pol}(\mathbb{G})$.

From discrete to compact

Notice that
Corepresentations of $\widehat{\mathbb{G}} \stackrel{1: 1}{\longleftrightarrow} *$-representations of $\operatorname{Pol}(\mathbb{G})$.
We can now mimic the definition from the dual point of view:

Definition

Let $\pi: \operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ be a $*-r e p, E \subseteq \operatorname{lrred}(\mathbb{G})$ and $\delta>0$.
Then

- $\xi \in H$ is called invariant if $\pi(a) \xi=\varepsilon(a) \xi$ for every

$$
a \in \operatorname{Pol}(\mathbb{G})
$$

- $\xi \in(H)_{1}$ is called (E, δ)-invariant if

$$
\left\|\pi\left(u_{i j}^{\alpha}\right) \xi-\varepsilon\left(u_{i j}^{\alpha}\right) \xi\right\|<\delta \text { for every } \alpha \in E \text { and } 1 \leq i, j \leq n_{\alpha} .
$$

From discrete to compact

Notice that
Corepresentations of $\hat{\mathbb{G}} \stackrel{1: 1}{\longleftrightarrow} *$-representations of $\operatorname{Pol}(\mathbb{G})$.
We can now mimic the definition from the dual point of view:

Definition

Let $\pi: \operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ be a $*-r e p, E \subseteq \operatorname{lrred}(\mathbb{G})$ and $\delta>0$.
Then

- $\xi \in H$ is called invariant if $\pi(a) \xi=\varepsilon(a) \xi$ for every $a \in \operatorname{Pol}(\mathbb{G})$.
- $\xi \in(H)_{1}$ is called (E, δ)-invariant if $\left\|\pi\left(u_{i j}^{\alpha}\right) \xi-\varepsilon\left(u_{i j}^{\alpha}\right) \xi\right\|<\delta$ for every $\alpha \in E$ and $1 \leq i, j \leq n_{\alpha}$.
- π is said to have almost invariant vectors if such ξ exists for every (E, δ).

Property (T) for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The expected result then holds

Proposition (K.)

$\widehat{\mathbb{G}}$ has property (T) iff every *-representation π : $\operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ which has almost invariant vectors has a non-zero invariant vector.

Recall: 「 has property (T) iff every sequence of normalized positive definite functions $\varphi_{n}: \Gamma \rightarrow \mathbb{C}$ converging pointwise to 1, converges uniformly. A positive definite, normalized function on Γ corresponds to a state on $C_{m a x}(\Gamma)$.

Property (T) for quantum groups from the dual point of view David Kyed

The expected result then holds

Proposition (K.)

$\widehat{\mathbb{G}}$ has property (T) iff every $*$-representation π : $\operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ which has almost invariant vectors has a non-zero invariant vector.

Recall: Γ has property (T) iff every sequence of normalized, positive definite functions $\varphi_{n}: \Gamma \rightarrow \mathbb{C}$ converging pointwise to 1 , converges uniformly.

Property (T)

Proposition (K.)

$\widehat{\mathbb{G}}$ has property (T) iff every $*$-representation π : $\operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ which has almost invariant vectors has a non-zero invariant vector.

Recall: Γ has property (T) iff every sequence of normalized, positive definite functions $\varphi_{n}: \Gamma \rightarrow \mathbb{C}$ converging pointwise to 1, converges uniformly. A positive definite, normalized function on Γ corresponds to a state on $C_{\max }^{*}(\Gamma)$.

The expected result then holds

Proposition (K.)

$\widehat{\mathbb{G}}$ has property (T) iff every *-representation π : $\operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ which has almost invariant vectors has a non-zero invariant vector.

Recall: Γ has property (T) iff every sequence of normalized, positive definite functions $\varphi_{n}: \Gamma \rightarrow \mathbb{C}$ converging pointwise to 1, converges uniformly. A positive definite, normalized function on Γ corresponds to a state on $C_{\max }^{*}(\Gamma)$. The relation

$$
\|a\|_{\max }=\sup \{\|\pi(a)\| \mid \pi: \operatorname{Pol}(\mathbb{G}) \rightarrow B(H) \text { a } * \text {-rep }\}
$$

is a norm and gives rise to a C^{*}-completion $C\left(\mathbb{G}_{\max }\right)$ of $\operatorname{Pol}(\mathbb{G})$. The result now is:

The expected result then holds

Proposition (K.)

$\widehat{\mathbb{G}}$ has property (T) iff every *-representation π : $\operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ which has almost invariant vectors has a non-zero invariant vector.

Recall: Γ has property (T) iff every sequence of normalized, positive definite functions $\varphi_{n}: \Gamma \rightarrow \mathbb{C}$ converging pointwise to 1 , converges uniformly. A positive definite, normalized function on Γ corresponds to a state on $C_{\max }^{*}(\Gamma)$. The relation

$$
\|a\|_{\max }=\sup \{\|\pi(a)\| \mid \pi: \operatorname{Pol}(\mathbb{G}) \rightarrow B(H) \text { a } *-r e p\}
$$

is a norm and gives rise to a C^{*}-completion $C\left(\mathbb{G}_{\max }\right)$ of $\operatorname{Pol}(\mathbb{G})$. The result now is:

Theorem (Fima, K.)

The quantum group $\hat{\mathbb{G}}$ has property (T) iff every sequence of states $\varphi_{n}: C\left(\mathbb{G}_{\max }\right) \rightarrow \mathbb{C}$ converging pointwise to the counit ε, converges in the uniform norm.

Property (T) for quantum groups from the dual point of view

A cohomological description

Recall: 「 has property (T) iff any 1-cocycle is inner. description for quantum groups is a bit more involved

Definition

Property (T)
for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum
groups
Property (T) for quantum groups

The dual picture

A cohomological description

Recall: 「 has property (T) iff any 1-cocycle is inner. The description for quantum groups is a bit more involved:

Property (T)

A cohomological description

Recall: Г has property (T) iff any 1-cocycle is inner. The description for quantum groups is a bit more involved:

Definition

Let π : $\operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ be a *-representation and consider a Hochschild 1-cocycle $c: \operatorname{Pol}(\mathbb{G}) \rightarrow{ }_{\pi} H_{\varepsilon}$.

Property (T)

A cohomological description

Recall: 「 has property (T) iff any 1-cocycle is inner. The description for quantum groups is a bit more involved:

Definition

Let π : $\operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ be a *-representation and consider a Hochschild 1-cocycle c : $\operatorname{Pol}(\mathbb{G}) \rightarrow{ }_{\pi} H_{\varepsilon}$. Then c is called closable if the following holds: if $x_{n} \in \operatorname{ker}(\varepsilon) \subseteq \operatorname{Pol}(\mathbb{G})$ is a sequence such that $\left\|x_{n}\right\|_{\gamma} \rightarrow 0$ and $c\left(x_{n}\right) \rightarrow \eta$ then $\eta=0$,

A cohomological description

Recall: Γ has property (T) iff any 1-cocycle is inner. The description for quantum groups is a bit more involved:

Definition

Let π : $\operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ be a *-representation and consider a Hochschild 1-cocycle c : $\operatorname{Pol}(\mathbb{G}) \rightarrow{ }_{\pi} H_{\varepsilon}$. Then c is called closable if the following holds: if $x_{n} \in \operatorname{ker}(\varepsilon) \subseteq \operatorname{Pol}(\mathbb{G})$ is a sequence such that $\left\|x_{n}\right\|_{\gamma} \rightarrow 0$ and $c\left(x_{n}\right) \rightarrow \eta$ then $\eta=0$, where

$$
\|x\|_{\gamma}=\sup \{\|\pi(x)\| \mid \pi: \operatorname{Pol}(\mathbb{G}) \rightarrow B(H) *-r e p, \varepsilon \not \leq \pi\}
$$

A cohomological description

Recall: 「 has property (T) iff any 1-cocycle is inner. The description for quantum groups is a bit more involved:

Definition

Let $\pi: \operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ be a $*$-representation and consider a Hochschild 1-cocycle c : $\operatorname{Pol}(\mathbb{G}) \rightarrow{ }_{\pi} H_{\varepsilon}$. Then c is called closable if the following holds: if $x_{n} \in \operatorname{ker}(\varepsilon) \subseteq \operatorname{Pol}(\mathbb{G})$ is a sequence such that $\left\|x_{n}\right\|_{\gamma} \rightarrow 0$ and $c\left(x_{n}\right) \rightarrow \eta$ then $\eta=0$, where

$$
\|x\|_{\gamma}=\sup \{\|\pi(x)\| \mid \pi: \operatorname{Pol}(\mathbb{G}) \rightarrow B(H) *-r e p, \varepsilon \not \leq \pi\}
$$

Theorem (K.)

$\widehat{\mathbb{G}}$ has property (T) iff any closable 1-cocycle is inner.

```
Property (T)
for quantum
groups from
the dual point
    of view
David Kyed
Property (T)
for groups
Quantum
groups
Property (T)
for quantum
groups
```

The dual
picture

Property (T) for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum
groups
Property (T) for quantum groups

The dual picture

Spectral characterization

Let \mathbb{G} be a matrix quantum group and let $E \subset \operatorname{lrred}(\mathbb{G})$ be a generating subset for $\operatorname{Irred}(\mathbb{G})$.

This element detects property (T):

Theorem (K)

$\widehat{\mathbb{G}}$ has property (T) iff $\pi(x)$ is invertible for each *-representation $\pi: \operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ without invaria t vectors

Property (T)
for quantum groups from the dual point of view

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Spectral characterization

Let \mathbb{G} be a matrix quantum group and let $E \subset \operatorname{Irred}(\mathbb{G})$ be a generating subset for $\operatorname{lrred}(\mathbb{G})$. Then we define

$$
x=\sum_{\alpha \in E} \sum_{i, j=1}^{n_{\alpha}}\left(u_{i j}^{\alpha}-\varepsilon\left(u_{i j}^{\alpha}\right) 1\right)^{*}\left(u_{i j}^{\alpha}-\varepsilon\left(u_{i j}^{\alpha}\right) 1\right) \in \operatorname{Pol}(\mathbb{G})
$$

This element detects property (T)

Theorem

\hat{C} has property (T)

Property (T)

Spectral characterization

Let \mathbb{G} be a matrix quantum group and let $E \subset \operatorname{lrred}(\mathbb{G})$ be a generating subset for $\operatorname{Irred}(\mathbb{G})$. Then we define

$$
x=\sum_{\alpha \in E} \sum_{i, j=1}^{n_{\alpha}}\left(u_{i j}^{\alpha}-\varepsilon\left(u_{i j}^{\alpha}\right) 1\right)^{*}\left(u_{i j}^{\alpha}-\varepsilon\left(u_{i j}^{\alpha}\right) 1\right) \in \operatorname{Pol}(\mathbb{G})
$$

This element detects property (T):

Theorem (K.)

$\hat{\mathbb{G}}$ has property (T) iff $\pi(x)$ is invertible for each *-representation $\pi: \operatorname{Pol}(\mathbb{G}) \rightarrow B(H)$ without invariant vectors.

[^0]: Definition

