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Property (T) for groups

We start with the following data:
e [ discrete, countable group,

o m: [ — U(H) a representation,
e E CT finite, § > 0 and £ € (H);.



Property (T)

%",{,E;:I“ftsﬁ Property (T) for groups

the dual point
of view

Pidioed  \We start with the following data:

forrogf;ypsm e [ discrete, countable group,
co o m: [ — U(H) a representation,
Property (T) o E g r f|n|te, 5 > 0 and § S (H)]_
for quantum

s Then

The dual

e o {is called (E,d)-invariant if ||7(y)§ — & < 6 for v € E.



Property (T)

%",Z,E;j‘l"ftsg‘ Property (T) for groups

the dual point
of view

Pavid Kyed We start with the following data:

A e [ discrete, countable group,

co e m: [ — U(H) a representation,

Property (T) o E g r f|n|te, 5 > 0 and § S (H)]_

for quantum

s Then

The dual ) ) ) .

picture o ¢ is called (E,d)-invariant if ||w(v)¢ —&|| < & for v € E.

e 7 is said to have almost invariant vectors if such £ exists
for all E and 4.



Property (T)

%",LE::I"J;;‘ Property (T) for groups

the dual point
of view

Pavidkoed  \We start with the following data:

A e [ discrete, countable group,

co e m: [ — U(H) a representation,

Property (T) o E g r f|n|te, 5 > 0 and é. S (H)]_

for quantum

s Then

The dual i ) ) .

picture o ¢ is called (E,d)-invariant if ||w(v)¢ —&|| < & for v € E.
e 7 is said to have almost invariant vectors if such £ exists

for all E and 4.

e [ is said to have Kazhdan's property (T) if every 7 that
has almost invariant vectors actually has a non-zero
invariant vector.
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Pavidkoed  \We start with the following data:

A e [ discrete, countable group,

co e m: [ — U(H) a representation,

Property (T) o E g r finite, 5 > 0 and é. S (H)]_

for quantum

s Then

The dual i ) ) .

picture o ¢ is called (E,d)-invariant if ||w(v)¢ —&|| < & for v € E.
e 7 is said to have almost invariant vectors if such £ exists

for all E and 4.

e [ is said to have Kazhdan's property (T) if every 7 that
has almost invariant vectors actually has a non-zero
invariant vector.

Property (T) is of importance in many fields — in particular
operator algebras.
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The following conditions are equivalent
e [ has property (T).

e Any sequence p,: I — C of normalized, positive definite
functions converging pointwise to 1 has to converge
uniformly.

o Forany m: T — U(H) we have H(T,H) = 0.
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Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent
e [ has property (T).

e Any sequence p,: I — C of normalized, positive definite
functions converging pointwise to 1 has to converge
uniformly.

o Forany m: T — U(H) we have H(T,H) = 0.
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There are many ways to describe property (T). Here are two:

Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent
e [ has property (T).
e Any sequence p,: I — C of normalized, positive definite

functions converging pointwise to 1 has to converge
uniformly.

o Forany m: T — U(H) we have H* (', H) = 0.

i.e. pn(e) =1 and pp(x*x) >0 for x € Cr.
First group cohomology of ['=first Hochschild cohomology
HY(CT, +H,).
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There are many ways to describe property (T). Here are two:

Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent

e [ has property (T).

e Any sequence p,: I — C of normalized, positive definite
functions converging pointwise to 1 has to converge
uniformly.

o Forany m: T — U(H) we have H(T,H) = 0.

i.e. pn(e) =1 and pp(x*x) >0 for x € Cr.

First group cohomology of I'=first Hochschild cohomology
HY(CT, . H.).

The aim of the talk is to discuss a similar result for quantum
groups. We first introduce these objects:
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for e, e (dRA)A = (A ®id)A,
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e e a certain density condition.
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Example: C(G) with G compact group and A(f)(s, t) = f(st).
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A compact quantum group G consists of a unital, separable
Quantum C*-algebra C(G) together with a unital x-homomorphism
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TSR Definition (\WWoronowicz)

A compact quantum group G consists of a unital, separable
C*-algebra C(G) together with a unital x-homomorphism
R A: C(G) — C(G) ® C(G) satisfying

o (d®RA)A = (A®id)A,

Quantum

e a certain density condition.

Example: C(G) with G compact group and A(f)(s, t) = f(st).
Example: C,() with I discrete and Ay =y ® 7.

Theorem (Woronowicz)

Any compact quantum group with C(G) abelian is of the form
C(G) for an honest compact group G.

As groups have representations, quantum groups have
corepresentations:
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H is a unitary u € C(G) ® B(H) satisfying
(A & ICI)U = U(13) U(23).
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A corepresentation of G on a finite dimensional Hilbert space
H is a unitary u € C(G) ® B(H) satisfying
(A ®id)u = u(13)u(23). This leads to:
e Intertwiners (morphisms) of corepresentations.
¢ A notion of irreducibility.
e A notion of direct sums and tensor products of
corepresentations.



Property (T . - . . .
A corepresentation of G on a finite dimensional Hilbert space
roups from . . . .
meawipon:  His a unitary u € C(G) ® B(H) satisfying
ofview (A ®id)u = u(13)u(23). This leads to:

David Kyed
Intertwiners (morphisms) of corepresentations.

A notion of irreducibility.

A notion of direct sums and tensor products of
corepresentations.

Complete decomposability into irreducibles.

Quantum
groups
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A corepresentation of G on a finite dimensional Hilbert space
H is a unitary u € C(G) ® B(H) satisfying
(A ®id)u = u(13)u(23). This leads to:

Intertwiners (morphisms) of corepresentations.

A notion of irreducibility.

e A notion of direct sums and tensor products of
corepresentations.
e Complete decomposability into irreducibles.
We now choose a complete set (u®),c; of representatives for
the set of equivalence classes of irreducible corepresentations
Irred(G):
u® € C(G) ® B(Hy,) ~ M, (C(G))
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Quantum
groups

A corepresentation of G on a finite dimensional Hilbert space
H is a unitary u € C(G) ® B(H) satisfying
(A ®id)u = u(13)u(23). This leads to:

e Intertwiners (morphisms) of corepresentations.

¢ A notion of irreducibility.

e A notion of direct sums and tensor products of
corepresentations.
e Complete decomposability into irreducibles.
We now choose a complete set (u®),¢s of representatives for
the set of equivalence classes of irreducible corepresentations
Irred(G):
u® € C(G) ® B(Hy,) ~ M, (C(G))

Theorem (Woronowicz)

Pol(G) := spanc{ujj | a € 1,1 <i,j < no} is a Hopf x-algebra.
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e A GNS representation \: C(G) — B(L?(G)) whose image
M C(G)) =:C(Gyeq) is again a compact quantum group.
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groups from

the dual point h: C(G) — C called the Haar state. This yields

D:\;:I:Zed e A GNS space L%(G):= L?(C(G), h).
e A GNS representation \: C(G) — B(L?(G)) whose image
M C(G)) =:C(Gyeq) is again a compact quantum group.
el e A von Neumann algebra L°(G):= A\(C(G))” which
becomes a von Neumann algebraic quantum group.

Summing up we have:

S

Y
General : C <—— Pol(G)“~——= C(Gyeq)— L=(G)

Yy

(MN——2()

Example : C po— Cre Crg
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Quantum
groups

A compact quantum group G has a discrete dual quantum
group G. It comes with 3 algebras

pol(G) > (G)——=(G)

def def def

D2 B(H.) B B(Ha) DL B(Ha)

and a comultiplication A: /°(G) — £°(G)&¢>(G).
Example: For C% (") we get the following

cr(lM) C () C e°(I).

Definition
A corepresentation of G on a HAi/bert space H is a unitary
V € (°(G)®B(H) such that (A ®id)V = V(13)V/(23)

We write such a corepresentation as V' = (Vy)aes-
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o £ € H is called invariant if V,(n ® &) =n &€& forall a € 1
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o £ € (H)1 is called (E,d)-invariant if
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We begin with the following data:

David Kyed ~
e G a discrete quantum group,
o V € (*(G)®B(H) a corepresentation,
e E Clrred(G) and § > 0.

Property (T) Def|n|t|0n (F|ma)

for quantum
groups

o £ € H is called invariant if V,(n ® &) =n &€& forall a € 1
andn € H,.

o £ € (H)1 is called (E,d)-invariant if
|Va(n® &) —n@&|| < & for each o € E and each
n € (Ha)1.

e V has almost invariant vectors if such & exists for each
(E,9).

e G has property (T) if each corepresentation that has
almost invariant vectors, has a non-zero invariant vector.
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property (T) iff I has property (T).
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Unraveling the definition for G = C%,(I") we get that G has
property (T) iff I has property (T).

Theorem (Fima)

Let G be a discrete quantum group. Then

o if G has property (T) then G is Kac and Corep(G) is
finitely generated.




Property (T)
for quantum
groups from
the dual point
of view

David Kyed

Property (T)
for quantum
groups

Unraveling the definition for G = C%,(I") we get that G has
property (T) iff I has property (T).

Theorem (Fima)

Let G be a discrete quantum group. Then
o if G has property (T) then G is Kac and Corep(G) is
finitely generated.
e if G has property (T) then there exists Kazhdan pairs; i.e.

there exists (Eo, do) such that any corepresentation with an
(Eo, d0)-invariant vector has a non-zero invariant vector.
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Property (T)
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Unraveling the definition for G = C%,(I") we get that G has
property (T) iff I has property (T).

Theorem (Fima)

Let G be a discrete quantum group. Then

o if G has property (T) then G is Kac and Corep(G) is
finitely generated.

o if G has property (T) then there exists Kazhdan pairs; i.e.
there exists (Eo, do) such that any corepresentation with an
(Eo, d0)-invariant vector has a non-zero invariant vector.

o if L°(G) is a factor then G has property (T) iff L°(G) is a
Iy -factor with property (T), in the sense of Connes-Jones.
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Property (T)
for quantum
groups

Unraveling the definition for G = C%,(I") we get that G has
property (T) iff I has property (T).

Theorem (Fima)

Let G be a discrete quantum group. Then

o if G has property (T) then G is Kac and Corep(G) is
finitely generated.

o if G has property (T) then there exists Kazhdan pairs; i.e.
there exists (Eo, do) such that any corepresentation with an
(Eo, d0)-invariant vector has a non-zero invariant vector.

o if L°(G) is a factor then G has property (T) iff L°(G) is a
Iy -factor with property (T), in the sense of Connes-Jones.

Goal: express property (T) completely in terms of G.
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Notice that

. A 1 .
Corepresentations of G «<— *-representations of Pol(G).

We can now mimic the definition from the dual point of view:

Definition

The dual

picture Let 7: Pol(G) — B(H) be a *-rep, E C lrred(G) and 6 > 0.
Then

o & € H is called invariant if m(a)§ = (a)¢ for every
a € Pol(G).
o & € (H)1 is called (E,d)-invariant if
[7(uff)€ — e(u)El| < 6 forevery a € E and 1 < i,j < nq.

e 7 is said to have almost invariant vectors if such & exists
for every (E,9).
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The expected result then holds
Proposition (K.)

G has property (T) iff every x-representation
7: Pol(G) — B(H) which has almost invariant vectors has a
non-zero invariant vector.

Recall: T has property (T) iff every sequence of normalized,
positive definite functions ¢,: I — C converging pointwise to
1, converges uniformly.
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The expected result then holds
Proposition (K.)

G has property (T) iff every x-representation
7: Pol(G) — B(H) which has almost invariant vectors has a
non-zero invariant vector.

Recall: T has property (T) iff every sequence of normalized,
positive definite functions ¢,: I — C converging pointwise to
1, converges uniformly. A positive definite, normalized function
on ' corresponds to a state on CJ,. ().
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The expected result then holds
Proposition (K.)

G has property (T) iff every x-representation
7: Pol(G) — B(H) which has almost invariant vectors has a
non-zero invariant vector.

Recall: T has property (T) iff every sequence of normalized,
positive definite functions ¢,: [ — C converging pointwise to
1, converges uniformly. A positive definite, normalized function

on I' corresponds to a state on i, (). The relation

|allmax = sup{[|m(a)l| | 7+ Pol(G) — B(H) a *-rep}

is a norm and gives rise to a C*-completion C(Gpax) of
Pol(G). The result now is:
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The expected result then holds
Proposition (K.)

G has property (T) iff every x-representation
7: Pol(G) — B(H) which has almost invariant vectors has a
non-zero invariant vector.

Recall: T has property (T) iff every sequence of normalized,
positive definite functions ¢,: [ — C converging pointwise to
1, converges uniformly. A positive definite, normalized function

on I' corresponds to a state on i, (). The relation

[allmax = sup{[[7(a)l | 7: Pol(G) — B(H) a x-rep}

is a norm and gives rise to a C*-completion C(Gpax) of
Pol(G). The result now is:

Theorem (Fima, K.)

The quantum group G has property (T) iff every sequence of
states ¢, C(Gmax) — C converging pointwise to the counit ¢,
converges in the uniform norm.
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uhsssull A cohomological description

the dual point
of view
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A cohomological description

Recall: T has property (T) iff any 1-cocycle is inner.The
description for quantum groups is a bit more involved:

Definition

Let w: Pol(G) — B(H) be a x-representation and consider a
Hochschild 1-cocycle c: Pol(G) — rH..Then c is called
closable if the following holds: if x, € ker(¢) C Pol(G) is a
sequence such that ||x,||y — 0 and c(x,) — n then n =0,
where

X[l = sup{llw ()| | w: Pol(G) — B(H) x-rep & £ m}

Theorem (K.)
G has property (T) iff any closable 1-cocycle is inner.
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This element detects property (T):

Theorem (K.)

G has property (T) iff m(x) is invertible for each
x-representation 7 : Pol(G) — B(H) without invariant vectors.
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