David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture

Property (T) for quantum groups from the dual point of view

David Kyed

Georg-August-Universität Göttingen

Copenhagen February 2010

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture

Rough outline

- Property (T) for groups
- Compact and discrete quantum groups
- Property (T) for quantum groups
- Different characterizations of property (T)

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for groups

We start with the following data:

- Γ discrete, countable group,
- $\pi \colon \Gamma \to U(H)$ a representation,
- $E \subseteq \Gamma$ finite, $\delta > 0$ and $\xi \in (H)_1$.

hen

- ξ is called (E, δ) -invariant if $\|\pi(\gamma)\xi \xi\| < \delta$ for $\gamma \in E$.
- π is said to have almost invariant vectors if such ξ exists for all E and δ .
- Γ is said to have Kazhdan's property (T) if every π that has almost invariant vectors actually has a non-zero invariant vector.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for groups

We start with the following data:

- Γ discrete, countable group,
- $\pi \colon \Gamma \to U(H)$ a representation,
- $E \subseteq \Gamma$ finite, $\delta > 0$ and $\xi \in (H)_1$.

Then

- ξ is called (E, δ) -invariant if $||\pi(\gamma)\xi \xi|| < \delta$ for $\gamma \in E$.
 - π is said to have almost invariant vectors if such ξ exists for all E and δ .
- Γ is said to have Kazhdan's property (T) if every π that has almost invariant vectors actually has a non-zero invariant vector.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for groups

We start with the following data:

- Γ discrete, countable group,
- $\pi \colon \Gamma \to U(H)$ a representation,
- $E \subseteq \Gamma$ finite, $\delta > 0$ and $\xi \in (H)_1$.

Then

- ξ is called (E, δ) -invariant if $\|\pi(\gamma)\xi \xi\| < \delta$ for $\gamma \in E$.
- π is said to have almost invariant vectors if such ξ exists for all E and δ .
- Γ is said to have Kazhdan's property (T) if every π that has almost invariant vectors actually has a non-zero invariant vector.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for groups

We start with the following data:

- Γ discrete, countable group,
- $\pi \colon \Gamma \to U(H)$ a representation,
- $E \subseteq \Gamma$ finite, $\delta > 0$ and $\xi \in (H)_1$.

Then

- ξ is called (E, δ) -invariant if $||\pi(\gamma)\xi \xi|| < \delta$ for $\gamma \in E$.
- π is said to have almost invariant vectors if such ξ exists for all E and δ .
- Γ is said to have Kazhdan's property (T) if every π that has almost invariant vectors actually has a non-zero invariant vector.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for groups

We start with the following data:

- Γ discrete, countable group,
- $\pi \colon \Gamma \to U(H)$ a representation,
- $E \subseteq \Gamma$ finite, $\delta > 0$ and $\xi \in (H)_1$.

Then

- ξ is called (E, δ) -invariant if $\|\pi(\gamma)\xi \xi\| < \delta$ for $\gamma \in E$.
- π is said to have almost invariant vectors if such ξ exists for all E and δ .
- Γ is said to have Kazhdan's property (T) if every π that has almost invariant vectors actually has a non-zero invariant vector.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture There are many ways to describe property (T). Here are two:

Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent

- Γ has property (T).
- Any sequence φ_n: Γ → C of normalized, positive definite functions converging pointwise to 1 has to converge uniformly.
- For any $\pi \colon \Gamma \to U(H)$ we have $H^1(\Gamma, H) = 0$.

i.e. $\varphi_n(e) = 1$ and $\varphi_n(x^*x) \ge 0$ for $x \in \mathbb{C}\Gamma$. First group cohomology of Γ =first Hochschild cohomology $H^1(\mathbb{C}\Gamma, \pi H_{\varepsilon})$. The aim of the talk is to discuss a similar result for quantum groups. We first introduce these objects:

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture There are many ways to describe property (T). Here are two:

Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent

- Γ has property (T).
- Any sequence φ_n: Γ → C of normalized, positive definite functions converging pointwise to 1 has to converge uniformly.
- For any $\pi \colon \Gamma \to U(H)$ we have $H^1(\Gamma, H) = 0$.

i.e. $\varphi_n(e) = 1$ and $\varphi_n(x^*x) \ge 0$ for $x \in \mathbb{C}\Gamma$.

First group cohomology of Γ =first Hochschild cohomology $H^1(\mathbb{C}\Gamma, {}_{\pi}H_{\varepsilon})$. The aim of the talk is to discuss a similar result for quantur groups. We first introduce these objects:

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture There are many ways to describe property (T). Here are two:

Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent

- Γ has property (T).
- Any sequence φ_n: Γ → C of normalized, positive definite functions converging pointwise to 1 has to converge uniformly.
- For any $\pi \colon \Gamma \to U(H)$ we have $H^1(\Gamma, H) = 0$.

i.e. $\varphi_n(e) = 1$ and $\varphi_n(x^*x) \ge 0$ for $x \in \mathbb{C}\Gamma$. First group cohomology of Γ =first Hochschild cohomology $H^1(\mathbb{C}\Gamma, {}_{\pi}H_{\varepsilon})$.

The aim of the talk is to discuss a similar result for quantum groups. We first introduce these objects:

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture There are many ways to describe property (T). Here are two:

Theorem (Delorme-Guichardet, de la Harpe-Valette)

The following conditions are equivalent

- Γ has property (T).
- Any sequence φ_n: Γ → C of normalized, positive definite functions converging pointwise to 1 has to converge uniformly.
- For any $\pi \colon \Gamma \to U(H)$ we have $H^1(\Gamma, H) = 0$.

i.e. $\varphi_n(e) = 1$ and $\varphi_n(x^*x) \ge 0$ for $x \in \mathbb{C}\Gamma$. First group cohomology of Γ =first Hochschild cohomology $H^1(\mathbb{C}\Gamma, {}_{\pi}H_{\varepsilon})$.

The aim of the talk is to discuss a similar result for quantum groups. We first introduce these objects:

David Kyed

from point Compact quantum groups

Definition (Woronowicz)

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A compact quantum group \mathbb{G} consists of a unital, separable C^* -algebra $C(\mathbb{G})$ together with a unital *-homomorphism $\Delta \colon C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ satisfying

- $(\mathsf{id} \otimes \Delta)\Delta = (\Delta \otimes \mathsf{id})\Delta$,
- a certain density condition.

Example: C(G) with G compact group and $\Delta(f)(s, t) = f(st)$. Example: $C^*_{red}(\Gamma)$ with Γ discrete and $\Delta \gamma = \gamma \otimes \gamma$.

Theorem (Woronowicz)

Any compact quantum group with $C(\mathbb{G})$ abelian is of the form C(G) for an honest compact group G.

David Kyed

ual point view

Definition (Woronowicz)

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A compact quantum group \mathbb{G} consists of a unital, separable C^* -algebra $C(\mathbb{G})$ together with a unital *-homomorphism $\Delta \colon C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ satisfying

• $(\mathsf{id} \otimes \Delta)\Delta = (\Delta \otimes \mathsf{id})\Delta$,

Compact quantum groups

• a certain density condition.

Example: C(G) with G compact group and $\Delta(f)(s, t) = f(st)$. Example: $C^*_{red}(\Gamma)$ with Γ discrete and $\Delta \gamma = \gamma \otimes \gamma$.

Theorem (Woronowicz)

Any compact quantum group with $C(\mathbb{G})$ abelian is of the form C(G) for an honest compact group G.

David Kyed

compact quantum groups

Definition (Woronowicz)

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A compact quantum group \mathbb{G} consists of a unital, separable C^* -algebra $C(\mathbb{G})$ together with a unital *-homomorphism $\Delta \colon C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ satisfying

- $(\mathsf{id} \otimes \Delta)\Delta = (\Delta \otimes \mathsf{id})\Delta$,
- a certain density condition.

Example: C(G) with G compact group and $\Delta(f)(s, t) = f(st)$. Example: $C^*_{red}(\Gamma)$ with Γ discrete and $\Delta \gamma = \gamma \otimes \gamma$.

Theorem (Woronowicz)

Any compact quantum group with $C(\mathbb{G})$ abelian is of the form C(G) for an honest compact group G.

of view

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Compact quantum groups

Definition (Woronowicz)

A compact quantum group \mathbb{G} consists of a unital, separable C^* -algebra $C(\mathbb{G})$ together with a unital *-homomorphism $\Delta \colon C(\mathbb{G}) \to C(\mathbb{G}) \otimes C(\mathbb{G})$ satisfying

- $(\mathsf{id} \otimes \Delta)\Delta = (\Delta \otimes \mathsf{id})\Delta$,
- a certain density condition.

Example: C(G) with G compact group and $\Delta(f)(s, t) = f(st)$. Example: $C^*_{red}(\Gamma)$ with Γ discrete and $\Delta \gamma = \gamma \otimes \gamma$.

Theorem (Woronowicz)

Any compact quantum group with $C(\mathbb{G})$ abelian is of the form C(G) for an honest compact group G.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes id)u = u_{(13)}u_{(23)}$. This leads to:

• Intertwiners (morphisms) of corepresentations.

A notion of irreducibility.

A notion of direct sums and tensor products of corepresentations.

Complete decomposability into irreducibles.

We now choose a complete set $(u^{\alpha})_{\alpha \in I}$ of representatives for the set of equivalence classes of irreducible corepresentations Irred(G):

 $u^{\alpha} \in C(\mathbb{G}) \otimes B(H_{\alpha}) \simeq \mathbb{M}_{n_{\alpha}}(C(\mathbb{G}))$

 $\mathsf{Pol}(G) := \mathsf{span}_G\{u_0^c \mid \alpha \in I, 1 \leq i, j \leq n_a\}$ is a Hopf *-algebrase

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes id)u = u_{(13)}u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.
- A notion of direct sums and tensor products of corepresentations.
- Complete decomposability into irreducibles.

We now choose a complete set $(u^{\alpha})_{\alpha \in I}$ of representatives for the set of equivalence classes of irreducible corepresentations Irred(G):

 $u^{\alpha} \in C(\mathbb{G}) \otimes B(H_{\alpha}) \simeq \mathbb{M}_{n_{\alpha}}(C(\mathbb{G}))$

 $\mathsf{Pol}(G) := \mathsf{span}_G \{u_0^c \mid \alpha \in I, 1 \leq i, j \leq n_d\}$ is a Hopf *-algebra in the set of the set

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes id)u = u_{(13)}u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.
- A notion of direct sums and tensor products of corepresentations.
- Complete decomposability into irreducibles.

We now choose a complete set $(u^{\alpha})_{\alpha \in I}$ of representatives for the set of equivalence classes of irreducible corepresentations Irred(G):

 $u^{\alpha} \in C(\mathbb{G}) \otimes B(H_{\alpha}) \simeq \mathbb{M}_{n_{\alpha}}(C(\mathbb{G}))$

 $\mathsf{Pol}(\mathsf{G}) := \mathsf{span}_{\mathsf{G}}\{u_{0}^{c} \mid \alpha \in I, 1 \leq i, j \leq n_{d}\}$ is a Hopf *-algebrase

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes id)u = u_{(13)}u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.
- A notion of direct sums and tensor products of corepresentations.
 - Complete decomposability into irreducibles.

We now choose a complete set $(u^{\alpha})_{\alpha \in I}$ of representatives for the set of equivalence classes of irreducible corepresentations Irred(G):

 $u^{lpha} \in \mathcal{C}(\mathbb{G}) \otimes \mathcal{B}(\mathcal{H}_{lpha}) \simeq \mathbb{M}_{n_{lpha}}(\mathcal{C}(\mathbb{G}))$

 $\mathsf{Pol}(\mathsf{G}) := \mathsf{span}_{\mathsf{G}}\{u_{0}^{c} \mid \alpha \in I, 1 \leq i, j \leq n_{d}\}$ is a Hopf *-algebrase

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes id)u = u_{(13)}u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.
- A notion of direct sums and tensor products of corepresentations.
- Complete decomposability into irreducibles.

We now choose a complete set $(u^{\alpha})_{\alpha \in I}$ of representatives for the set of equivalence classes of irreducible corepresentations lrred(G):

 $u^{\alpha} \in C(\mathbb{G}) \otimes B(H_{\alpha}) \simeq \mathbb{M}_{n_{\alpha}}(C(\mathbb{G}))$

Theorem (Woronowicz)

 $\mathsf{Pol}(\mathbb{G}):=\mathsf{span}_{\mathbb{C}}\{u^lpha_{ij}\mid lpha\in I, 1\leq i,j\leq n_lpha\}$ is a Hopf *-algebra.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes id)u = u_{(13)}u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.
- A notion of direct sums and tensor products of corepresentations.
- Complete decomposability into irreducibles.

We now choose a complete set $(u^{\alpha})_{\alpha \in I}$ of representatives for the set of equivalence classes of irreducible corepresentations Irred(G):

 $u^{lpha} \in C(\mathbb{G}) \otimes B(H_{lpha}) \simeq \mathbb{M}_{n_{lpha}}(C(\mathbb{G}))$

Theorem (Woronowicz)

 $\mathsf{Pol}(\mathbb{G}) := \mathsf{span}_{\mathbb{C}}\{u_{ij}^{\alpha} \mid \alpha \in I, 1 \leq i, j \leq n_{\alpha}\} \text{ is a Hopf }*-algebra.$

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A corepresentation of \mathbb{G} on a finite dimensional Hilbert space H is a unitary $u \in C(\mathbb{G}) \otimes B(H)$ satisfying $(\Delta \otimes id)u = u_{(13)}u_{(23)}$. This leads to:

- Intertwiners (morphisms) of corepresentations.
- A notion of irreducibility.
- A notion of direct sums and tensor products of corepresentations.
- Complete decomposability into irreducibles.

We now choose a complete set $(u^{\alpha})_{\alpha \in I}$ of representatives for the set of equivalence classes of irreducible corepresentations Irred(\mathbb{G}):

 $u^{lpha} \in C(\mathbb{G}) \otimes B(H_{lpha}) \simeq \mathbb{M}_{n_{lpha}}(C(\mathbb{G}))$

Theorem (Woronowicz)

 $\mathsf{Pol}(\mathbb{G}) := \mathsf{span}_{\mathbb{C}}\{u_{ij}^{\alpha} \mid \alpha \in I, 1 \leq i, j \leq n_{\alpha}\}$ is a Hopf *-algebra.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A compact quantum group comes with a distinguished state $h: C(\mathbb{G}) \to \mathbb{C}$ called the Haar state. This yields

• A GNS space $L^2(\mathbb{G}):=L^2(C(\mathbb{G}),h)$.

• A GNS representation $\lambda \colon C(\mathbb{G}) \to B(L^2(\mathbb{G}))$ whose image $\lambda(C(\mathbb{G})) =: C(\mathbb{G}_{red})$ is again a compact quantum group.

 A von Neumann algebra L[∞](G):= λ(C(G))" which becomes a von Neumann algebraic quantum group.

Summing up we have:

 $General : \mathbb{C} \xleftarrow{\varepsilon} \operatorname{Pol}(\mathbb{G})^{\subset} \to C(\mathbb{G}_{\operatorname{red}})^{\subset} \to L^{\infty}(\mathbb{G})$ $\xrightarrow{\gamma \mapsto \gamma^{-1}} \bigoplus_{\Gamma \xrightarrow{\sim} \Gamma} C_{\operatorname{red}}(\Gamma)^{\subset} \to \mathscr{L}^{\infty}(\Gamma)$

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A compact quantum group comes with a distinguished state $h: C(\mathbb{G}) \to \mathbb{C}$ called the Haar state. This yields

• A GNS space $L^2(\mathbb{G}):=L^2(C(\mathbb{G}),h)$.

• A GNS representation $\lambda : C(\mathbb{G}) \to B(L^2(\mathbb{G}))$ whose image $\lambda(C(\mathbb{G})) =: C(\mathbb{G}_{red})$ is again a compact quantum group.

 A von Neumann algebra L[∞](G):= λ(C(G))" which becomes a von Neumann algebraic quantum group.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A compact quantum group comes with a distinguished state $h: C(\mathbb{G}) \to \mathbb{C}$ called the Haar state. This yields

- A GNS space $L^2(\mathbb{G}):=L^2(C(\mathbb{G}),h)$.
- A GNS representation $\lambda \colon C(\mathbb{G}) \to B(L^2(\mathbb{G}))$ whose image $\lambda(C(\mathbb{G})) =: C(\mathbb{G}_{red})$ is again a compact quantum group.
- A von Neumann algebra L[∞](G):= λ(C(G))" which becomes a von Neumann algebraic quantum group.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A compact quantum group comes with a distinguished state $h: C(\mathbb{G}) \to \mathbb{C}$ called the Haar state. This yields

- A GNS space $L^2(\mathbb{G}):=L^2(C(\mathbb{G}),h)$.
- A GNS representation $\lambda \colon C(\mathbb{G}) \to B(L^2(\mathbb{G}))$ whose image $\lambda(C(\mathbb{G})) =: C(\mathbb{G}_{red})$ is again a compact quantum group.
- A von Neumann algebra L[∞](G):= λ(C(G))" which becomes a von Neumann algebraic quantum group.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture A compact quantum group comes with a distinguished state $h: C(\mathbb{G}) \to \mathbb{C}$ called the Haar state. This yields

- A GNS space $L^2(\mathbb{G}):=L^2(C(\mathbb{G}),h)$.
- A GNS representation $\lambda \colon C(\mathbb{G}) \to B(L^2(\mathbb{G}))$ whose image $\lambda(C(\mathbb{G})) =: C(\mathbb{G}_{red})$ is again a compact quantum group.
- A von Neumann algebra L[∞](G):= λ(C(G))" which becomes a von Neumann algebraic quantum group.

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture A compact quantum group $\mathbb G$ has a discrete dual quantum group $\hat{\mathbb G}.$ It comes with 3 algebras

and a comultiplication $\hat{\Delta} \colon \ell^{\infty}(\hat{\mathbb{G}}) \to \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} \ell^{\infty}(\hat{\mathbb{G}}).$ Example: For $C^*_{red}(\Gamma)$ we get the following

 $c_f(\Gamma) \subseteq c_0(\Gamma) \subseteq \ell^{\infty}(\Gamma).$

Definition

A corepresentation of $\hat{\mathbb{G}}$ on a Hilbert space H is a unitary $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ such that $(\hat{\Delta} \otimes id) V = V_{(13)} V_{(23)}$

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture A compact quantum group $\mathbb G$ has a discrete dual quantum group $\hat{\mathbb G}.$ It comes with 3 algebras

and a comultiplication $\hat{\Delta} : \ell^{\infty}(\hat{\mathbb{G}}) \to \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} \ell^{\infty}(\hat{\mathbb{G}}).$ Example: For $C^*_{red}(\Gamma)$ we get the following

 $c_f(\Gamma) \subseteq c_0(\Gamma) \subseteq \ell^{\infty}(\Gamma).$

Definition

A corepresentation of $\hat{\mathbb{G}}$ on a Hilbert space H is a unitary $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ such that $(\hat{\Delta} \otimes id) V = V_{(13)} V_{(23)}$

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture A compact quantum group $\mathbb G$ has a discrete dual quantum group $\hat{\mathbb G}.$ It comes with 3 algebras

and a comultiplication $\hat{\Delta} \colon \ell^{\infty}(\hat{\mathbb{G}}) \to \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} \ell^{\infty}(\hat{\mathbb{G}})$. Example: For $C^{*}_{red}(\Gamma)$ we get the following

 $c_f(\Gamma) \subseteq c_0(\Gamma) \subseteq \ell^\infty(\Gamma).$

Definition

A corepresentation of $\hat{\mathbb{G}}$ on a Hilbert space H is a unitary $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ such that $(\hat{\Delta} \otimes id) V = V_{(13)} V_{(23)}$

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture A compact quantum group $\mathbb G$ has a discrete dual quantum group $\hat{\mathbb G}.$ It comes with 3 algebras

and a comultiplication $\hat{\Delta} \colon \ell^{\infty}(\hat{\mathbb{G}}) \to \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} \ell^{\infty}(\hat{\mathbb{G}}).$ Example: For $C^*_{red}(\Gamma)$ we get the following

 $c_f(\Gamma) \subseteq c_0(\Gamma) \subseteq \ell^{\infty}(\Gamma).$

Definition

A corepresentation of $\hat{\mathbb{G}}$ on a Hilbert space H is a unitary $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ such that $(\hat{\Delta} \otimes id) V = V_{(13)} V_{(23)}$

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture

A compact quantum group $\mathbb G$ has a discrete dual quantum group $\hat{\mathbb G}.$ It comes with 3 algebras

and a comultiplication $\hat{\Delta} \colon \ell^{\infty}(\hat{\mathbb{G}}) \to \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} \ell^{\infty}(\hat{\mathbb{G}}).$ Example: For $C^*_{red}(\Gamma)$ we get the following

 $c_f(\Gamma) \subseteq c_0(\Gamma) \subseteq \ell^{\infty}(\Gamma).$

Definition

A corepresentation of $\hat{\mathbb{G}}$ on a Hilbert space H is a unitary $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ such that $(\hat{\Delta} \otimes id) V = V_{(13)} V_{(23)}$

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for quantum groups

We begin with the following data:

- $\hat{\mathbb{G}}$ a discrete quantum group,
- $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ a corepresentation,
- $E \subseteq \operatorname{Irred}(\mathbb{G})$ and $\delta > 0$.

- ξ ∈ H is called invariant if V_α(η ⊗ ξ) = η ⊗ ξ for all α ∈ I and η ∈ H_α.
- $\xi \in (H)_1$ is called (E, δ) -invariant if
- $\|V_{lpha}(\eta\otimes \xi) \eta\otimes \xi\| < \delta$ for each $lpha \in E$ and each $\eta \in (H_{lpha})_1$.
- V has almost invariant vectors if such ξ exists for each (E, δ) .
- G has property (T) if each corepresentation that has almost invariant vectors, has a non-zero invariant vector.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for quantum groups

We begin with the following data:

- $\hat{\mathbb{G}}$ a discrete quantum group,
- $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ a corepresentation,
- $E \subseteq \operatorname{Irred}(\mathbb{G})$ and $\delta > 0$.

- ξ ∈ H is called invariant if V_α(η ⊗ ξ) = η ⊗ ξ for all α ∈ I and η ∈ H_α.
- $\xi \in (H)_1$ is called (E, δ) -invariant if $\|V_{\alpha}(\eta \otimes \xi) - \eta \otimes \xi\| < \delta$ for each $\alpha \in E$ and each $\eta \in (H_{\alpha})_1$.
- V has almost invariant vectors if such ξ exists for each (E, δ).
- Ĝ has property (T) if each corepresentation that has almost invariant vectors, has a non-zero invariant vector.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for quantum groups

We begin with the following data:

- $\hat{\mathbb{G}}$ a discrete quantum group,
- $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ a corepresentation,
- $E \subseteq \operatorname{Irred}(\mathbb{G})$ and $\delta > 0$.

- ξ ∈ H is called invariant if V_α(η ⊗ ξ) = η ⊗ ξ for all α ∈ I and η ∈ H_α.
- $\xi \in (H)_1$ is called (E, δ) -invariant if
- $\|V_{\alpha}(\eta \otimes \xi) \eta \otimes \xi\| < \delta$ for each $\alpha \in E$ and each $\eta \in (H_{\alpha})_1$.
- V has almost invariant vectors if such ξ exists for each (E, δ).
- Ĝ has property (T) if each corepresentation that has almost invariant vectors, has a non-zero invariant vector.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for quantum groups

We begin with the following data:

- $\hat{\mathbb{G}}$ a discrete quantum group,
- $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ a corepresentation,
- $E \subseteq \operatorname{Irred}(\mathbb{G})$ and $\delta > 0$.

- ξ ∈ H is called invariant if V_α(η ⊗ ξ) = η ⊗ ξ for all α ∈ I and η ∈ H_α.
- $\xi \in (H)_1$ is called (E, δ) -invariant if
 - $\|V_{\alpha}(\eta \otimes \xi) \eta \otimes \xi\| < \delta$ for each $\alpha \in E$ and each $\eta \in (H_{\alpha})_1$.
- V has almost invariant vectors if such ξ exists for each (E, δ).
- Ĝ has property (T) if each corepresentation that has almost invariant vectors, has a non-zero invariant vector.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Property (T) for quantum groups

We begin with the following data:

- $\hat{\mathbb{G}}$ a discrete quantum group,
- $V \in \ell^{\infty}(\hat{\mathbb{G}}) \bar{\otimes} B(H)$ a corepresentation,
- $E \subseteq \operatorname{Irred}(\mathbb{G})$ and $\delta > 0$.

- ξ ∈ H is called invariant if V_α(η ⊗ ξ) = η ⊗ ξ for all α ∈ I and η ∈ H_α.
- $\xi \in (H)_1$ is called (E, δ) -invariant if $\|V_{\alpha}(\eta \otimes \xi) - \eta \otimes \xi\| < \delta$ for each $\alpha \in E$ and each $\eta \in (H_{\alpha})_1$.
- V has almost invariant vectors if such ξ exists for each (E, δ).
- Ĝ has property (T) if each corepresentation that has almost invariant vectors, has a non-zero invariant vector.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture Unraveling the definition for $\mathbb{G} = C^*_{red}(\Gamma)$ we get that $\hat{\mathbb{G}}$ has property (T) iff Γ has property (T).

heorem (Fima)

Let $\hat{\mathbb{G}}$ be a discrete quantum group. Then

- if G has property (T) then G is Kac and Corep(G) is finitely generated.
- if Ĝ has property (T) then there exists Kazhdan pairs; i.e. there exists (E₀, δ₀) such that any corepresentation with an (E₀, δ₀)-invariant vector has a non-zero invariant vector.
- if L[∞](G) is a factor then G has property (T) iff L[∞](G) is a II₁-factor with property (T), in the sense of Connes-Jones.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Unraveling the definition for $\mathbb{G} = C^*_{red}(\Gamma)$ we get that $\hat{\mathbb{G}}$ has property (T) iff Γ has property (T).

Theorem (Fima)

Let $\hat{\mathbb{G}}$ be a discrete quantum group. Then

- if G has property (T) then G is Kac and Corep(G) is finitely generated.
- if Ĝ has property (T) then there exists Kazhdan pairs; i.e. there exists (E₀, δ₀) such that any corepresentation with an (E₀, δ₀)-invariant vector has a non-zero invariant vector.
- if L[∞](G) is a factor then Ĝ has property (T) iff L[∞](G) is a II₁-factor with property (T), in the sense of Connes-Jones.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture Unraveling the definition for $\mathbb{G} = C^*_{red}(\Gamma)$ we get that $\hat{\mathbb{G}}$ has property (T) iff Γ has property (T).

Theorem (Fima)

Let $\hat{\mathbb{G}}$ be a discrete quantum group. Then

- if Ĝ has property (T) then G is Kac and Corep(G) is finitely generated.
- if Ĝ has property (T) then there exists Kazhdan pairs; i.e. there exists (E₀, δ₀) such that any corepresentation with an (E₀, δ₀)-invariant vector has a non-zero invariant vector.

 if L[∞](G) is a factor then Ĝ has property (T) iff L[∞](G) is a II₁-factor with property (T), in the sense of Connes-Jones.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture Unraveling the definition for $\mathbb{G} = C^*_{red}(\Gamma)$ we get that $\hat{\mathbb{G}}$ has property (T) iff Γ has property (T).

Theorem (Fima)

Let $\hat{\mathbb{G}}$ be a discrete quantum group. Then

- if Ĝ has property (T) then G is Kac and Corep(G) is finitely generated.
- if Ĝ has property (T) then there exists Kazhdan pairs; i.e. there exists (E₀, δ₀) such that any corepresentation with an (E₀, δ₀)-invariant vector has a non-zero invariant vector.
- if L[∞](G) is a factor then Ĝ has property (T) iff L[∞](G) is a II₁-factor with property (T), in the sense of Connes-Jones.

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Unraveling the definition for $\mathbb{G} = C^*_{red}(\Gamma)$ we get that $\hat{\mathbb{G}}$ has property (T) iff Γ has property (T).

Theorem (Fima)

Let $\hat{\mathbb{G}}$ be a discrete quantum group. Then

- if Ĝ has property (T) then G is Kac and Corep(G) is finitely generated.
- if Ĝ has property (T) then there exists Kazhdan pairs; i.e. there exists (E₀, δ₀) such that any corepresentation with an (E₀, δ₀)-invariant vector has a non-zero invariant vector.
- if L[∞](G) is a factor then Ĝ has property (T) iff L[∞](G) is a II₁-factor with property (T), in the sense of Connes-Jones.

David Kyed

From discrete to compact

Notice that

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Corepresentations of $\hat{\mathbb{G}} \stackrel{1:1}{\longleftrightarrow} *\text{-representations of Pol}(\mathbb{G}).$

We can now mimic the definition from the dual point of view:

Definition

Let π : Pol(G) \rightarrow B(H) be a *-rep, $E \subseteq$ Irred(G) and $\delta > 0$. Then

 ξ ∈ H is called invariant if π(a)ξ = ε(a)ξ for every a ∈ Pol(G).

- $\xi \in (H)_1$ is called (E, δ) -invariant if $\|\pi(u_{\pi}^{\alpha})\xi - \epsilon(u_{\pi}^{\alpha})\xi\| < \delta$ for every $\alpha \in E$ and $1 \leq \epsilon$
- π is said to have almost invariant vectors if such ξ exists for every (E, δ).

David Kyed

From discrete to compact

Notice that

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Corepresentations of $\hat{\mathbb{G}} \stackrel{1:1}{\longleftrightarrow} *-representations of Pol(\mathbb{G}).$

We can now mimic the definition from the dual point of view:

Definition

Let π : Pol(\mathbb{G}) \rightarrow B(H) be a *-rep, E \subseteq Irred(\mathbb{G}) and $\delta > 0$. Then

- ξ ∈ H is called invariant if π(a)ξ = ε(a)ξ for every a ∈ Pol(G).
- $\xi \in (H)_1$ is called (E, δ) -invariant if $\|\pi(u_{ii}^{\alpha})\xi - \varepsilon(u_{ii}^{\alpha})\xi\| < \delta$ for every $\alpha \in E$ and $1 \le i, j \le i$

 π is said to have almost invariant vectors if such ξ exists for every (E, δ).

David Kyed

From discrete to compact

Notice that

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Corepresentations of $\hat{\mathbb{G}} \stackrel{1:1}{\longleftrightarrow} *$ -representations of $\mathsf{Pol}(\mathbb{G})$.

We can now mimic the definition from the dual point of view:

Definition

Let π : Pol(\mathbb{G}) \rightarrow B(H) be a *-rep, E \subseteq Irred(\mathbb{G}) and $\delta > 0$. Then

- ξ ∈ H is called invariant if π(a)ξ = ε(a)ξ for every a ∈ Pol(G).
- $\xi \in (H)_1$ is called (E, δ) -invariant if $\|\pi(u_{ij}^{\alpha})\xi \varepsilon(u_{ij}^{\alpha})\xi\| < \delta$ for every $\alpha \in E$ and $1 \le i, j \le n_{\alpha}$.

 π is said to have almost invariant vectors if such ξ exists for every (E, δ).

David Kved

From discrete to compact

Notice that

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Corepresentations of $\hat{\mathbb{G}} \stackrel{1:1}{\longleftrightarrow} *-representations of Pol(\mathbb{G}).$

We can now mimic the definition from the dual point of view:

Definition

Let π : Pol(\mathbb{G}) \rightarrow B(H) be a *-rep, E \subseteq Irred(\mathbb{G}) and $\delta > 0$. Then

- ξ ∈ H is called invariant if π(a)ξ = ε(a)ξ for every a ∈ Pol(G).
- $\xi \in (H)_1$ is called (E, δ) -invariant if $\|\pi(u_{ij}^{\alpha})\xi \varepsilon(u_{ij}^{\alpha})\xi\| < \delta$ for every $\alpha \in E$ and $1 \leq i, j \leq n_{\alpha}$.
- π is said to have almost invariant vectors if such ξ exists for every (E, δ).

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

The expected result then holds

Proposition (K.)

$\hat{\mathbb{G}}$ has property (T) iff every *-representation $\pi: \operatorname{Pol}(\mathbb{G}) \to B(H)$ which has almost invariant vectors has a non-zero invariant vector.

Recall: Γ has property (T) iff every sequence of normalized, positive definite functions $\varphi_n \colon \Gamma \to \mathbb{C}$ converging pointwise to 1, converges uniformly. A positive definite, normalized function on Γ corresponds to a state on $C^*_{\max}(\Gamma)$. The relation

 $\|a\|_{\max} = \sup\{\|\pi(a)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) \text{ a } *-\mathsf{rep}\}$

is a norm and gives rise to a C*-completion $C(\mathbb{G}_{\mathsf{max}})$ of $\mathsf{Pol}(\mathbb{G}).$ The result now is:

Theorem (Fima, K.)

The quantum group $\hat{\mathbb{G}}$ has property (T) iff every sequence of states $\varphi_n \colon C(\mathbb{G}_{max}) \to \mathbb{C}$ converging pointwise to the counit ε , converges in the uniform norm.

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture The expected result then holds

Proposition (K.)

 $\hat{\mathbb{G}}$ has property (T) iff every *-representation $\pi: \operatorname{Pol}(\mathbb{G}) \to B(H)$ which has almost invariant vectors has a non-zero invariant vector.

Recall: Γ has property (T) iff every sequence of normalized, positive definite functions $\varphi_n \colon \Gamma \to \mathbb{C}$ converging pointwise to 1, converges uniformly. A positive definite, normalized function on Γ corresponds to a state on $C^*_{max}(\Gamma)$. The relation

 $\|a\|_{\max} = \sup\{\|\pi(a)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) \text{ a } *-\mathsf{rep}\}$

is a norm and gives rise to a C*-completion $C(\mathbb{G}_{max})$ of $Pol(\mathbb{G})$. The result now is:

Theorem (Fima, K.)

The quantum group $\hat{\mathbb{G}}$ has property (T) iff every sequence of states $\varphi_n \colon C(\mathbb{G}_{max}) \to \mathbb{C}$ converging pointwise to the counit ε , converges in the uniform norm.

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture The expected result then holds

Proposition (K.)

 $\hat{\mathbb{G}}$ has property (T) iff every *-representation $\pi: \operatorname{Pol}(\mathbb{G}) \to B(H)$ which has almost invariant vectors has a non-zero invariant vector.

Recall: Γ has property (T) iff every sequence of normalized, positive definite functions $\varphi_n \colon \Gamma \to \mathbb{C}$ converging pointwise to 1, converges uniformly. A positive definite, normalized function on Γ corresponds to a state on $C^*_{\max}(\Gamma)$. The relation

 $\|a\|_{\max} = \sup\{\|\pi(a)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) \text{ a }*-\mathsf{rep}\}$ s a norm and gives rise to a C^* -completion $C(\mathbb{G}_{\max})$ of

 $\mathsf{Pol}(\mathbb{G}).$ The result now is:

Theorem (Fima, K.)

The quantum group $\hat{\mathbb{G}}$ has property (T) iff every sequence of states φ_n : $C(\mathbb{G}_{max}) \to \mathbb{C}$ converging pointwise to the counit ε , converges in the uniform norm.

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture The expected result then holds

Proposition (K.)

 $\hat{\mathbb{G}}$ has property (T) iff every *-representation $\pi: \operatorname{Pol}(\mathbb{G}) \to B(H)$ which has almost invariant vectors has a non-zero invariant vector.

Recall: Γ has property (T) iff every sequence of normalized, positive definite functions $\varphi_n \colon \Gamma \to \mathbb{C}$ converging pointwise to 1, converges uniformly. A positive definite, normalized function on Γ corresponds to a state on $C^*_{\max}(\Gamma)$. The relation

 $\|a\|_{\max} = \sup\{\|\pi(a)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) \text{ a } *-\mathsf{rep}\}$

is a norm and gives rise to a C^* -completion $C(\mathbb{G}_{max})$ of $Pol(\mathbb{G})$. The result now is:

Theorem (Fima, K.)

The quantum group $\hat{\mathbb{G}}$ has property (T) iff every sequence of states $\varphi_n \colon C(\mathbb{G}_{\max}) \to \mathbb{C}$ converging pointwise to the counit ε , converges in the uniform norm.

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture The expected result then holds

Proposition (K.)

 $\hat{\mathbb{G}}$ has property (T) iff every *-representation $\pi: \operatorname{Pol}(\mathbb{G}) \to B(H)$ which has almost invariant vectors has a non-zero invariant vector.

Recall: Γ has property (T) iff every sequence of normalized, positive definite functions $\varphi_n \colon \Gamma \to \mathbb{C}$ converging pointwise to 1, converges uniformly. A positive definite, normalized function on Γ corresponds to a state on $C^*_{\max}(\Gamma)$. The relation

$$\|a\|_{\max} = \sup\{\|\pi(a)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) \text{ a }*\text{-rep}\}$$

is a norm and gives rise to a C*-completion $C(\mathbb{G}_{max})$ of Pol(\mathbb{G}). The result now is:

Theorem (Fima, K.)

The quantum group $\hat{\mathbb{G}}$ has property (T) iff every sequence of states $\varphi_n \colon C(\mathbb{G}_{\max}) \to \mathbb{C}$ converging pointwise to the counit ε , converges in the uniform norm.

A cohomological description

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Recall: Γ has property (T) iff any 1-cocycle is inner. The

description for quantum groups is a bit more involved:

Definition

Let π : Pol(G) \rightarrow B(H) be a *-representation and consider a Hochschild 1-cocycle c: Pol(G) $\rightarrow {}_{\pi}H_{\varepsilon}$. Then c is called closable if the following holds: if $x_n \in \text{ker}(\varepsilon) \subseteq \text{Pol}(G)$ is a sequence such that $||x_n||_{\gamma} \rightarrow 0$ and $c(x_n) \rightarrow \eta$ then $\eta = 0$, where

 $\|x\|_{\gamma} = \sup\{\|\pi(x)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) \ast \mathsf{-rep} \ , \varepsilon \nleq \pi\}$

Theorem (K.)

A cohomological description

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Recall: Γ has property (T) iff any 1-cocycle is inner. The description for quantum groups is a bit more involved:

Definition

Let π : Pol(G) $\rightarrow B(H)$ be a *-representation and consider a Hochschild 1-cocycle c: Pol(G) $\rightarrow {}_{\pi}H_{\varepsilon}$. Then c is called closable if the following holds: if $x_n \in \text{ker}(\varepsilon) \subseteq \text{Pol}(G)$ is a sequence such that $||x_n||_{\gamma} \rightarrow 0$ and $c(x_n) \rightarrow \eta$ then $\eta = 0$, where

 $\|x\|_{\gamma} = \sup\{\|\pi(x)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) *{-rep}, \varepsilon \nleq \pi\}$

Theorem (K.)

A cohomological description

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Recall: Γ has property (T) iff any 1-cocycle is inner.The description for quantum groups is a bit more involved:

Definition

Let $\pi : \operatorname{Pol}(\mathbb{G}) \to B(H)$ be a *-representation and consider a Hochschild 1-cocycle $c : \operatorname{Pol}(\mathbb{G}) \to {}_{\pi}H_{\varepsilon}$. Then c is called

closable if the following holds: if $x_n \in \text{ker}(\varepsilon) \subseteq \text{Pol}(\mathbb{G})$ is a sequence such that $||x_n||_{\gamma} \to 0$ and $c(x_n) \to \eta$ then $\eta = 0$, where

 $\|x\|_{\gamma} = \sup\{\|\pi(x)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) *-rep \ , \varepsilon \nleq \pi\}$

Theorem (K.)

A cohomological description

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Recall: Γ has property (T) iff any 1-cocycle is inner. The description for quantum groups is a bit more involved:

Definition

Let π : Pol(\mathbb{G}) \rightarrow B(H) be a *-representation and consider a Hochschild 1-cocycle c: Pol(\mathbb{G}) $\rightarrow {}_{\pi}H_{\varepsilon}$. Then c is called closable if the following holds: if $x_n \in \text{ker}(\varepsilon) \subseteq \text{Pol}(\mathbb{G})$ is a sequence such that $||x_n||_{\gamma} \rightarrow 0$ and $c(x_n) \rightarrow \eta$ then $\eta = 0$, where

 $\|x\|_{\gamma} = \sup\{\|\pi(x)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) *-rep \ , \varepsilon \nleq \pi\}$

Theorem (K.)

A cohomological description

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Recall: Γ has property (T) iff any 1-cocycle is inner. The description for quantum groups is a bit more involved:

Definition

Let π : Pol(\mathbb{G}) \rightarrow B(H) be a *-representation and consider a Hochschild 1-cocycle c: Pol(\mathbb{G}) $\rightarrow {}_{\pi}H_{\varepsilon}$. Then c is called closable if the following holds: if $x_n \in \text{ker}(\varepsilon) \subseteq \text{Pol}(\mathbb{G})$ is a sequence such that $||x_n||_{\gamma} \rightarrow 0$ and $c(x_n) \rightarrow \eta$ then $\eta = 0$, where

 $\|x\|_{\gamma} = \sup\{\|\pi(x)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) \ast \mathsf{-rep} \ , \varepsilon \nleq \pi\}$

Theorem (K.)

A cohomological description

David Kyed

Property (T) for groups

Quantum groups

Property (T) for quantum groups

The dual picture

Recall: Γ has property (T) iff any 1-cocycle is inner.The description for quantum groups is a bit more involved:

Definition

Let π : Pol(\mathbb{G}) \rightarrow B(H) be a *-representation and consider a Hochschild 1-cocycle c: Pol(\mathbb{G}) $\rightarrow {}_{\pi}H_{\varepsilon}$. Then c is called closable if the following holds: if $x_n \in \text{ker}(\varepsilon) \subseteq \text{Pol}(\mathbb{G})$ is a sequence such that $||x_n||_{\gamma} \rightarrow 0$ and $c(x_n) \rightarrow \eta$ then $\eta = 0$, where

 $\|x\|_{\gamma} = \sup\{\|\pi(x)\| \mid \pi \colon \mathsf{Pol}(\mathbb{G}) \to B(H) \ast \mathsf{-rep} \ , \varepsilon \nleq \pi\}$

Theorem (K.)

David Kyed

Property (T) for groups

Quantum groups

Property (T for quantum groups

The dual picture

Spectral characterization

David Kyed

Property (T for groups

Quantum groups

Property (T) for quantum groups

The dual picture Let \mathbb{G} be a matrix quantum group and let $E \subset \operatorname{Irred}(\mathbb{G})$ be a generating subset for $\operatorname{Irred}(\mathbb{G})$. Then we define

 $x = \sum_{\alpha \in E} \sum_{i,j=1}^{n_{\alpha}} (u_{ij}^{\alpha} - \varepsilon(u_{ij}^{\alpha})1)^* (u_{ij}^{\alpha} - \varepsilon(u_{ij}^{\alpha})1) \in \mathsf{Pol}(\mathbb{G}).$

This element detects property (T):

Theorem (K.)

 $\hat{\mathbb{G}}$ has property (T) iff $\pi(x)$ is invertible for each *-representation π : Pol(\mathbb{G}) $\rightarrow B(H)$ without invariant vectors.

Spectral characterization

David Kyed

Property (T for groups

Quantum groups

Property (T for quantum groups

The dual picture

Let \mathbb{G} be a matrix quantum group and let $E \subset \operatorname{Irred}(\mathbb{G})$ be a generating subset for $\operatorname{Irred}(\mathbb{G})$. Then we define

$$x = \sum_{\alpha \in E} \sum_{i,j=1}^{n_{\alpha}} (u_{ij}^{\alpha} - \varepsilon(u_{ij}^{\alpha})1)^* (u_{ij}^{\alpha} - \varepsilon(u_{ij}^{\alpha})1) \in \mathsf{Pol}(\mathbb{G}).$$

This element detects property (T):

Theorem (K.)

 $\hat{\mathbb{G}}$ has property (T) iff $\pi(x)$ is invertible for each *-representation π : Pol(\mathbb{G}) $\rightarrow B(H)$ without invariant vectors.

Spectral characterization

David Kyed

Property (T for groups

Quantum groups

Property (T) for quantum groups

The dual picture Let \mathbb{G} be a matrix quantum group and let $E \subset \operatorname{Irred}(\mathbb{G})$ be a generating subset for $\operatorname{Irred}(\mathbb{G})$. Then we define

$$x = \sum_{\alpha \in E} \sum_{i,j=1}^{n_{\alpha}} (u_{ij}^{\alpha} - \varepsilon(u_{ij}^{\alpha})1)^* (u_{ij}^{\alpha} - \varepsilon(u_{ij}^{\alpha})1) \in \mathsf{Pol}(\mathbb{G}).$$

This element detects property (T):

Theorem (K.)

 $\hat{\mathbb{G}}$ has property (T) iff $\pi(x)$ is invertible for each *-representation π : $Pol(\mathbb{G}) \rightarrow B(H)$ without invariant vectors.